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SUMMARY

Multi-state models of chronic disease are becoming increasingly important in medical research to 

describe the progression of complicated diseases. However, studies seldom observe health 

outcomes over long time periods. Therefore, current clinical research focuses on the secondary 

data analysis of the published literature to estimate a single transition probability within the entire 

model. Unfortunately, there are many difficulties when using secondary data, especially since the 

states and transitions of published studies may not be consistent with the proposed multi-state 

model. Early approaches to reconciling published studies with the theoretical framework of a 

multi-state model have been limited to data available as cumulative counts of progression. This 

paper presents an approach that allows the use of published regression data in a multi-state model 

when the published study may have ignored intermediary states in the multi-state model. 

Colloquially, we call this approach the Lemonade Method since when study data give you lemons, 

make lemonade. The approach uses maximum likelihood estimation. An example is provided for 

the progression of heart disease in people with diabetes.
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1. INTRODUCTION

This research was motivated by a model of diabetes progression through various states (or 

stages). Researchers are beginning to use computer models and simulations to provide a 

composite view of the natural history of diseases, such as cancer [1, 2], diabetes [3–6], and 

infectious diseases [7]. A discussion on disease models can be found in [8]. Using diabetes 

as an example, a large number of groups of researchers are developing diabetes model 

independently. A partial list of diabetes models includes the Michigan Model 2005 [3], the 

U.K. Prospective Diabetes Study (UKPDS) Outcomes Model 2004 (UKPDS 68) [4], and the 

CDC/RTI model [5]. Many others were reported in the Mount Hood Conference [9]. In fact, 

the American Diabetes Association consensus panel has published a set of guidelines for 

modeling of Diabetes [6]. Using these computer models, researchers can investigate long-

term benefits of early intervention such as reduced prevalence, morbidity, mortality, and 
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costs. Currently, however, parameter uncertainty remains one of the major limitations for 

such models.

Because most clinical studies do not collect enough data to model every state of interest, 

modelers have to find a single ‘best’ estimate for each transition in the model from the 

medical literature and plug that single estimate into a multi-state model of progression, 

thereby constructing one disease model from many clinical studies. For example, to model 

the cardiovascular disease (CVD) sub-processes in a diabetes patient, one could use a model 

as illustrated in Figure 1, which includes five states and eight transition probabilities. 

Unfortunately, many well-designed studies cannot be used in disease models because the 

study design is based on a different theoretical model and state-definition than the proposed 

disease model. For example, the well-known UKPDS group [4, 10, 11] has developed the 

UKPDS Risk Engine Model for coronary heart disease and published their risk equation 

[11]. This model has the strength of being based on a single, prospective, longitudinal 

cohort. However, the UKPDS did not study the risk of progression from no CVD to angina, 

angina to myocardial infarction (MI), and some other transitions in the above model. Instead 

it estimated the risk of progression from no CVD to MI. As such, their single estimate is a 

function of four transition probabilities of interest in our theoretical model: p01, p02, p12, p14. 

Proper use of the UKPDS data in our theoretical model requires integration between the 

estimates provided by secondary data analysis and the parameters defining our theoretical 

model.

To our knowledge, no previous work has attempted to integrate information from such 

studies into parameters in the disease models. Using the traditional techniques, modelers 

cannot use the UKPDS data to model progression of a finer detailed model. Traditional 

statistical approaches like compartmental analysis, longitudinal models, Markov models, 

and survival models are limited to use with a single study and, thus, have the limitations 

discussed above related to the UKPDS study (That is, most clinical studies do not collect 

enough data to model every state of interest.). Moreover, most traditional statistical 

approaches do not accommodate grouped states and other consequences of secondary data 

analysis. Isaman et al. [12] present an approach to multi-state models for discrete-time 

chronic disease models. Their approach uses supplementary data (such as those that either 

group states or omits intermediate states) in the likelihood for parameter estimation. Their 

method differentiates between direct data, which denote the data used to estimate a single 

transition parameter in a multi-state model of disease progression, and complementary 

(augmentary) data, which denote the data that arise from a process that is a function of more 

than one model parameter (i.e. not direct). For example, the UKPDS data described above 

would be denoted as the complementary data. Isaman et al. [12] uses a likelihood method to 

produce indirect estimates using complementary data. Using this approach, the data are 

summary statistics provided by a study, not the raw data collected by a study.

In [12], the authors implicitly assume that the transition probabilities between disease stages 

are the same for all the subjects. However, study populations of interest are often collections 

of individuals with varying characteristics, which are potential risk factors for disease 

progression. For example, the Ovarian Cancer Screening Simulation program [1] is a 

comprehensive representation of ovarian cancer biology, detection, screening behavior, 
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interventions, and costs in a simulation of a defined population of women. The likelihood of 

an ovarian tumor occurring and its detection through screening vary, depending on the 

characteristics of the individual and the intervention that is being considered.

Therefore, it is important to model transition probabilities as a function of characteristics of 

the individual. One approach is to partition the baseline population into groups of unique 

individuals and estimate transition probabilities for each partition. If a study provides 

cumulative counts on different partition, then the partitions can be viewed as independent 

studies on the restricted population and the methods developed in [12] can be extended to 

use this information for estimating transition probabilities for each partition.

In addition to the above type of studies, more information may be available in studies like 

UKPDS, which provides a risk equation. Isaman et al.’s work [12] has been limited to data 

provided in the medical literature as cumulative counts and is not amenable to utilize 

information in regression parameters of a risk equation. In particular, the UKPDS CVD 

model described above provides a risk equation based on not only categorical covariates 

such as gender, but also continuous covariates such as age and blood pressure. To use this 

study requires both the ability to adjust for skipped states and the ability to incorporate 

regression parameters into the estimation procedure. Incorporating regression parameters 

into the likelihood is complicated due to the fact that the studies being used may not have 

been designed to estimate the theoretical model of interest. As such, there may be nuisance 

parameters estimated by the study that are of no interest in the theoretical model being 

developed. One statistical approach to issues of insufficient data in disease models has been 

presented by Manton et al. [13, 14]. Manton et al. considered the situation where 

information regarding covariates was unknown or only known in aggregate. Using 

conditioning and smoothing, he proposed a method for incorporating this augmentary data. 

Another approach is to assume a known form for transitions to unknown intermediary states, 

and use the EM algorithm [15]. However, we have much secondary data available and it 

should be possible to use these valuable data to evaluate the likelihood and estimate the 

parameters of interest despite their imperfect study designs.

This paper builds upon Isaman et al.’s results [12] and provides a method for incorporating 

regression parameters into the estimation of transition parameters for discrete-state discrete-

time models of chronic disease. We call this approach the Lemonade Method in the spirit of 

when study data give you lemons, make lemonade. Examples to investigate the behavior of 

the Lemonade Method are provided, and we apply the results to a model of diabetic CVD.

2. THE MODEL

Following the approach of [12], we assume that

(1) the disease process operates as a discrete-time, Markov process,

(2) the data are independent realizations generated from either the theoretical model, a 

sub-process, or a grouped process of the theoretical model,

(3) the data are informative, i.e. there is large enough number of events of interest 

during the study period to provide informative data, and
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(4) the data are consistent estimates of the parameters they measure.

Note that our data are the summary statistics provided by a study, not the raw data collected 

by a study. When using complementary data (e.g. grouped nodes or nuisance parameters) in 

estimation, the distinction between the theoretical model and the study data is critical. We 

first introduce notation for the theoretical model. Note that the Examples section follows this 

notation and provides further explanation with details and calculation. Let

(i, j ) denote the path from state i to state j

N denote the number of states in the theoretical model,

P be the N x N transition matrix of the theoretical model.

In [12], the authors implicitly assume that P is the same for all subjects. However, in reality 

the rate of disease progression is often associated with the demographic covariates such as 

gender, race, BMI, etc. In this paper, we extend the approach in [12] by modeling transition 

probabilities as a conditional expectation expressed as a function of covariates in the 

theoretical model. In this paper the function notation is restricted to multivariate step 

function representation using categorical covariates (e.g. gender, race, age category). Let

α denote a vector of unknown model parameters to be estimated. Note that each transition in 

the model may depend upon one or more of the members of this vector,

Z denote the 1xR vector of covariates in the theoretical model, indexed by r; again, note that 

we use vector form to simplify notation later on. In practice each transition may depend on 

different covariates,

πij(α, Z) denote the unknown transition probability between two states i and j under the 

theoretical model, with possible dependence on model covariates, i.e. {P}ij = πij(α, Z). Note 

that this function defines which members of α and Z participate in defining each transition.

While making a distinction between the theoretical model and the study we define the 

following notation, which depends on the study (indexed by k). Note that for simplicity, in 

this paper, we assume that a single study provides information on a single transition and 

therefore its index k will from hereon imply related start and end states. With this in mind, 

let

T(k) denote the length of the study period,

Π(k)ij(α, Z, t) denote the cumulative probability of transition from model state i to model 

state j by time t restricted by the design of study k. This matrix depends on both the structure 

of P and the design of the clinical study. To derive it one can rewrite P with appropriate 

absorbing states to represent the counting process of the clinical study. For details, please 

see [12, 16].

In addition to accommodating covariates in the theoretical model, we must accommodate 

two types of studies. The first type provides cumulative counts. Note that if the baseline 
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population is partitioned into groups of unique individuals and estimates are made separately 

for each partition (by the study), then the partitions can be viewed as independent studies on 

a restricted population. The method for using information provided by this type of study was 

developed by Isaman et al. [12] and further extended in [16].

The second type of study provides a risk equation depending on a set of covariates for the 

transition probability between two states i and j. For example, in the UKPDS study, the risk 

equation depends on age, gender, race, and blood pressure for the transition probability 

between no CVD and MI. The focus of this paper is to extend the approach in [12] to 

integrate information from the second type of study. Let

Y(k) denote the vector of length S(k) of covariates measured in study k. Note that Y(k) and Z 
do not necessarily overlap. In addition note that the study index (k) does not denote members 

of this vector, rather this distinguishes this vector from covariate vectors in other studies,

{Y(k)m} denote a population data set with M(k) individuals associated with study k describing 

the distribution of covariates in the population. Each member of this set Y(k)m is a vector on 

its own that is suitable for substituting all the covariates in Y(k) ∪Z,

λ(k),  denote the vector of length Q(k) of unknown parameters associated with Y(k) and 

their observed estimates, respectively. For example, the model of the UKPDS study we used 

in Section 4 is approximately a proportional hazard model; λ(k) is then approximately the 

relative risk associated with the risk factors [11],

Σ(k) denote the estimated variance–covariance matrix of ,

F(k)(Y(k), λ(k), t) denote the expected value of cumulative probability of transition from state 

i to state j as provided by the risk function in study k by time t. Note that the set of 

covariates used in a particular study Y(k) do not necessarily overlap with those involved in 

Π(k)ij(α, Z, t). In addition note that the indices i and j do not explicitly appear in the notation 

since study k implicitly indicates this transition.

2.1. Likelihood function and parameter estimation

To integrate information from the second type of study, which provides a risk equation for 

the transition probability based on covariates, is not as straight forward as for the first type 

of study (See [12, 16] for details). We describe our strategy as follows.

When the sufficient statistics provided by a study are estimates of regression coefficients 

and their standard errors, the approximate joint distribution of the observed regression 

coefficients  is multivariate Normal (λ(k), Σ(k)). The standard approach for direct data 

assumes that the approximate likelihood function of unknown parameters λ(k) is Normal 

( , Σ(k)) [17, 18]. Specifically, in our situation, to accommodate complementary data in 

the form of regression coefficients, the partial likelihood associated with the kth study,
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Note that Π(k)ij (α, Z, t) and F(k)(Y(k), λ(k), t) are the two functions that both model the 

expected transition probability for a subject with the given characteristics, but conditional on 

potentially two different sets of covariates. To simplify notations we will refer to Π(k)ij(α, Z, 

t) and F(k)(Y(k), λ(k), t) as Π(k)ij and F(k) from here on. If λ(k) can be explicitly written as a 

function of α, i.e. λ(k)(α), the above partial likelihood function can be directly integrated into 

the full likelihood function. For example, assume in a theoretical model, the transition 

probability from no CVD to angina in 1 year is allowed to differ between gender and 

subjects younger or older than 65 years of age. Imagine a study that provides a estimated 

risk equation for the same transition in 1 year, and F(k) = λ(k)0+λ(k)1Gender+λ(k)2Age, where 

Age is a continuous variable and Gender is a dichotomous variable. One can easily calculate 

the transition probability for the four unique populations based on the age and gender 

distribution in this study. It is not hard to see that in this case λ(k) can be written as an 

explicit function of the parameters in this study.

However, in many cases, covariates in Y(k) are not necessarily of interest in the theoretical 

model. For example, in the CVD model in Figure 1, the transition probability from no CVD 

to MI in the theoretical model does not condition on any covariate. But some studies (e.g. 

UKPDS) might provide a risk equation of covariates such as age and blood pressure for this 

transition probability. In addition, some of the covariates in the theoretical model might not 

be considered in these studies.

Because of these discrepancies between F(k) and Π(k)ij, in order to use information provided 

by such risk equations to estimate α in the theoretical model, we first create a mapping from 

λ(k) to α. Note that Π(k)ij(α, Z, t) and F(k)(Y(k), λ(k), t) are two functions that both model the 

expected transition probability for a subject with given characteristics. Therefore, a good 

estimator of α should minimize the difference between F(k)and Π(k)ij at subject level. 

Following this logic, we create a mapping from λ(k) to α through minimizing the sum of 

squared difference between F(k) and Π(k)ij over the study’s population, i.e. we minimize 

, where M(k) is the total 

number of subjects in study k.

Because the theoretical model is based on parameters that define unique population 

categories according to covariates Z, the cumulative transition probability Π(k)ij is the same 

within each population category ν = 1,…, V. When model parameters that are involved in 

Π(k)ij for each of these population categories are independent, minimizing Ω is equivalent to 

minimizing 

simultaneously, where M(k)ν is the total number of subjects in the νth population category 

according to the theoretical model in study k and Y(k)mν and Zv are the study and model 

covariates associated with the mν individual in this category.
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By differentiating each Ω with respect to α, the α’s that minimize Ων satisfy 

. Let 

 and let H(k)ν(α) = Π(k)ij(α, Zν, 
T(k)). These notations create two vectors G(λ(k)) and H(k)(α) that simplify the notation of the 

previous equation set to Gν(λ(k)) = H(k)ν(α) for all ν = 1,…, V or even simpler G(λ(k)) = 

H(k)(α). We now use G in the Delta method to perform a change of variable under the usual 

regularity conditions. For J, the Jacobian of the transformation of size Q(k)xR (which 

depends implicitly on study k), the contribution to the likelihood for the kth study for the 

transition between state i and state j is

Substituting G(λ(k)) for H(k)(α) we get the likelihood as a function of α. i.e.

Often, Π(k)ij and H(k)(α) will be a function of several parameters α, which will be estimable 

only in combination with data from other studies in the full likelihood. This method can be 

further extended to cover more complicated situations. We will discuss this extensions and 

limitations in the discussion section.

For studies not involving regression parameters, L(k)ij is defined as in [12]. Briefly, Isaman 

constructs a study-specific K matrix that transforms the transition matrix of the theoretical 

model, P, into a transition matrix that is correct for the design of the kth study. This 

transformation involves a method called designed absorption, and involves pooling 

transitions from grouped states to define L(k)ij. In this fashion, the full likelihood for all 

studies providing information about the model can be calculated as L = Πk Πi Πi L(k)ij. Using 

likelihood estimation, our estimates will have the usual properties of MLE’s.

Note that for simplicity and for the sake of focusing on the main topic of this paper, Isaman 

et al.’s notation [12] has been simplified and adapted specifically to deal with the issue 

addressed in the paper. Other aspects related to this technique as described in [12, 16] use a 

slightly different notation.

2.2. Practical considerations

There are several practical considerations when applying this technique. First, the least-

squares technique used to associate the study parameters with the model parameters assumes 

the availability of the population on which the study’s model was developed. These raw data 

are rarely available; otherwise, we would use the raw data rather than the regression 

parameters. However, published studies virtually always are published with a table of 

demographic characteristics of the population. This table should include descriptors for all 

important covariates in the study’s model. From this table of demographics, we can 

Isaman et al. Page 7

Stat Med. Author manuscript; available in PMC 2015 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



construct the marginal distribution of the population and use these simulated marginal data 

in the least-squares expression. Assuming that the study’s model fits the data, the regression 

parameters are sufficient statistics for the outcome being measured. Interaction effects are 

captured by the study’s model. Note that the population {Y(k)m} requires information about 

not only the study covariates, Y(k), in the regression equation but also the covariates, Z, in 

the theoretical model. If Z is a subset of Y(k), this is automatic. When the population 

descriptors are not available such as in the reports of the U.S. Renal System [19], the 

population descriptors may be garnered from national statistics or from populations such as 

National Health and Nutrition Examination Survey (NHANES).

A second practical consideration is the availability of the covariance matrix of the study’s 

regression parameters. Usually, regression parameters are published with standard errors or 

confidence intervals, from which the variances of the estimates can be derived. However, 

the covariance between regression parameters are often unpublished. In the simulations 

below, we explore the influence of the covariances in the estimation using the Lemonade 

Method.

2.3. Computational considerations

Our proposed method quickly becomes computationally intensive. Specific examples and 

their solutions will be presented below via the examples. Briefly, our computational 

approach involves the use of symbolic math and numerical analysis techniques. Symbolic 

math is used to construct the likelihood expression and to calculate the function derivatives 

as preparation to numerical solution. The use of symbolic math allows accurate depiction of 

the expression calculated and is generally not limited to the machine precision. However, 

symbolic techniques may fail when the expression size is large. Moreover, since the 

expressions generated by the system are general, an analytic solution is not always possible. 

Thus, numerical techniques are essential.

We used standard numerical analysis techniques such as finite differences to compute the 

Jacobian and constrained optimization to maximize the likelihood. However, numerical 

techniques also have limitations: they are limited by floating point number representation 

defined by the machine precision, and by the solver technique and its parameters and 

tolerances. When large expressions are generated as in the case of many parameters or 

studies, then precision issues may be encountered. We addressed issues with precision in a 

variety of standard and custom methods. Standard approaches included using multiple initial 

points for each solution and using the log-likelihood rather than the likelihood. We also 

supplied the numerical solver with symbolic differentiation to improve the accuracy, and 

solver parameters were manually optimized to find tolerances that enabled convergence. 

Custom methods included placing safeguards that make sure that symbolic and numeric 

calculations agree to a tolerance before and after the optimization. With these techniques 

and safeguards in place, it was possible to derive the results demonstrated below.

To test the computational stability of our approach, we compared our results (using the 

above numerical techniques) to examples where the exact solution was known in order to 

estimate the magnitude of the imprecision. For the examples to be presented in section 3, our 

results using the Lemonade Method agreed with the theoretical values of the probabilities 
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(computed using symbolic math) within the tolerance better than 3e–9. In addition, our 

technique was compared with an additional set of mockup examples built to test the system. 

These mockup examples are published with the software prototype online at [20]. In this set 

of examples there were 38 mockup examples with known answers that generated 122 

probabilities as answers. With the above techniques and safeguards in place, our results 

using the Lemonade Method agreed with the theoretical values within a tolerance smaller 

than 4e–5. Figure 2 describes the distribution of these errors on a logarithmic scale to 

demonstrate the rarity of extreme error values. We expect these numerical issues to decrease 

as computing technology and theory improve.

3. EXAMPLES

The properties of our estimates and intuition regarding use of this method will be 

investigated using a series of simple examples. The first set of examples investigates the bias 

and efficiency of the Lemonade Method in a simple setting where exact solutions are 

known. The second set of simulations will investigate the sensitivity of estimates to 

variance–covariance changes. Finally, we will discuss limitations of the Lemonade Method 

as illustrated by the simulated examples.

3.1. Base example

For all of the examples, we will work from a ‘base’ model and study as defined below. Our 

theoretical model has only two states and the parameters of interest are the transition 

probability between the two states for men and women, respectively. The model is 

illustrated below in Figure 3. We assume that state 1 is an absorbing state such that p11 = 1 

and p10 = 0. In formal terms, the model can be expressed as follows:

N = 2, indicating, two states as can be seen in Figure 3.

α =[p01f p01m ], indicating the two unknown coefficients to be estimated

Z = [Gender] and R = 1, indicate a single covariate associated with the model

indicates the probability to transit from state 0 to state 1, other probabilities are either 0 or 1. 

The Probability matrix is therefore

Note that the P matrix is different for male and female.
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We will index the study with k = 0 and formally define the study using the following 

notations:

i = 0 and j = 1 define the start state and end state of the study using model terminology. 

Π(0)ij(α, Z, t) will be the model matrix restricted by the study design. In this case, it does not 

change when the study design is applied on the model since the study end state is the 

terminal state of the model. To clarify this example, the transition probabilty from state 0 to 

state 1 after 2 years is extracted from the first row and second column of the matrix P*P and 

formalized as

This result is provided here to remind the reader that the model describes the transition 

probability as a polynomial generated by a Markov Model. For this base example, however, 

this 2 years result will not be used as the study associated is only 1 year long, i.e. the 

transition probability to be used is

T(0) = 1 i.e. Consider the simple case where the study period is 1 year.

Y(0) = (Gender, HDL), this means that the study data depend on S(0) = 2 covariates: Gender 

and HDL cholesterol.

{Y(0)m}={(Gender, HDL)}={(0, 1.25) (0, 1.15) (1, 1.25) (1, 1.15)} is the population of M(0) 

= 4 individuals associated with the study and represents the distribution on covariate values 

in it.

λ(0) = (λ(0)0, λ(0)1, λ(0)2),  = (0.1, 0.2, 0.5) denote the vector of length Q(0) = 3 associated 

with the intercept, gender, and HDL, respectively.

Σ(0) = diag(0.1, 0.1, 0.1) is the reported variance–covariance matrix from study 0. Note that 

in this simple example the covariance values are set to 0.

F(Y(0), λ(0), t) = 1−exp(−(λ(0)0+λ(0)1Male+λ(0)2HDL)t) denote the expected value of the 

probability provided by the study to move from state 0 to state 1 in time t.

To solve the example above, there is a need to bridge the different formulation between the 

study and the theoretical model. This is performed by writing the following least-squares 

equation:

Isaman et al. Page 10

Stat Med. Author manuscript; available in PMC 2015 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Before proceeding, let us examine the equation above. There are two unique population 

categories in this model, male and female, i.e. V = 2. Accordingly Ω can now be separated 

into two parts: ν = 1 corresponding to the first two components depending on p01 f and ν = 2 

corresponding to the last two components depending on p01m, each having a quadratic form. 

Setting each quadratic to zero and solving these equations provide an estimate for female 

and male, respectively.

This allows finding estimates for the model transition probabilities and therefore bridging 

between the study and model terminology. This link can be defined in a vector of functions 

representing male and female transition probabilities:

This vector still depends on vector of unknowns λ(0) and we can use it to explore the relation 

between the study and model parameters. We can calculate the estimated values for the 

model transition probabilities by substituting the study-reported values for the unknowns in 

this function vector:

We can also derive additional information regarding the behavior of this expression around 

the expected values in the form of the Jacobian:
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Although this can be expressed analytically, it is numerically derived around the expected 

value using finite differences. This results in the following value:

This allows constructing the Likelihood function for this study:

In logarithmic form this can be written as

Numerically optimizing the above likelihood expression results in the expected values,

and the covariance matrix for  resulting from this optimization is

Note that in the absence of other studies, the covariance matrix is equivalent to JΣ(0)JT.

In this simple case, the above result can be obtained without the likelihood optimization. 

However, when several studies with varying lengths are involved, this may not be as trivial 

and the likelihood optimization step is essential to merge information from different studies 

together.

3.2. Variations on the base example

Based on this example, we considered variations from the base case that vary the number of 

years, T(0), followed by the study, and we also considered a larger population (M(0) = 150), 

which is comprised of random draws from a Bernoulli(0.5) distribution for Gender and a 

Normal(1.2,0.1) for HDL. These are presented in Table I.

The slight difference between estimates for the population of size 4 and the population of 

size 150 can be explained by the natural variation caused by the sampling error when 

constructing the marginal distribution of HDL from the Normal distribution. The variance 

terms are also close to the expected for T(0) = 1, and do not vary substantially as the sample 
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size increases. This is expected since the influence of the sample size is incorporated into the 

covariance matrix for the study’s estimates, which we have held constant in these examples.

In the case of our base example for 1 year and a population M(0) = 4, the expected incidence 

(variance) is 0.5933 (0.1206) for men and 0.5033 (0.125) for women using Isaman’s method 

[12]. Isaman’s method, in contrast to the method presented in this paper, requires the user to 

summarize the study data as the expected cumulative count. As a matter of fact, this method 

does not incorporate the uncertainty of the regression coefficient in the study into the model 

parameters. Since it uses the expected cumulative count as if it is the observed count, the 

estimated variance of the estimated model parameters is directly related to the number of 

subjects, instead of the covariance matrix of the regression coefficient in the study. Using 

our transformation approach, we are not only able to obtain a better estimation of the 

variances by correctly incorporating the uncertainty in the regression coefficient estimates, 

more importantly, we can also account for the covariance between published estimates if 

these covariance terms are provided.

Table II and Figure 4 present results obtained from variations on the base example where the 

variance–covariance matrix Σ(0) is modified. The example in the first row of Table II 

annotated ‘Scaling Variance’ demonstrates the influence of the covariance matrix on model 

results. When using the identity matrix for variance–covariance, the likelihood function was 

changed (as illustrated in the contour plots of Figure 4(1)) and the variance of estimates 

increased by a factor of 10, as would be expected.

The last four examples in Table II and in Figure 4 illustrate the influence of varying the 

correlation between parameters. Rather than assuming that the regression estimates provided 

by the study are independent, we used a covariance matrix of the form

The correlation between λ(0)1 and λ(0)2, c, varied from c = −0.05 to c = 0.1. Because of the 

parameterization used, the correlation does not change the variance of  since λ(0)1 is 

the indicator for male gender. However, the variance for  increases with c as well as the 

covariance between  and . The influence on the likelihood function can be seen 

in Figures 4(2)–(5). It can be seen that the estimated probability does not change, yet the 

likelihood function changes its shape as the variance dictated by (JΣ(0)JT) changes.

Note that in all the examples presented in Table II, the final estimated probabilities are 

similar since the peak of the likelihood function does not change. However, when this datum 

is combined with the data arriving from another study, the changes in the variances may lead 

to different results. The difference will arise from the different shape of the likelihood 

function that in combination with another likelihood function generated for another study 

may create a different peak and hence a difference in estimates.
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Understanding the influence of correlation on the variances of estimates is important 

because often when data are available only as regression coefficients, the full covariance 

matrix Σ(0) is unavailable. Covariance terms may not be reported in the literature. In this 

case, the Lemonade Method produces liberal confidence intervals. Further work is needed to 

minimize the influence of this missing information on covariances. In addition, we 

encourage the clinical researchers to publish the correlation between their estimates, perhaps 

in an appendix.

4. APPLICATION

In this section we present a model of progression of CVD in people with type 2 diabetes. 

The CVD model is a part of a larger model of diabetes progression published previously [3]. 

The theoretical model, describing the disease progression, was chosen in collaboration with 

the clinical investigators, and the data were extracted from the medical literature after an 

extensive literature review. This review provided us with the best available literature 

providing primary and augmentary estimates for the model. We desired to use the method in 

[12] to combine these data into a single model of diabetes progression; however, one 

important study, the UKPDS [11], provided a risk equation rather than the cumulative 

counts. In this section, we use the UKPDS risk equation in combination with the cumulative 

counts from other studies to compute estimates of CVD progression. We then compare those 

results with the results generated by summarizing the UKPDS risk engine as cumulative 

counts using Isaman et al.’s method.

The theoretical model for CVD has five states, ordered 0 to 4 respectively for No CVD, 

Angina, MI, History of MI, and Death from CVD. Figure 1 depicts the model as boxes and 

the model transitions using dark thick arrows. An MI is depicted as a rhombus and is defined 

as an event such that patients pass through MI and either die or enter a state called ‘history 

of MI’. The parameters of interest, πij(α, Z), are denoted by the initial and terminal states of 

transfer, i.e. α =[p01, p02, p12, p14, p23, p32, p34], Z = ϕ. For example p01 denotes the 

probability of progression from state 0 to state 1. Note that the model supports MI 

recurrence in individuals with History of MI ( p32) and note that p24 = 1− p23.

Figure 5 extends Figure 1 and contains information about the existing studies in the 

literature. Study paths are presented as dotted pale arrows. The study paths are interpreted to 

connect the proper states using the model terminology. The study paths are depicted by 

Letters A–G. Each such transition may represent one or more studies. Detailed information 

about the studies and the form of the data provided is presented in Table III. The path letters 

on the first column in the table correspond to the transitions in the figure.

The data extracted from the medical literature are presented in Table III. Note that several of 

the studies provide gender-specific data that do not appear in the model.

Incorporating the UKPDS risk engine into the estimation procedure requires additional 

information. The UKPDS provides us with a risk equation that has the form
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Although we cannot modify the form of the equation provided by the UKPDS, we have 

simplified the equation for our example, assuming that the population has Hemoglobin A1C 

and Lipid ratios at the population average modeled by the UKPDS. The parameter 

coefficients, published by the UKPDS, are

For this example, we assume that the covariance between estimators is 0.

Thus, the partial likelihood contributed by the UKPDS is

prior to application of our transformation of variable. The cumulative function under our 

theoretical model (illustrated in Figure 5) is a function of several unknown parameters p01, 

p02, p12, p14 ∈ α, and has no overlap with covariates Y(3) of the UKPDS. Using Isaman’s 

method of designed absorption, the terminal state of the UKPDS (MI) is treated as a sink 

and matrix multiplication of a study-specific transition matrix maps π02 to the transition 

probabilities.

The model probability matrix specific to this study is therefore

Least squares was used to map between Π(3)02 and F(3)02. To conduct this least-squares fit, 

we used the marginal distributions for covariates as published in Table 1 of [11] to generate 

a random population of 4540 people representing the UKPDS sample. Using these data, we 

calculated estimates for the CVD model using the Lemonade Method. The results are 

displayed in Table IV.

For comparison, the first column presents point estimates for the transition probability 

obtained for the model when UKPDS outcomes in study B2 were represented as a table of 

incident counts. The incident counts were estimated by using the expected value of the 
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UKPDS risk engine formula for men and for women separately by using the mean 

substitution of averages defined in Table 1 in [11] and rounding the obtained number. The 

expected incident counts for 2643 men and 1897 women respectively are 49, 105, 169, 241, 

322 and 21, 45, 73, 104, 140 for 2, 4, 6, 8, and 10 years. This approach using incident counts 

is used for reference, to demonstrate the existing approach. The second column contains 

results obtained by using the method described in this paper using the UKPDS risk function.

Comparing results with and without the UKPDS risk function shows changes between 

estimates that are related to Π(3)02; 01, 02, 12, 14 ∈ . The parameter most influenced by 

the change was 02. This is not surprising as this is the parameter most clearly related to the 

UKPDS (which estimates progression from state 0 to state 2).

Note that some ambiguity may be created when using study information with our model. For 

example, in the UKPDS risk engine study sudden death cases were counted as CHD events. 

Sudden death cases are defined by as death cases with the unknown reasons (ICD9 code 

798.9) and are therefore difficult to match with our theoretical model. For example in our 

model, a transition is possible from angina directly to death. For simplicity, we assume that 

these kinds of deaths are excluded from the UKPDS risk engine outcome and that the 

incident counts are associated with state 2 (MI). Another assumption we make is that the 

number of sudden deaths is small and therefore does not create a significant bias.

The computational errors for the above application example were estimated using a mockup 

example we created that simulates the problem under known and ideal conditions. The 

mockups were created by employing the following steps:

1. Assigning known transition probability values to all unknown probabilities and 

therefore effectively creating the transition probability matrix.

2. For each study,

1. 2.1. The transition probability matrix was modified to reflect proper 

absorption states.

2. 2.2. The probability matrix was used to calculate what portion of the 

population reaches the end state at the end of the study.

3. 2.3. Special treatment was created for regression studies, where study 

parameters were solved symbolically using a known predefined population 

to calculate the values that will produce a certain known transition 

probability associated with the study. For example for the UKPDS 

regression study, we adjust the intercept so that the marginal transition 

probability for the known simplified population matched the assigned mock 

up value.

3. The above calculated values were used as input data to estimate model parameters.

4. The estimation results were analyzed and compared with the assigned probabilities 

generated at the beginning of the mockup to deduce estimability and accuracy of 

our calculations for this model.
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Table V shows the results of using a mockup model. The mockups used the exact same 

model with a simplified small population set. The results of the estimation engine were 

compared with the exact results expected for these mockups. For these two mockup models, 

the errors in the probability numbers were smaller than 7e–8 in all cases. Although this 

number may be different for the real-non-mockup examples, it provides some estimate of 

the accuracy of the calculations in ideal simplified conditions similar to the actual models.

5. DISCUSSION

As disease models become increasingly important in health care and clinical decision 

making, statisticians need to be involved in the methods used for estimation. Currently, there 

are very few statistical methods available for researchers developing multi-state models 

from a variety of clinical studies. The Lemonade Method provides a step toward the 

statistical integration of available data into a multi-state or multi-process model.

Our use of the delta method for parameter estimation is novel because in most statistical 

applications, the data collected are designed to measure the parameters of interest. The 

complication that arises in the secondary data analysis is that the data rarely measure exactly 

the parameters of interest. If the data do directly measure the parameters of interest, our 

technique is not necessary and an ordinary meta-analysis can be conducted. However, in our 

application, the data are not direct estimates. Thus, a change of variable allows us to 

estimate the parameters of interest.

The use of regression parameters in the estimation procedure has several benefits. First, it 

uses the best results available to researchers in the form presented. More importantly, the 

use of regression parameters allows us to use the covariates measured in a study and 

summarized in a risk function. As such, we can use the data as they are presented in the 

literature. We also have the potential to use the covariance matrices of published regression 

coefficients to provide a more appropriate variance estimate of our parameter estimates.

When using the secondary data analysis, publication bias is a common concern. However, 

models of disease progression and complication are generally less prone to publication bias 

than many other techniques using meta-analysis because the data are drawn from 

population-based studies (such as the UKPDS or Framingham), national registries (such as 

SEER or USRDS), or from the control arm of clinical studies (such that publication bias 

would imply conservatively low estimates). In addition, a risk equation or a model is not in 

the form of a single number (usually a relative risk) whose magnitude might directly 

influence publication decisions. Although, when it comes to covariates, spurious covariate 

effects will be published often due to random chance as a part of a larger model. When a 

number of studies that provide risk equations are used, such spurious effect would be 

expected to be insignificant in the final model. Thus, models of disease progression are an 

application where using the published data could be advantageous.

The Lemonade Method has potential for generalization. For example, although we limited 

ourselves to examples with binary covariates, our approach generalizes to accommodate any 

categorical covariates. In addition, our current implementation is limited in the sense that it 
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requires the unknown cumulative transition probabilities to be independent for each 

population category. This independence can be satisfied by the user who creates the model. 

Relaxing this limitation is a future research direction. Moreover, this technique can be 

generalized for transition probabilities as a function of both categorical and continuous 

covariates. This generalization will allow disease models to use functions in the multi-state 

models as Manton and Stallard suggested in [27]. This approach can also be generalized in 

the future to accommodate more sophisticated models such as random effects.

An important limitation of this technique is computational feasibility. Several techniques to 

improve the computational burden of this method have been mentioned previously. It is 

important to note that numerical difficulties were observed and resolved during this 

research. As the number of parameters being estimated increases and as the number of 

studies grows, the computational burden will grow. However, as technology improves and 

more research is invested in these problems, the difficulties should lessen. The migration of 

the program to an environment with increased accuracy such as an environment using quad 

precision [28] or variable precision arithmetic [29] may decrease the numerical difficulties. 

In addition, the improvement of the symbolic math techniques may improve the accuracy, 

and the numerical methods such as Gaussian quadrature may improve the computational 

efficiency. Despite the computational difficulties encountered, we were able to cope with 

these issues. Computation time was negligible compared with the data collection time and 

even data entry to the system. Computations were completed in minutes at worst and in 

seconds for the simpler examples. Examples similar to those provided in the paper are 

available online for reference [20].

Note that our method reduces to a simple form of conventional meta-analysis when (1) there 

is only one transition of interest, (2) there are several studies that all provide incidence rate 

or transition probability for this transition, and (3) all studies measure exactly the states of 

interest the trivial case where the theoretical model is identical to the published models). In 

the future we hope to accommodate random effects in our approach as a less naive approach 

to meta-analysis, but this would require far greater amounts of available data estimating 

each transition. Moreover, we expect that estimability under a random effects model would 

require numerous studies using the exact same state definitions. Currently we have neither 

the technology nor the data to correctly model random effects of our parameter estimates.

In summary, we have presented a new approach for incorporating secondary data into the 

disease models where a longitudinal study is not feasible. We have demonstrated that the 

approach is unbiased and efficient, as expected for a likelihood technique. We presented a 

clinical example where the approach was useful and provided better information than the 

previous approaches allow. Thus, The Lemonade Method has been shown to be flexible and 

well behaved, providing a new technique for modelers of chronic diseases.

The Software Prototype implementing the approach in this paper has been released under the 

GPL license and can be downloaded from the project web site at [20].
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Figure 1. 
A model of the CVD process within diabetes.
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Figure 2. 
Cumulative frequency distribution plot of computational errors. This graph shows the 

computational sensitivity of the method considering for 38 mockup examples that generated 

122 probabilities as results.
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Figure 3. 
A simple model containing two states and one transition.
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Figure 4. 
Log likelihood plots corresponding to Table II results. The iso-curves at the bottom of each 

graph are helpful to understand the shape of the log-likelihood function. Note the different 

scales on the vertical axis and the cross section projections to recognize differences between 

plots: (0) reference; (1) scaling variance; (2) covariance, c = 0.05; (3) covariance, c = 0.07; 

(4) covariance, c = 0.1; and (5) covariance, c = −0.05.
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Figure 5. 
The CVD model in dark thick lines and associated studies in dotted pale arrows.
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Table I

Results for simple examples varying population size and length of study.

Population Years p̂01 f p̂01m
V( p̂01 f )
variance

V( p̂01m)
variance

V( p̂01m, p̂01 f )
covariance

N =4 1 0.5033 0.5933 0.0601 0.0568 0.0492

2 0.5031 0.5932 0.0601 0.0568 0.0492

3 0.5029 0.5930 0.0601 0.0568 0.0492

N =150 1 0.5023 0.5879 0.0600 0.0573 0.0492

2 0.5018 0.5875 0.0599 0.0572 0.0491

3 0.5012 0.5870 0.0598 0.0572 0.0490
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Table II

Variations on the base example, varying scale parameters, and covariance.

Test # Test name p̂01 f p̂01m
V( p̂01 f )
variance

V( p̂01m)
variance

V( p̂01m, p̂01 f )
covariance

1 Scaling variance 0.5033 0.5933 0.6013 0.5685 0.4923

2 Covariance, c=0.05 0.5033 0.5933 0.0601 0.0734 0.0593

3 Covariance, c=0.07 0.5033 0.5933 0.0601 0.0800 0.0634

4 Covariance, c=0.1 0.5033 0.5933 0.0601 0.0899 0.0694

5 Covariance, c=−0.05 0.5033 0.5933 0.0601 0.0403 0.0391
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Table III

Clinical studies used to estimate parameters of the CVD model.

Study
index k Transition

Population
count M(k) Incident count Years Annualized Reference

1 A: 0 to 1 1138 72 10 0.0065 UKPDS 33, 1998 [21]

2 B1: 0 to 2 890 180 7 0.0318 Haffner, 1998 [22]

3 B2: 0 to 2 4540 See UKPDS
risk equation

10 Stevens, 2001
(UKPDS 56) [11]

4 C: 1 to 2 569 61 2 0.0551 Malmberg, 2000 [23]

5 D: 1 to 4 569 53 2 0.0477 Malmberg, 2000 [23]

6 E: 2 to 4 437 (male)
183 (female)

197 71 1 0.4508
0.3880

Miettinen, 1998 [24]

7 F1: 3 to 2 73 (male) 13 1 0.1781 Ulvenstam, 1985 [25]

20 2 0.1479

34 5 0.1178

8 F2: 3 to 2 169 76 7 0.0818 Haffner, 1998 [22]

9 G: 3 to 4 256 (male)
147 (female)

79
58

5 0.0711
0.0955

Lowel, 2000 [26]

Each study provides the following information: (1) the study index, (2) the transition reported by the study presented using the model terminology, 
(3) initial population count, (4) the cumulative incident count reaching the end state at the end of the study, (5) the study length in years for which 
incident counts were reported, (6) the annualized rates that were calculated from this information for comparison with model results, and (7) the 
reference from where the data were extracted.
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Table IV

Estimation results for the CVD model.

Using incident counts
for the UKPDS

Using the UKPDS risk
equation

Point
estimate

Standard
Error

Point
estimate

Standard
Error

Difference of
model estimates

p̂ 01 0.0070 0.0008 0.0071 0.0008 1.60E–04

p̂ 02 0.0119 0.0006 0.0218 0.0014 9.93E–03

p̂ 12 0.0569 0.0069 0.0549 0.0068 −2.00E–03

p̂ 14 0.0225 0.0072 0.0237 0.0072 1.21E–03

p̂ 23 0.5686 0.0199 0.5688 0.0199 1.61E–04

p̂ 32 0.1032 0.0088 0.1032 0.0088 3.81E–06

p̂ 34 0.0362 0.0070 0.0362 0.0070 9.39E–06

−Log (L) 4277.75 1993.67
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Table V

Mockup accuracy for the CVD model.

Using incident counts
for the UKPDS

Using the UKPDS risk
equation

Mockup
probability

values
Absolute

Error
Relative
Error

Absolute
Error

Relative
Error

p̂ 01 0.005 −8.8E–12 −1.8E–09 −1.2E–11 −2.5E–09

p̂ 02 0.03 1.85E–11 6.16E–10 −3.8E–11 −1.3E–09

p̂ 12 0.05 4.29E–10 8.58E–09 2.3E–10 4.6E–09

p̂ 14 0.05 3.48E–09 6.96E–08 1.08E–09 2.16E–08

p̂ 23 0.8 8.32E–09 1.04E–08 −3.3E–09 −4.2E–09

p̂ 32 0.1 −3.1E–10 −3.1E–09 −2.2E–09 −2.2E–08

p̂ 34 0.08 2.3E–09 2.88E–08 −1.1E–10 −1.4E–09

The first two columns represent the model input probabilities which are also the expected estimation results. The following columns show the 
accuracy of the estimation engine from these expected results for both models.
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