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Abstract

Approximately 20 drugs have been approved by the FDA for breast cancer treatment, yet 

predictive biomarkers are known for only a few of these. The identification of additional 

biomarkers would be useful both for drugs currently approved for breast cancer treatment and for 

new drug development. Using glycoprotein expression data collected via mass spectrometry, in 

conjunction with statistical models constructed by elastic net or lasso regression, we modeled 

quantitatively the responses of breast cancer cell lines to ~90 drugs. Lasso and elastic net 

regression identified HER2 as a predictor protein for lapatinib, afatinib, gefitinib and erlotinib, 

which target HER2 or the EGF receptor, thus providing an internal control for the approach. Two 

additional protein datasets and two RNA datasets were also tested as sources of predictor proteins 

for modeling drug sensitivity. Protein expression measured by mass spectrometry gave models 

with higher coefficients of determination than did reverse phase protein array (RPPA) predictor 

data. Further, cross validation of the elastic net models shows that, for many drugs, the prediction 

error is lower when the predictor data is from proteins, rather than mRNA expression measured on 

microarrays. Drugs that could be modeled effectively include PI3K inhibitors, Akt inhibitors, 

paclitaxel and docetaxel, rapamycin, everolimus and temsirolimus, gemcitabine and vinorelbine. 

Strikingly, this modeling approach with protein predictors often succeeds for drugs that are 

targeted agents, even when the nominal target is not in the dataset.
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Introduction

The U.S. Food and Drug Administration has approved roughly two dozen drugs for breast 

cancer treatment, but only a few predictive biomarkers are currently available to guide their 

use. For example, levels of the estrogen or progesterone receptor have been found to predict 

sensitivity to compounds that interfere with estrogen receptor signaling, and, the over-

expression of human epidermal growth factor receptor 2 (HER2) predicts sensitivity to 

pertuzumab, trastuzumab and lapatinib. Additional biomarkers would be of significant value 

for determining the sensitivity of tumors to drugs already approved for clinical use in breast 

cancer, as well as for new drug development [1,2].

What sort of data could yield accurate predictions of a patient’s response to a drug? Recent 

efforts in this area have focused on solving the simplified problem of predicting the 

responses of cancer cell lines, rather than of tumors [3–8]. This line of inquiry has explored 

a variety of predictor variables: gene mutations, copy number variation, methylation 

patterns, gene expression data [3–5,7,8], reverse phase protein array data [4,9], and receptor 

signaling networks [10]. In addition, researchers have begun to apply statistical and machine 

learning methods to evaluate and improve the identification of predictors [11–14]. Geeleher 

et al. [15] propose that combining cell line data with measurements of gene expression in 

patient tumor samples can be used to predict a patient’s response to a drug.

RNA isolated from tumors has attracted considerable interest as a source of predictors of 

drug response in several types of cancer [16,17]. To date these attempts have not achieved 

sufficient success for application in the clinic. Immunohistochemistry is now used to 

characterize the expression of the estrogen receptor, progesterone receptor and HER2 

proteins in breast cancer, suggesting that protein expression data may be more useful than 

mRNA in predicting drug response.

Our research group has assembled a database of glycoproteins from 26 breast cancer cell 

lines [18,19]; for 22 of these cell lines drug response data is publicly available. We used 

liquid chromatorgraphy/tandem mass spectrometry (LC/MS/MS) to identify the proteins, 

and spectral counting to determine their relative expression levels. This dataset provides an 

opportunity to evaluate the usefulness of protein expression measured by mass spectrometry 

in modeling the sensitivities of the cell lines to drugs, and to compare the performance of 

various types of data in prediction.

The glycoproteins in our dataset are primarily secreted or plasma membrane proteins. The 

dataset is enriched for proteins that mediate contacts between epithelial cells, as well as for 

components of the basement membrane and extracellular matrix. We have shown that many 

of these proteins are expressed at different levels in malignant compared to non-malignant 

cell lines, and that the malignant cell lines are typically characterized by significantly lower 

levels of glycoprotein expression [18].

Large data sets describing the effects of various drugs on the growth of cancer cell lines 

have recently been generated for the purpose of accelerating the preclinical evaluation of 

new compounds [3–8]. One of these datasets describes the effects of 90 drugs on 70 breast 

cancer cell lines, and is the largest of the datasets with respect to the number of drugs and 
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breast cancer cell lines [4]. Those authors measured the concentration of each drug that 

causes a 50% reduction in the proliferation of cells in culture (GI50). One striking finding is 

that the cell lines vary greatly in sensitivity to various drugs, in some cases by more than 

four orders of magnitude. While acquired resistance to chemotherapeutics or targeted agents 

is well recognized and is the subject of intensive study [20], the variation in sensitivities to 

these 90 drugs displayed by the cell lines in culture is not likely to be due to resistance 

acquired from previous exposure to these drugs; the patients from whose tumors the cell 

lines were derived would not have been treated with most of these drugs. Thus, there 

appears to be much intrinsic variability in the responses of these tumor-derived cell lines to 

drugs. If replicated in breast tumors, these intrinsic differences in sensitivity could explain 

some of the variability of patients’ responses to chemotherapeutic drugs or targeted agents.

We applied regularized regression to model the intrinsic sensitivities of cell lines to 90 drugs 

[4] using the glycoprotein dataset. For purposes of comparison, we also modeled the drug 

sensitivities using mRNA expression for mRNA species corresponding to the glycoproteins 

in our dataset using two mRNA datasets. Those datasets, both publicly available, are a 

microarray dataset [7] and an RNAseq dataset [4]. In addition we modeled the drug 

sensitivities using two publicly available protein datasets, ones not primarily based on 

glycoproteins [4,21].

Materials and Methods

Our glycoprotein dataset includes 185 glycoproteins obtained from 22 breast cancer cell 

lines. Glycoproteins were collected using a protocol in which the first step, oxidation of the 

glycans using periodate, takes place on intact cells [19]. After cell lysis and enrichment for 

glycoproteins, the samples were subjected to LC/MS/MS to identify the proteins. Our 

protocol for glycoprotein enrichment and analysis by LC/MS/MS is described in detail 

elsewhere [19]. Relative quantitation was achieved by counting identified spectra (spectral 

counts) (Supplementary Information Table 1). The glycoprotein data is similar to that 

described previously [18,19], with seven additional cell lines (Supplementary Information 

Table 2). Collectively the data includes cell lines classified as luminal, basal, claudin-low, 

ER positive and HER2 overexpressing. With respect to these variables, the set of cell lines 

reflects much of the variety present in breast tumors.

Protein analyses were carried out on a Thermo LTQ ion trap mass spectrometer and a 

Thermo Q Exactive Orbitrap mass spectrometer. Spectral counts were used to determine 

relative expression levels of a glycoprotein in the various cell lines. Aliquots from the same 

glycoprotein sample produced similar results when analyzed on the two mass spectrometers, 

although less protein was required for the analyses carried out on the Orbitrap instrument. 

To combine samples from the two datasets, the data were plotted in a quantile-quantile plot, 

and a line was fit. Using the slope and intercept, the inverse transform was applied to the Q 

Exactive data, forcing it to have the same center and dispersion as the LTQ data. For four of 

the cell lines (HCC1395, HCC1428, HCC38 and MDAMB468) there were only Q Exactive 

data. Spectral counts for these cell lines were normalized to the LTQ data using household 

proteins. The seven proteins in the LTQ dataset with the lowest coefficient of variation were 

P20645, Q9BT09, P62937, Q16563, Q9BVK6 Q08722 and P07602. The Euclidean length 
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of the spectral counts for these seven glycoproteins was calculated for both the LTQ data 

and the Q Exactive data, and the ratio was used to normalize all Q Exactive spectral count 

data. After combining LTQ and Q Exactive data, glycoproteins with fewer than 100 spectral 

counts over all the cell lines were dropped from the dataset. For purposes of regression 

analysis one spectral count was added to all values, and the base ten logarithm taken.

RNA data

Exon array analysis is described in reference 7. The data are available from ArrayExpress 

(E-MTAB-181). These data include 19 of the cell lines in the glycoprotein dataset, and 

measurements of mRNA expression for 160 of the glycoproteins. The RNA seq dataset 

(Gene Expression Omnibus, GSE48216) is from reference 4. The subset analyzed here 

covers 19 cell lines and 184 of the proteins in the glycoprotein data.

RPPA data

The data (47 cell lines) was used as provided in Additional Files Table 2 of reference 4.

MRM data

The multiple reaction monitoring (MRM) mass spectrometry data (27 cell lines) are based 

on Table S4 of reference 21. The measurements were generated from results obtained by 

three laboratories, with three replicates taken at each site. Two peptides were measured per 

protein. In some cases the measured values fell outside the limits of quantitation, which are 

provided in the study. For use in the present project the replicates and the data from different 

sites were averaged. For each protein the peptide with the highest signal was selected. In 

cases for which numerical values were not provided, the appropriate upper or lower limit of 

quantitation was used. The final dataset describes 317 proteins (Supplementary Information 

Table 3). Base ten logarithms were used for regression.

Penalized Regression

The methods used are elastic net regression and lasso regression [22]. Calculations were 

performed using the glmnet package in the R statistical programming language. One 

adjustable parameter, λ, sets the amplitude of the penalty term; a second parameter, α, is a 

weight that determines the mixture of L1 and L2 norm components in the penalty. Letting α 

= 1 gives lasso regression, and 0 < α < 1 gives elastic net regression. For elastic net 

regression we incremented α from 0 to 1 in steps of 0.1. For each value of α, we found the 

best value of λ by cross validation (cv.glmnet function), using the mean squared error (MSE) 

to evaluate the fit of the model to the data. Plots of MSE as a function of α showed some 

instability from run to run, so we used the average of 10 runs. The value of α giving the 

lowest MSE was selected for the elastic net model. These values differed from drug to drug. 

We performed cross validation by leaving out all pairwise combinations of cell lines; for the 

glycoprotein dataset (22 cell lines) this is similar to 10-fold cross validation. We found the 

correlations between each of the 21 cross validation estimates of drug sensitivities for all 

cell lines and the observed sensitivity values, and finally averaged these correlations. 

Optimal values of α and λ were determined for each training set in the cross validation as 

described above.
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Results and Discussion

Quantitative protein expression data may be more useful than mRNA data for predicting the 

responses of breast cancer cell lines to drugs. In this study we evaluated the ability of a 

glycoprotein dataset obtained via mass spectrometry to provide explanatory or predictor 

variables to fit measured drug sensitivities (Figure 1). The drug response profiles and the 

protein data are both quantitative, hence predicting the sensitivities of cell lines to various 

drugs implies modeling quantitative drug response data as a function of some number of 

quantitative predictor variables, i.e., it is a regression problem. There are 22 cell lines for 

which both drug sensitivity and spectral count data is available, and which are therefore 

suitable for regression modeling. There are 185 proteins in the glycoprotein dataset. With 

more predictor proteins than cell lines there is no unique solution to the regression problem 

for a given drug. However, there are methods, elastic net and lasso regression, to construct 

regression models and reduce the number of predictor variables to the more important ones 

in parallel [22]. Elastic net and lasso regression have been used previously for constructing 

regression models of the drug responses of cell lines using gene expression as predictor 

variables [3,5,11], and the performance of elastic net and ridge regression have been studied 

by simulation [12,14]. Here we used elastic net and lasso regression for each drug to develop 

models that fit cell line sensitivity to that drug.

Both elastic net and lasso regression reduce the number of predictor variables, but they do so 

to different extents. Elastic net regression models usually have more predictors than do the 

lasso models for the same drug, as a result the fits to the data are better. The disadvantage of 

the elastic net method is that with more variables the model may contain some predictors 

with little statistical or biological significance.

Rapamycin illustrates the differences between the two methods. The breast cancer cell lines 

in our sample vary in their sensitivity to rapamycin by more than four orders of magnitude. 

The model constructed using elastic net regression had 92 predictor variables, giving a very 

tight fit to the observed data. Models constructed using lasso regression showed some 

variability of results over 1000 separate runs, but three predictor proteins appeared in all 

models (Supplementary Information Table 4). The three predictors are HER2 (ERBB2, 

UniProt Accession number P04626), Disintegrin and metalloproteinase domain-containing 

protein 10 (ADAM10, O14672) and Junctional adhesion molecule A (F11R, Q9Y624). 

These three proteins are also among the 92 predictors identified in the elastic net model. 

Using the three proteins for ordinary least squares multiple regression gives a model in 

which the fitted drug sensitivities match the observed ones with a correlation coefficient of 

0.91. It should also be noted that lasso regression identified HER2 as a predictor for 

sensitivity to everolimus and temsirolimus, two derivatives of rapamycin. While the lasso 

models generally do not fit the data as well as the elastic net models, they select fewer 

variables. For many drugs in this dataset the sensitivities could be fit well with 1–3 predictor 

variables (see below).

Inhibitors of HER2 or the EGF receptor

Five of the drugs we examined were developed with the goal of inhibiting the epidermal 

growth factor receptor (EGFR), or its constitutively active variant, HER2. HER2 is present 
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in the dataset and is over-expressed in three of the 22 cell lines. Lasso regression identifies 

HER2 as a predictor for the two HER2 inhibitors, afatinib (BIBW2992) and lapatinib, and 

also for two of the EGFR inhibitors, AG1478 and gefitinib. This finding serves as a positive 

control for the application of lasso regression to the glycoprotein data.

The quantitative relationships between HER2 expression levels and drug sensitivities can be 

seen in the scatterplots in Figure 2. The HER2 over-expressing cell lines (red symbols) have 

comparatively high drug sensitivity (vertical axes) for gefitinib and lapatinib. Some cell 

lines with high sensitivity to gefitinib do not over-express HER2 (blue symbols). 

Scatterplots for AG1478, afatinib and erlotinib are similar to that of gefitinib, showing that 

over-expression of HER2 is associated with drug sensitivity, but in addition a few cell lines 

that do not overexpress HER2 are also drug sensitive.

Regression models with multiple variables for EGFR/HER2 blockers

By adding one or more predictor variables to HER2, it is possible to fit the sensitivities of 

the cell lines to gefitinib, AG1478, afatinib and erlotinib, where the relation between 

sensitivity and HER2 expression is not linear. The elastic net model for afatinib contained 

nine predictor variables, compared to four in the lasso model. For both models HER2 was 

one of the predictor variables. The elastic net model gives a somewhat tighter fit to the 

observed drug sensitivities (Figure 3). Both models place the afatinib-sensitive cell lines that 

do not over-express HER2 on the linear relation (blue symbols). In addition to HER2 

(ERBB2 or P04626), the lasso model included SLC7A5 (large neutral amino acids 

transporter small subunit 1, Q01650), BST2 (bone marrow stromal antigen 2, Q10589) and 

A2ML1 (alpha 2 macroglobulin-like protein 1, A8K2U0); these are the four predictors 

identified most often in the lasso models. HER2 expression has a fairly high correlation with 

afatinib sensitivity, 0.65, but the SLC7A5, BST2 and A2ML1 have lower correlations, 0.61, 

−0.59 and 0.44, respectively. Part of their contribution is to enable the modeling of the 

afatinib-sensitive cell lines with normal HER2 expression (blue symbols) correctly. A model 

using only HER2 as a predictor would mistakenly suggest that the cell lines represented with 

blue symbols are not sensitive to afatinib.

Models with one or three predictors

Lasso regression returned a model for 87 of 90 drugs (Supplementary Information Table 4). 

For each drug we identified the best model with one predictor protein, i.e. the one with the 

smallest mean squared error. The coefficients of determination (R2 values comparing the 

observed and fitted drug sensitivities) varied from 0.2 to nearly 0.8 (Figure 4). The 

frequency distribution of the coefficients of determination for the glycoprotein data is 

unimodal and approximately symmetrical, as expected from statistical theory. The 

distribution is skewed slightly to the right due to a few drugs for which we found an 

especially good model. Table 1 lists the top dozen drugs with their predictors. Interestingly, 

SLC7A5 (large neutral amino acids transporter small subunit 1), rather than HER2, is the 

best predictor for erlotinib, gefitinib and AG1478.

For each drug we found the best (lowest MSE) model with three predictors using the Leaps 

and Bounds algorithm [23]. The coefficients of determination are generally higher for the 
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models with three predictor variables than they are for the one-predictor models (Figure 4). 

The average coefficient of determination for single predictor models was 0.44, whereas for 

the best three-predictor models it was 0.79. Clearly, increasing the number of predictors can 

greatly improve the performance of models in fitting the observed drug sensitivities.

The magnitude of the improvement may be exaggerated somewhat, due to the possibility of 

over fitting as the number of predictor variables increases and the best models are selected. 

Over fitting can occur when the model includes variables that by chance reduce the MSE for 

the model in the sample under study. A model that overfits would probably perform poorly 

on cell line data that was not used to construct the model. Predictor variables that contribute 

to overfitting may have little or no biological relevance to the problem of modeling drug 

sensitivities.

While increasing the number of predictor proteins from one to three may allow some 

overfitting, the proteins selected by the lasso algorithm as predictors often make biological 

sense. For example, the model illustrated in Figure 3B for afatinib included SLC7A 

(Q01650) and BST2 (Q10589) as predictors. Both have been identified independently in the 

context of breast cancer. SLC7A is one of five proteins in the Mammastrat test for patients 

at high risk for recurrence after hormone therapy [24]. A meta-analysis of gene expression 

datasets suggested that BST2 in breast tumors is a predictor for tumor size, aggressiveness 

and host survival [25]. Thus, it is plausible that these proteins may have value in modeling 

drug sensitivities. Increasing the number of predictors beyond one has the potential to model 

the observations better because it makes use of more information relevant to the drug or 

disease.

Prediction error

We used all available cell line data to create and test the models presented so far. A more 

demanding and realistic approach would involve building a model based on some training 

data, then using it to predict drug response to other cell lines not in the training set. Given 

the time and expense involved in obtaining mass spectrometric data, it is more efficient to 

use a cross validation approach than to expand the data set further. In cross validation the 

cell lines are divided into a training set and a test set. A regression model built from the 

training data is then used to predict the drug sensitivities of the test set cell lines. The 

coefficient of correlation between the predicted and the observed drug sensitivities gives an 

idea of how well the modeling performs.

We carried out cross validation using elastic net regression on our glycoprotein dataset and 

on two related mRNA datasets: a microarray gene expression dataset that includes 74 drugs 

[7], and an RNA seq dataset that includes 90 drugs [4]. To compare directly the performance 

of mRNA and protein data, we trimmed the original mRNA datasets to contain only the 

mRNA corresponding to the glycoproteins. We then conducted a cross validation analysis, 

as described above. The two best performing models—for the Sigma Akt1, 2 inhibitor and 

gefitinib—used glycoprotein predictors (Table 2 and Supplementary Information Table 5). 

Overall the glycoprotein data and RNA seq data had better ability to model the observed 

drug sensitivities (higher correlation between observed and fitted values) than did the array 

gene expression data.
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Other protein datasets

We tested two other publicly available protein datasets for their ability to predict drug 

sensitivities: a reverse phase protein array (RPPA) dataset, which depends on antibody 

binding for quantitation [4], and a dataset obtained using mass spectrometry, resulting from 

a project to develop multiple reaction monitoring (MRM) assays for proteins in breast 

cancer cell lines [21].

In the RPPA dataset, the 70 proteins measured were pre-selected by the investigators on the 

basis of known linkage of the proteins to cancer, including proteins known to be important 

in the control of signaling pathways, cell proliferation and DNA repair.

In the MRM dataset, targeted assays were devised for 317 proteins in 30 breast cancer cell 

lines, of which 27 lines overlap with the drug response dataset. The proteins were selected 

by the authors of that study for differential expression across the cell lines. They are found 

in many cellular compartments and contribute to a wide range of biological processes. 

Quantitation was achieved by comparing the test signal intensity to that of a reference 

peptide labeled with a heavy, stable isotope. Only two proteins, HER2 and cadherin E, are 

common to the glycoprotein, RPPA and MRM datasets.

Figure 4 shows the distributions of the coefficients of determination for one and three 

predictor models built from the RPPA and MRM dataset. The distributions for models built 

using MRM predictors were similar to those built using glycoprotein, array mRNA and 

RNA seq predictors. In contrast, the RPPA data consistently gave models with lower 

coefficients of determination, with either one or three predictors.

The sensitivities of the cell lines to EGFR or HER2 blockers (AG1478, afatinib, erlotinib, 

gefitinib and lapatinib) were modeled effectively by both RPPA and MRM data, and these 

drugs often performed well in cross-validation (Table 2).

Overall comparison of the five datasets

Summarizing the results so far, one dataset, the RPPA protein dataset, performed less well 

than the others in modeling using all cell lines, as judged from the distributions of the 

coefficients of determination (Figure 4). The array mRNA dataset performed less well than 

the others in cross validation (Table 2). Inspection of Table 2 shows that many of the same 

drugs among the top dozen, i.e. many drugs were modeled well using predictors from 

different datasets. How similar are the cross validation results of the five datasets to each 

other? The relationships are summarized in a dendrogram (Figure 5). The two mass 

spectrometry datasets (glycoprotein and MRM) [18,19,21] showed the strongest agreement 

with each other. The array RNA dataset is most distant from the others, with the RNA seq 

data giving results closer to those of the protein datasets. Notably, the drug sensitivity 

predictions of the glycoprotein and MRM datasets were closer to one another than were the 

predictions of the glycoprotein and RNA data. The glycoprotein and MRM datasets 

generally do not overlap in terms of proteins identified, whereas both RNA datasets contain 

only gene expression measurements of the glycoproteins.
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Examples of models: PI3K inhibitors

There are seven phosphatidylinositol-3-kinase (PI3K) inhibitors among the drugs. Three of 

them, BEZ235, GSK2126458 (omipalisib) and GSK 2119563 performed well in both the 

modeling (Supplementary Information Table 4) and the cross validation (Table 2). One 

protein, COL6A1, is a predictor for all three drugs. The two GSK inhibitors shared several 

inhibitors, including Suppressor of tumorigenicity 14 (ST14) and SPINT1, an inhibitor of 

ST14 and also of hepatocyte growth factor activator [26]. Finding common predictor 

proteins for different drugs in this class confirms our confidence in variable selection by 

lasso regression, and identifies proteins that may serve to predict the activity of PI3K 

inhibitors in patient samples.

Rapamycin, everolimus and temsirolimus

Rapamycin, everolimus and temsirolimus are related compounds that block the mammalian 

target of rapamycin (mTOR); the cell lines varied in sensitivity to these drugs over 4.6, 3.3 

and 3.7 orders of magnitude, respectively. mTOR is in the RPPA dataset, but was identified 

with very low probability as a predictor for these drugs (Supplementary Information Table 

4). All three drugs can be modeled well with three glycoprotein predictors (Supplementary 

Information Figure 1). It can be seen that HER2 over-expressers are among the most 

sensitive cell lines. HER2 was the single common predictor for all three drugs. Everolimus 

is approved for use in patients with ER+, HER2- breast cancer, in combination with 

exemestane [27]. The cell line data suggests that HER2+ patients may also benefit from 

everolimus.

Taxanes

The sensitivities of the cell lines to paclitaxel and docetaxel varied over smaller ranges than 

for rapamycin. For both drugs it was possible to find predictive models with high coefficient 

of determination (Supplementary Information Figure 2). Paclitaxel and docetaxel are similar 

chemically, hence it might be expected that they share some predictor proteins. Five 

common proteins were selected by most lasso models: FKBP4, USP5, MARS, CTSZ and 

ALDH7A1.

Akt inhibitors

The drug list includes three AKT1 inhibitors: GSK2141795, Sigma AKT 1,2 inhibitor, and 

triciribine. The RPPA proteins include AKT (AKT1), AKTp473, and PDK1, a kinase that 

phosphorylates AKT. AKTp473 and PDK1 (or PDK1p241) were found in lasso regression 

models for all three drugs. A regression model with AKTp473 and PDK1 as predictors 

allowed the fitting of the GSK2141795 sensitivities with coefficient of determination (R2) = 

0.52 (Supplementary Information Figure 3). By itself, PDK1 gives a better single predictor 

model (R2 =0.36) than does AKTp473 (R2 =0.20). For the Sigma inhibitor, PDK1 alone 

gives a model with R2 = 0.48; adding AKTp473 does not improve the model further. 

Modeling triciribine sensitivity failed with these two predictors. For the two drugs in which 

modeling succeeded, PDK1 is the more useful predictor even though AKT is the nominal 

target of the drugs.
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Gemcitabine and Vinorelbine

These drugs are used for patients who experience recurrence after treatment with the 

standard of care chemotherapy. As with rapamycin, the sensitivities of the cell lines to 

gemcitabine and vinorelbine spanned approximately four orders of magnitude. If this 

variation reflects the situation in patients’ tumors, there are patients who are highly sensitive 

to these drugs. The best model for gemcitabine (R2 = 0.77) appeared in the glycoprotein 

dataset, with predictors P17900 (Ganglioside GM2 activator), P28799 (Granulins) and 

P08842 (steryl sulfatase) (Supplementary Information Figure 2). The best model for 

vinorelbine (R2 = 0.85) was found in the MRM dataset, with predictors G6PD (Glucose-6-

phosphate 1-dehydrogenase), HRSP12 (Ribonuclease UK114) and TPM4 (Tropomyosin 

alpha-4 chain).

CDK inhibitors

Fascaplysin, NU6102, Olomoucine II and Purvalanol are inhibitors of cyclin-dependent 

kinases (CDKs) and are in the main drug database studied here. Palbociclib, another CDK 

inhibitor, has been analyzed elsewhere on breast cancer cell lines [28]. For all these drugs 

except Oloumucine II one or more cyclins were identified as predictors in a high proportion 

of lasso runs (RPPA data, Supplementary Information Table 4). The best model for 

palbociclib, with R2 = 0.79, was found in the MRM protein dataset using mitochondrial 

thioreduxin-dependent peroxidide reductase (PRDX3), acyl-amino acid releasing enzyme 

(APEH) and importin subunit alpha (KPNA2).

Conclusions

Five datasets were compared in their abilities to provide predictors for regression modeling 

of drug sensitivities in breast cancer cell lines. We used two criteria for evaluating 

performance: the agreement between observed and predicted sensitivities (coefficient of 

determination), and prediction error estimated by cross validation. The glycoprotein and 

MRM datasets, obtained via mass spectrometry, and a RNA seq dataset performed best, with 

the glycoprotein and MRM datasets giving more consistent results in the cross validation.

Drugs that block the EGF receptor or HER2 were modeled well, at least partly because 

HER2 is in all the datasets. However, it is not necessary that a drug have its target in the data 

for this approach to work. For example, AKT and mTOR are not present in either the 

glycoprotein or MRM datasets, yet the Sigma Akt1,2 inhibitor and rapamycin were modeled 

accurately using predictors from these datasets. It appears that there is information useful for 

modeling drug sensitivity not just in the nominal targets of the drugs but also in the 

expression levels of other proteins.

These results show that it is possible to predict the responses of breast cancer cell lines to 

drugs, particularly when mass spectrometry has been used to quantify protein expression. 

Can the approach be extended to patient samples? One possibility would be to use targeted 

assays on tumor samples. The MRM dataset targets specific proteins; various methods for 

targeting proteins by mass spectrometry are currently under development [29]. Methods 

have also been developed for extracting proteins for mass spectrometry from formalin-fixed 
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paraffin embedded (FFPE) samples [30], which are more readily available than fresh or 

frozen tissue, and which would be a convenient source of protein for targeted assays. Since 

patient outcomes for FFPE samples are known (e.g., whether the patient experienced a 

clinical response or an extended progression-free survival time), these outcomes would be 

modeled as response variables. Using protein expression levels, it may be possible to 

generate statistical models that predict patient response for many more drugs used in breast 

cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The regression model. One or more predictor variables are from the glycoprotein or other 

dataset.
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Figure 2. 
Drug sensitivity as a function of HER2 expression. Each point corresponds to a cell line. A. 

Gefitinib B. Lapatinib. Sensitivity (vertical axis) is the negative common logarithm of GI50, 

the drug concentration that inhibits proliferation by 50% (ref. 4). The horizontal axis is the 

common logarithm of the spectral counts, after adding 1 to each value. Red symbols: cell 

lines that overexpress HER2. Blue symbols: drug-sensitive cell lines that do not overexpress 

HER2.
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Figure 3. 
Comparison of predicted with observed sensitivities for afatinib (BIBW2992). Observed 

values of the drug sensitivities are plotted on the horizontal axes. A. Fitted values from 

elastic net modeling are plotted on the vertical axis. The predictors are HER2, SLC7A5, 

BST2, LAMB1, CTSB, CDH13, TCN1, SUSD2 and A2ML1. B. Lasso model. The four 

predictor variables from the lasso model are HER2, SLC7A5, BST2 and A2ML1. The fitted 

values (vertical axis) were constructed with these predictors using ordinary least squares 

regression. Red symbols: cell lines that overexpress HER2. Blue symbols: drug-sensitive 

cell lines that do not overexpress HER2.
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Figure 4. 
Frequency distributions of coefficients of determination (R2) for all single predictor models 

and all three-predictor models. For each drug the pool of candidate predictors was identified 

by lasso regression (Supplementary Information Table 4). The best (lowest MSE) one and 

three predictor models were identified using the Leaps and Bounds algorithm [23]. The 

coefficients of determination were found using ordinary least squares regression.
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Figure 5. 
Dendrogram of datasets. The cross-validation data, some of which is displayed in Tables 2, 

were used to create and then cluster a distance matrix with the dist() and hclust() functions 

in R.
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Table 1

The top twelve single predictor models for the glycoprotein dataset.

Drug Accession Number Gene Name R2

Lapatinib P04626 HER2 0.76

Sigma AKT1,2 P48960 CD97 0.70

Rapamycin O14672 ADAM10 0.69

Gefitinib Q01650 SLC7A5 0.67

GSK2141795 Q8IWA5 SLC44A2 0.66

Erlotinib Q01650 SLC7A5 0.66

GSK2126458 P50897 PPT1 0.65

Ispinesib P08195 SLC3A2 0.63

GSK1120212 P08648 ITGA5 0.60

Vorinostat Q07954 LRP1 0.59

GSK1059615 P12830 CDH1 0.55

AG1478 Q01650 SLC7A5 0.53
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