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As a successful commensal and pathogen of humans, Candida albicans encounters a wide range of environmental conditions.
Among them, ambient pH, which changes frequently and affects many biological processes in this species, is an important factor,
and the ability to adapt to pH changes is tightly linked with pathogenesis and morphogenesis. In this study, we report that pH
has a profound effect on white-opaque switching and sexual mating in C. albicans. Acidic pH promotes white-to-opaque switch-
ing under certain culture conditions but represses sexual mating. The Rim101-mediated pH-sensing pathway is involved in the
control of pH-regulated white-opaque switching and the mating response. Phr2 and Rim101 could play a major role in acidic
pH-induced opaque cell formation. Despite the fact that the cyclic AMP (cAMP) signaling pathway does not play a major role in
pH-regulated white-opaque switching and mating, white and opaque cells of the cyr1/cyr1 mutant, which is defective in the pro-
duction of cAMP, showed distinct growth defects under acidic and alkaline conditions. We further discovered that acidic pH
conditions repressed sexual mating due to the failure of activation of the Ste2-mediated �-pheromone response pathway in
opaque a cells. The effects of pH changes on phenotypic switching and sexual mating could involve a balance of host adaptation
and sexual reproduction in C. albicans.

One of the most important environmental factors for all mi-
crobes is pH. The human fungal pathogen Candida albicans

encounters a wide range of ambient pH values (from �2.0 to
�8.5) during its life cycle (1, 2). The ability to sense and respond
to pH changes is essential for this pathogen to survive in the host
and cause infections (2).

The observation that pH regulates the development of fila-
ments, a key feature of virulence in C. albicans, has been inten-
sively investigated (3–7). A neutral to alkaline pH favors filamen-
tation, while an acidic pH has a repressing effect on this process.
The Rim101 pathway mediates pH sensing both in the model yeast
Saccharomyces cerevisiae and in C. albicans (8–10). The Rim101
transcription factor itself is regulated by external pH. Deletion of
the RIM101 gene causes defects in filamentous growth and in the
regulation of pH response genes (11). The full-length form of the
Rim101 protein has no activity (8), but in response to alkaline
conditions, Rim101 is processed to a short activated form by pro-
teolysis. The function of Rim101 is dependent on the basic helix-
loop-helix transcription factor Efg1, which is a key regulator of
filamentation downstream of the cyclic AMP (cAMP) signaling
pathway (12). The cell surface glycosidases Phr1 and Phr2 func-
tion as pH sensors and are transcriptionally regulated by Rim101
in C. albicans (2, 8). PHR1 is induced by a high pH (above 5.5) and
filamentation and is required for systemic infections, while PHR2
is induced by a low pH (below 5.5) and is essential for virulence in
vaginal infection models (3, 4).

Carbon dioxide (CO2) and pH are tightly linked in the envi-
ronment and biological systems (13). It has been shown that CO2

regulates both filamentation and white-opaque switching in C.
albicans (14, 15). CO2 is sensed via the cAMP signaling pathway
and by a currently unidentified pathway in C. albicans (16, 17).
Both pathways converge on the Flo8 transcription factor (18).
N-Acetylglucosamine (GlcNAc) is another host environmental
cue and a potent inducer of both filamentation and the opaque
phenotype in C. albicans. GlcNAc functions primarily through the

cAMP signaling pathway in the regulation of both filamentation
and white-opaque switching (16, 19–21).

In contrast to the yeast-filament transition, white-opaque
switching is epigenetically regulated and exhibits heritable and
bistable features (22–24). White and opaque cells differ in a num-
ber of aspects, including cell shape and surface, gene expression
profile, and mating competence (22, 25–27). The transition be-
tween white and opaque cell types is controlled by both the master
regulator Wor1 (28–30) and the mating type-like locus (26). Only
opaque cells can mate efficiently (26). Therefore, in order to mate,
diploid C. albicans cells must first undergo homozygosis at the
MTL locus and then switch to the opaque mating-competent form
(24, 26).

In this study, we investigated the role of pH in the regulation of
white-opaque switching and sexual mating in C. albicans. We
show that acidic pH induces the opaque phenotype but represses
sexual mating. The Rim101-mediated pH-sensing pathway is in-
volved in the regulation of white-opaque switching and cell
growth under different pH conditions. We further demonstrate
that the activation of the Ste2-mediated pheromone-sensing path-
way is essential for efficient mating in C. albicans.
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MATERIALS AND METHODS
Growth conditions and strains. C. albicans cells were routinely cultured
at 25°C in YPD (1% yeast extract, 2% peptone, 2% glucose) or Lee’s
glucose medium (16). Modified Lee’s glucose medium (pH 4.0 to 8.0) was
adjusted with HCl (37%) or NaOH (10%) solutions and used for white-
opaque switching and mating assays. To make Lee’s GlcNAc medium,
1.25% GlcNAc was used as the sole carbon source (16). Glucose (2%) was
added to synthetic complete (SCD) medium as the sole carbon source.

The C. albicans strains used in this study are listed in Table S1 in the
supplemental material. Strain GH1013 (16) was used to generate the null
mutants of PHR1 and PHR2. Strain GH1352 was used to generate the
cyr1/cyr1 mutant. Fusion PCR strategies (31) were used to delete both
alleles of PHR1, PHR2, or CYR1. The nutrient marker genes ARG4, HIS1,
and URA3 were amplified from plasmids pSN69 (31), pSN52 (31), and
pGEM-URA3 (32), respectively. The primers used in this study are listed
in Table S2 in the supplemental material. To construct the PHR1-, PHR2-,
and RIM101-reconstituted strains, a fragment containing the promoter,
the open reading frame (ORF), and terminal region of each gene, the C.
albicans SAT1 (CaSAT1) cassette (from plasmid pNIM1) and a fragment
of the 3= untranslated region (UTR) sequence were first amplified by PCR
with the primers listed in Table S2 in the supplemental material. Fusion
PCR assays were then performed with these PCR products. To construct
the CYR1-reconstituted strain, the promoter region, the region encoding
the CYR1-catalyzing domain, the terminator sequence, and a fragment
of the 3= UTR sequence were amplified from the genomic DNA of strain
SC5314 with the primers listed in Table S2 in the supplemental material.
The PCR products were used for fusion PCR assays with the CaSAT1
cassette. The fusion PCR product was used for transforming the corre-
sponding mutants and generating the reconstituted strains.

White-opaque switching assays. White-opaque switching assays
were performed as previously described (16, 33). Cells were plated on
Lee’s glucose medium plates (pH 6.8) and grown at 25°C for 5 days.
Homogeneous white or opaque colonies were then suspended in double-
distilled H2O and replated onto modified Lee’s glucose or GlcNAc me-
dium plates (with different pHs). Phloxine B (5 �g/ml), which exclusively
stains opaque colonies red, was added to the solid media. For quantitative
assays, C. albicans cells were normally grown on plates for 5 or 7 days in air
or 5% CO2. For the cyr1/cyr1 mutant, cells were grown on plates for 12
days.

Mating assays. Quantitative mating assays were performed as de-
scribed in our previous publication with slight modifications (18, 34).
Lee’s glucose solid, Lee’s glucose liquid, SCD solid, and SCD liquid media
were used for these assays. The pH of the medium was adjusted to 4.0 to
8.0. Opaque a cells (1 � 106; strain SZ306u [34]) and opaque � cells (1 �
106) were mixed and then spotted onto nutrient plates or inoculated into
fresh liquid medium. After 48 h of incubation on solid medium plates or
in liquid medium at 25°C, cells were collected and replated onto SCD
medium selectable plates (SCD medium-arginine-uridine, SCD medium-
arginine, and SCD medium-uridine) for phototrophic growth. Mating
efficiencies were calculated as previously described (26, 34).

Pheromone response assays. A 14-mer �-pheromone peptide (GFR
LTNFGYFEPGK) was chemically synthesized and used for induction of
the pheromone response. Opaque cells of the green fluorescent protein
(GFP) reporter strain (strain SZ306a PMFa-GFP [34]) were cultured in
liquid Lee’s glucose medium (pH 6.8) at 25°C for 24 h and then inoculated
into fresh Lee’s glucose medium of different pHs (5.0 and 7.0) at a con-
centration of 1 � 106 cells/ml. The �-pheromone was added to the cul-
tures twice at an interval of 12 h. The final concentration of the �-phero-
mone was 1 � 10�4 mol/liter. MFA1 expression induced by �-pheromone
was indicated by the GFP fluorescence.

qRT-PCR assay. Opaque cells were grown in liquid Lee’s glucose me-
dium (pH 6.8) at 25°C for 24 h. Opaque a cells were then inoculated into
fresh liquid media of different pHs. For pheromone response assays, syn-
thesized �-pheromone peptide was added to the single-strain cultures of
SZ306aPMFa-GFP twice at an interval of 12 h. The final concentration of

�-pheromone was 1 � 10�4 mol/liter. Alternatively, 2 � 106 opaque a and
� cells were mixed, inoculated into fresh medium, and incubated at 25°C
for 24 h. Cells were collected, and total RNA was extracted for quantitative
real-time PCR (qRT-PCR) assays. qRT-PCR assays were performed as
previously described (34) with slight modifications. A total of 0.6 mg of
total RNA per sample was used to synthesize cDNA with RevertAid H
Minus reverse transcriptase (Thermo Scientific). The relative expression
level of each gene was normalized to that of ACT1.

RESULTS
Acidic pH promotes white-to-opaque switching. It has been
demonstrated that CO2 can induce white-to-opaque switching in

FIG 1 pH regulates white-to-opaque switching in air and in 5% CO2. An �/�
strain (FC4, a stock of WO-1 [15]) was used for this experiment. White cells
were plated onto Lee’s glucose medium plates and incubated at 25°C for 7 days.
Quantitative assays of the switching frequencies are shown in Table 1.
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C. albicans (15). We suspected that the hydrolysis of CO2, which
results in the production of protons and intracellular acidifica-
tion, could contribute to the induction of the opaque phenotype.
We therefore tested whether acidic pH culture conditions had a
similar effect on white-opaque switching. White cells of WO-1
(FC4, a stock of WO-1 [15]) were plated onto Lee’s glucose me-
dium in air at 25°C. This stock was used because it is sensitive to
the stimulation of environmental factors and exhibits high white-
to-opaque switching frequencies. As shown in Fig. 1, the majority
of colonies underwent white-to-opaque switching and carried one
or multiple opaque sectors at pH 4, while colonies with opaque
sectors were much less frequent under neutral to alkaline pH con-
ditions (pH 6 to 8). To confirm the inducing effect of acidic pH on
the opaque phenotype, we performed quantitative white-to-
opaque switching assays in four genetically independent strains.
As demonstrated in Table 1, acidic pH notably promoted white-
to-opaque switching in both WO-1 and SN250� in air. However,
this promoting effect was not observed in the other two strains
(12C and P37005) due to their low switching frequencies (�1%)
under all pH conditions. These results suggest that acidic pH has
an inducing effect on the opaque phenotype, but this appeared to
be dependent on the genetic background of the strain.

pH conditions affect CO2- and GlcNAc-induced white-to-
opaque switching. CO2 and GlcNAc are potent inducers of the
opaque phenotype in C. albicans (15, 16). We next tested the effect
of pH changes on CO2- and GlcNAc-induced white-to-opaque
switching in C. albicans. As shown in Fig. 1 and Table 1, CO2 and
acidic pH had a synergistic effect on the induction of white-to-

opaque switching in the four different strains. Interestingly, CO2

promoted the formation of branched colonies at pH 8.0. These
colonies contained very few filamentous cells but showed slightly
invasive growth (not shown). Similarly, GlcNAc and acidic pH
also had an obvious synergistic effect on the induction of the
opaque phenotype (Table 2). Despite the differences among the
four different strains, all of them showed higher white-to-opaque
switching frequencies under lower-pH conditions than high-
er-pH conditions. Some strains exhibited higher switching fre-
quencies at pH 8.0 than at pH 7.5. This effect could be due to an
indirect effect since extreme pH (8.0) reduced the solubility of
some metal ions (such as copper and iron ions), which are impor-
tant for the maintenance of the original phenotype.

pH has no obvious effect on opaque-to-white switching.
White-opaque switching is a heritable cellular transition (22). We
next asked whether pH affects the stability of the opaque pheno-
type and performed quantitative opaque-to-white switching as-
says in different strains. As shown in Fig. 2, opaque cells of strains
GH1012, WO-1, and 12C were very stable under different pH
conditions. Although the opaque-to-white switching frequencies
of P37005 were higher than those of the other three strains, there
was no significant variation of this frequency under the different
pH conditions.

Role of cAMP signaling pathway in pH-regulated white-to-
opaque switching. The cAMP signaling pathway is involved in a
range of biological processes in C. albicans, such as CO2- and
GlcNAc-induced white-to-opaque switching and filamentation
(6, 15, 16, 35). As mentioned earlier, the hydrolysis of CO2 leads to
acidification. We tested whether this pathway plays a role in acidic
pH-induced white-to-opaque switching. As shown in Table 3, de-
letion of CYR1 had no obvious effect on white-to-opaque switch-
ing under different pH conditions. Consistent with a previous
report (16), deletion of PDE2 led to mass conversion to the
opaque phenotype at pH 5.0 to 7.0, while the switching frequen-
cies under alkaline pH conditions (pH 7.5 and 8.0) were relatively
low. Therefore, despite the difference in switching frequencies be-
tween strains with the wild-type (WT) and mutant cAMP signal-
ing pathway, the mutant strains had a similar tendency for opaque
cell formation under different pH conditions. However, white and
opaque cells of the cyr1/cyr1 mutant exhibited a distinct growth

TABLE 2 pH regulates GlcNAc-induced white-to-opaque switchinga

Strain

White-to-opaque switching frequency (%) at pH:

5.0 6.0 7.0 7.5 8.0

WO-1 (FC4) 100.0* 95.0 � 4.1* 28.3 � 5.9 21.1 � 1.6 23.0 � 4.3
JSM-167 99.4 � 0.5* 79.4 � 6.4* 31.1 � 3.5 40.0 � 7.0 45.2 � 5.0
12C 96.4 � 2.1* 75.7 � 13.1* 8.5 � 5.9 14.0 � 3.0 23.2 � 5.6
P37005 14.5 � 4.4* 2.9 � 0.1 1.4 � 1.5 1.7 � 1.3 1.3 � 1.1
a White cells were plated onto Lee’s GlcNAc medium plates and incubated in air at
25°C for 7 days. Assays for the quantitation of the white-to-opaque switching
frequencies were performed. *, statistically significant difference (Student’s t test, P �
0.05; see footnote a of Table 1).

TABLE 1 pH regulates white-to-opaque switching in strains with different backgroundsa

Strain Culture condition

White-to-opaque switching frequency (%) at pH:

5.0 6.0 7.0 7.5 8.0

WO-1 (FC4, �/�) Air 29.1 � 4.8* 2.9 � 0.9 2.3 � 0.2 3.0 � 0.5 3.5 � 0.2
5% CO2 100.0 100.0* 69.4 � 7.5 49.5 � 13.4 66.8 � 3.4

SN250� (�/�) Air 19.7 � 8.4 15.9 � 2.2 15.3 � 8.4 12.8 � 7.6 NA
5% CO2 90.3 � 7.8 82.4 � 25.7* 27.7 � 21.5 18.3 � 2.4 NA

12C (a/a) Air �0.5 �1.0 �0.5 �0.5 �0.4
5% CO2 22.3 � 5.9* 13.0 � 12.2* �1.0 �1.5 1.0 � 1.8

P37005 (a/a) Air �0.3 �1.0 �0.4 �0.5 �1.0
5% CO2 2.7 � 0.6* 1.3 � 0.5 �0.5 �0.4 �0.4

a Two �/� strains (strain FC4, a stock of WO-1, and strain SN250�) and two a/a strains were used. White cells were plated onto Lee’s glucose medium plates and incubated in air or
5% CO2 at 25°C for 7 days. Assays for the quantitation of the white-to-opaque switching frequencies were performed. �, no opaque colonies or colonies with opaque sectors were
observed. *, the switching rate is significantly (Student’s t test, P � 0.05) higher than that under the condition at the next higher pH. For example, the switching rate of strain WO-1
at pH 5.0 (29.1 � 4.8) was significantly higher than that at pH 6.0 (2.9 � 0.9). NA, not available.

pH Regulates Switching and Mating in C. albicans

November 2015 Volume 14 Number 11 ec.asm.org 1129Eukaryotic Cell

http://ec.asm.org


defect under different pH conditions. White cells of the mutant
grew better under acidic pH conditions (4.0 to 6.0) than under
alkaline conditions, while opaque cells exhibited better growth
under acidic to neutral pH conditions (6.0 to 7.0). These results
suggest that the cAMP signaling pathway may not play a major
role in acidic pH-induced white-to-opaque switching in C. albi-
cans but may indirectly affect the cell population through the reg-
ulation of cell growth.

Efg1 is a downstream transcription factor of the cAMP signal-
ing pathway and plays a critical role in the regulation of white-
opaque switching (36–38). Although the difference in white-
opaque switching frequency under different pH conditions was
not observed, we found two major colony phenotypes for the efg1/
efg1 mutant: smooth and rough. Smooth colonies contained only
typical opaque cells, while rough colonies contained both typical
opaque cells and more elongated and pseudohypha-like cells. Un-
der acidic pH conditions (�6.5), most colonies of the mutant
exhibited the smooth phenotype, while most were rough when
cultured at pH 7.0 or higher (data not shown).

Roles of Phr1, Phr2, and Rim101 in white-opaque switching.
As mentioned earlier, the Rim101 pathway governs pH responses

and filamentation in C. albicans (4, 8, 9). Deletion of the pH re-
sponse gene PHR1 had no significant effect on white-to-opaque
switching, while deletion of PHR2 led to growth defects under
lower-pH conditions (Table 3). The rim101/rim101 mutant ex-
hibited comparable switching frequencies under different pH
conditions. Therefore, deletion of RIM101 resulted in the loss of
the pH-dependent switching response. Both white and opaque
cells of the phr2/phr2 mutant had a growth defect under acidic pH
conditions (4.0 to 6.0; see Fig. S1 and S2 in the supplemental
material). Deletion of RIM101 or PHR1 had no obvious effect on
opaque-to-white switching (not shown), while opaque cells of the
phr2/phr2 mutant were extremely unstable at pH 4.0 to 5.0 and
underwent mass conversion to the white phenotype. These results
indicate that Rim101 and Phr2 may play a major role in the regu-
lation of white-opaque switching in C. albicans.

pH regulates sexual mating in C. albicans. White-opaque
switching and sexual mating are two tightly linked processes in C.
albicans (26, 27). To test whether pH conditions affect sexual mat-
ing in C. albicans, we performed mating assays under four differ-
ent culture conditions (shown in Table 4). In SCD media (both
solid and liquid), opaque cells mated most efficiently at pH 7.0.

FIG 2 pH has no obvious effect on opaque-to-white switching. (A) Images of strain GH1012 (a/a) colonies at different pHs. (B) Quantitation of the frequencies
of opaque-to-white switching. Four genetically independent strains were used. Opaque cells were plated onto Lee’s glucose medium plates and incubated at 25°C
in air for 7 days.

TABLE 3 Roles of cAMP signaling and pH response pathways in white-to-opaque switchinga

Strain

White-to-opaque switching frequency (%) at pH:

4.0 5.0 6.0 7.0 7.5 8.0

WT 18.4 � 2.9* 12.5 � 0.9 13.8 � 0.3* 5.4 � 1.0* �1.0 �1.3
cyr1/cyr1b 23.5 � 3.3* 7.1 � 4.1* 4.8 � 1.3 2.4 � 3.4 Growth defect Growth defect
pde2/pde2 100.0 100.0 100.0* 93.8 � 2.3 74.2 � 1.8* 67.5 � 1.2
phr1/phr1 2.7 � 1.8* 0.2 � 0.4 �0.2 0.2 � 0.4 �0.3 �0.3
PHR1 reconstituted 9.4 � 0.1* 5.9 � 0.4* 2.9 � 1.1* 0.9 � 0.8* �0.5 0.6 � 1.0
phr2/phr2 Growth defect Growth defect 0.9 � 1.2 3.8 � 3.2* 0.8 � 1.1 �0.9
PHR2 reconstituted 5.8 � 0.3 10.4 � 2.3* 4.7 � 0.8* 0.5 � 0.8* �0.5 �0.6
rim101/rim101 2.4 � 0.7 6.0 � 0.8* 1.7 � 0.8 2.6 � 0.6 3.8 � 2.3 4.2 � 0.2
RIM101 reconstituted 10.0 � 2.8* 6.4 � 1.3 4.6 � 1.4* 0.7 � 1.2* �0.4 �0.4
a The WT was strain GH1013, an SC5314 background strain. White cells were plated onto Lee’s glucose medium plates and incubated in air at 25°C for 7 days. Assays for the
quantitation of white-to-opaque switching frequencies were performed. �, no opaque or opaque-sectored colonies were observed. PHR1, PHR2, or RIM101 reconstituted, a copy
of the PHR1, PHR2, or RIM101 gene, respectively, was integrated into the original locus. *, statistically significant difference (Student’s t test, P � 0.05; see footnote a of Table 1).
b The cyr1/cyr1 mutant grew extremely slowly. The switching frequencies were examined after 12 days of growth.
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On solid Lee’s medium, opaque cells mated most efficiently at pH
6.0, while in liquid Lee’s medium, opaque cells mated most effi-
ciently at pH 8.0 (of note, the growth of C. albicans cells resulted in
acidification of the medium; the final pH of this medium was
about 6.9). These results suggest that acidic pH (�5.0) represses
sexual mating in C. albicans.

Acidic pH represses �-pheromone-induced STE2 and MFA1
expression in opaque a cells. In C. albicans, the �-pheromone
precursor, MF�1, is constitutively expressed in � opaque cells (34,
39–41). However, the a-pheromone precursor, MFa1, is ex-
pressed only in opaque a cells in response to �-pheromone or
opaque � cells (34, 42). We suspected that opaque � cells failed to
induce the expression of MFA1 in opaque a cells under acidic pH
conditions. Thus, pheromone and mating responses could not
occur efficiently. To test this hypothesis, the expression of MFA1
was examined using an MFA1 promoter-controlled GFP reporter
a strain (34). As shown in Fig. 3, the GFP fluorescence of the
reporter strain was extremely weak at pH 4.0 and 5.0, while the
signal was much stronger at pHs over 6.0 when the reporter strain

was coincubated with opaque � cells. The relative expression lev-
els of MFA1 in cells treated with chemically synthesized �-phero-
mone at pH 5.0 and 7.0 were then determined using qRT-PCR
assays. As expected, the expression of MFA1 was about five times
higher at pH 7.0 than at pH 5.0 in �-pheromone-treated cells (Fig.
4A). Of note, the expression of MF�1 in opaque � cells was not
affected by different pH conditions (not shown). The �-phero-
mone receptor gene STE2 is a pheromone-responsive gene in
opaque a cells (39). The induction of STE2 expression in opaque a
cells was observed only at pH 7.0 when the cells were treated with
�-pheromone and not at pH 5.0 (Fig. 4B). These results indicate
that the induction of the Ste2-mediated pheromone response
pathway and expression of MFA1 are dependent on pH condi-
tions.

Since deletion of RIM101 led to the loss of pH-regulated white-
to-opaque switching, we examined the relative expression levels of
MFA1 and STE2 in the rim101/rim101 mutant. As shown in Fig. 4,
the expression levels of both MFA1 and STE2 in �-pheromone-
treated cells were comparable, suggesting that the expression of

TABLE 4 pH regulates sexual mating in C. albicansa

Medium

Mating efficiency at pH:

4.0 5.0 6.0 7.0 8.0

Lee’s glucose
Solid (6.3 � 1.2) � 10�2 (1.0 � 0.2) � 10�1 (1.7 � 0.3) � 10�1* (5.9 � 0.4) � 10�2 (3.1 � 0.8) � 10�2

Liquid (5.6 � 3.9) � 10�5 (3.5 � 1.5) � 10�4 (1.9 � 1.2) � 10�3 (5.2 � 1.4) � 10�2 (2.4 � 0.2) � 10�1*

SCD
Solid (2.6 � 0.7) � 10�1 (1.6 � 0.3) � 10�1 (3.4 � 0.7) � 10�1 (7.8 � 1.7) � 10�1* (5.5 � 3.0) � 10�1

Liquid (3.9 � 4.6) � 10�5 (5.1 � 1.0) � 10�2 (1.3 � 0.2) � 10�1 (1.9 � 0.4) � 10�1* (5.8 � 1.6) � 10�2

a Opaque cells of SZ306u (an a strain) and GH1349 (an � strain) were mixed and used for quantitative mating assays (see the Materials and Methods section). *, the mating
efficiency was statistically significantly (Student’s t test, P � 0.05) higher than that under the lower-pH conditions.

FIG 3 pH regulates the induction of MFA1 expression in response to �-pheromone (produced by opaque � cells). A GFP-encoding sequence was integrated into
the MFA locus and used as a reporter of the MFA1 promoter. Opaque � cells of GH1349, which served as an �-pheromone producer, were mixed with opaque
a cells of the PMFa1-GFP reporter strain. Single-strain cultures (GH1349 and the reporter strain) served as controls. Cells were incubated in liquid Lee’s glucose
medium with shaking at 25°C for 24 h. DIC, differential interference contrast.
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the two genes is independent of pH conditions in this mutant. The
pheromone response is transduced from Ste2 to the STE11- mito-
gen-activated protein kinase (MAPK) pathway (43, 44). We next
tested whether this MAPK pathway is essential for �-pheromone-
activated expression of MFA1 and STE2. As expected, the expres-
sion levels of these two genes in the ste11/ste11 and hst7/hst7 mu-
tants were very low in all treatments under both pH conditions.

DISCUSSION

To better survive and cause infections in the human host, C. albi-
cans must adapt to broadly fluctuating pH conditions. Despite an
ambient pH that is relatively stable in human blood and tissues,
pH variations frequently occur in the major niches for the com-
mensal lifestyle of C. albicans (such as the digestive tract and vag-
inal cavity of human hosts). The two related processes, white-
opaque switching and mating, are thought to play important roles
in the regulation of pathogenesis in C. albicans (23, 24, 27). A
variety of environmental cues have been reported to regulate these
two processes (7, 23, 24, 27). In this study, we report that changes
of the pH conditions affect not only white-opaque switching but
also sexual mating in C. albicans. Despite the difference in the
response to pH changes, acidic pH conditions favor the opaque
phenotype in all clinically dependent strains tested (Table 1 and
Fig. 2). Since acidic pH-induced opaque cell formation is highly
dependent on strain backgrounds and exhibits a relatively minor
effect (compared to the effects of CO2 and GlcNAc), we consider
that pH may play an additive role in the environmental regulation
of this phenotypic switching in C. albicans.

The Rim101 pH-sensing pathway is highly conserved in patho-
genic fungi (2, 45). It has been shown that the rim101/rim101
mutant exhibits the defect of alkaline-induced hyphal growth (2,
8). Given the central role of Rim101 in the regulation of pH adap-
tation, it is reasonable that the deletion of RIM101 led to the loss
of the pH-dependent switching response (reduced switching
under higher-pH conditions). Consistent with this observa-
tion, �-pheromone-activated expression of MFA1 and STE2
was also independent of pH conditions in the rim101/rim101
mutant. Inactivation of the pH response gene PHR1 had no

obvious effect on white-opaque switching (Table 3), but dele-
tion of PHR2 led to instability of the opaque cell type at acidic
pHs (see Fig. S2 in the supplemental material). Phr2 may play a
major role in acidic pH-induced white-to-opaque switching.
Consistent with our data, it has been demonstrated that PHR2
is expressed only at a pH below 5.5 (4).

The cAMP signaling pathway plays a central role in phenotypic
transitions and environmental sensing in C. albicans (6, 46, 47).
The adenylyl cyclase of C. albicans, Cyr1, is a large protein that
contains several functional domains (35, 47). Cyr1 functions as a
signal sensor for a variety of environmental cues. Consistent with
previous studies, inactivation of the cAMP signaling pathway de-
creases the frequency of white-to-opaque switching under neutral
pH conditions, while activation of this pathway by deletion of the
high-affinity cyclic nucleotide phosphodiesterase gene, PDE2, in-
duces the opaque phenotype. However, acidic pH favors the de-
velopment of the opaque cell type in both CYR1 and PDE2 mu-
tants (Table 3), suggesting that acidic pH-induced opaque cell
formation is not dependent on the cAMP signaling pathway.
There could be other pathways involved in the regulation of this
process. Interestingly, white and opaque cells of the cyr1/cyr1 mu-
tant showed distinct growth defects under different pH conditions
(Fig. 3), suggesting that the cAMP signaling pathway could play
critical but distinct roles in the regulation of the growth of white
and opaque cells. Thus, the two cell types may have different abil-
ities to adapt to extreme pH conditions.

pH affects multiple biological processes in fungi, including me-
tabolism, morphogenesis, meiosis, and the virulence of pathogens
(48). Here we observed that acidic pH conditions repress sexual
mating in C. albicans (Table 4). This repressing effect is due to the
failure of activation of the Ste2-mediated pheromone response
pathway and the induction of a-pheromone expression. Since
only opaque cells can mate efficiently, acidic pH conditions favor
opaque cell formation, which indirectly promotes mating in this
species in nature. The repressing effect of acidic pH conditions on
the mating process would thus play a role in balancing the sexual
and asexual lifestyles in this species. The situation in S. cerevisiae is
similar (49). The optimum pH for mating-specific adhesion is 6 to

FIG 4 Relative expression levels of MFA1 (A) and STE2 (B) in response to �-pheromone under different pH conditions. The WT (GH1013) control and the ste11/ste11,
hst7/hst7, and rim101/rim101 mutants are all SC5314 derivatives. To generate the MFA1 reporter strain SZ306a PMFa-GFP, a GFP-encoding sequence was integrated into
the MFA locus. Opaque cells of SZ306a PMFa-GFP were initially grown in liquid Lee’s glucose medium (pH 6.8) to stationary phase. Cells were then reinoculated into fresh
Lee’s glucose medium (pH 5.0 and 7.0) and treated with �-pheromone at 25°C for 24 h.
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7, while pretreatment of S. cerevisiae cells at pH 3.5 significantly
increases mating efficiencies.

The roles of pH regulation in white-opaque switching and sex-
ual mating may support the adaptation of C. albicans to environ-
mental variations in the host. However, the host environment is
very complex. There are many effectors in every niche, and a lot of
questions remain to be investigated. For example, what is the re-
lationship between CO2- and pH-sensing pathways? Are there any
Rim101-independent pH-sensing pathways? Does the pH signal-
ing pathway function directly or indirectly (for example, through
the regulation of cellular metabolisms) on the induction of the
opaque cell type? How do pH-sensing pathways cross talk with
regulatory pathways controlling phenotypic switching and sexual
mating?
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