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Summary

Receptors for immunoglobulin Fc regions play multiple critical roles in the immune system, 

mediating functions as diverse as phagocytosis, triggering degranulation of basophils and mast 

cells, promoting immunoglobulin class switching and preventing excessive activation. 

Transmembrane signaling associated with these functions is mediated primarily by two amino acid 

sequence motifs, ITAMs (Immunoreceptor Tyrosine-based Activation Motifs) and ITIMs 

(Immunoreceptor Tyrosine-based Inhibition Motifs) that act as the receptors’ interface with 

activating and inhibitory signaling pathways, respectively. While ITAMs mobilize activating 

tyrosine kinases and their consorts, ITIMs mobilize opposing tyrosine and inositol-lipid 

phosphatases. In this review we will discuss our current understanding of signaling by these 

receptors/motifs and their sometimes blurred lines of function.
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Introduction

Most effector functions of antibodies are dependent on interaction of their constant regions, 

usually hinge and CH2, with Fc receptors (FcR). This engagement can initiate immunologic 

responses provided FcR contains Immunoreceptor Tyrosine-based Activation Motifs 

(ITAMs) and the immune complexes or opsonized particles aggregate receptors due to 

multivalency. Initiating the function of inhibitory Fc receptors, those containing 

Immunoreceptor Tyrosine-Based Inhibitory motifs (ITIMs), generally requires co-

aggregation of the ITIM-containing receptor with an activating, ITAM-containing, receptor 

that provides tyrosine kinase activity that phosphorylates the ITIM. Particularly in the case 

of members of the more recently described Fc-receptor-Like molecules, receptors can 

contain both ITAMs and ITIMs, which may obviate coaggregation requirements.
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The magnitude and duration of responses to Fc-containing ligands is controlled at multiple 

levels by both passive and active regulatory signaling. Most activating receptors interact 

directly with phosphatases that passively counteract kinase effects, creating negative 

feedback loops. The function of the inhibitory FcR, FcγRIIb, is only actively invoked by 

coaggregation. Passive and active regulatory signaling by ITAMs and ITIMs, respectively, 

seem to use the same phosphatases. However, actively invoked regulatory signaling involves 

quantitatively greater activation of phosphatases and therefore is more potently regulatory. 

Finally, a conundrum is presented by a situation in which activating Fc receptors containing 

only ITAMs, e.g. FcαR1, can, under certain circumstances of stimulation, behave as 

inhibitory receptors. While these “circumstances” and the underlying mechanisms by which 

they act are unclear, they are associated with low affinity/avidity and chronic stimulation. In 

this review we discuss our current understanding of these inhibitory signaling events that 

regulate Fc receptor-mediated cell activation.

Activating signaling by Fc receptors

Most but not all biological effects of Fc receptors require the Immunoreceptor tyrosine-

based activating motif (ITAM) in the cytoplasmic portion the Fc receptor or associated 

signaling proteins such as the FcRγ chain and the FcεRI β chain. Depending on the cell type, 

these biological effects include phagocytosis, degranulation, ADCC, cytokine and 

superoxide production. In the case of canonical (or type I) Fc receptors, the initiating event 

in signaling is receptor clustering, which leads to the activation of associated Src family 

kinases, Lyn and/or Fyn. When these kinases phosphorylate both conserved tyrosines in the 

ITAM motif, the tyrosine kinase Syk binds via its tandem SH2 domains and becomes 

activated. Depending on the cell type, specific adaptors are then phosphorylated by Syk and 

these in turn participate in signaling by proteins such as PLCγ, Btk, Vav and PI3K. PLCγ 

hydrolysis of PtdIns(4,5)P2 produces IP3 and DAG, that initiate calcium mobilization and 

PKC activation respectively. Calcium influx and PKC activation affect a number of 

downstream effectors altering gene expression and promoting biologic responses such as 

degranulation and cytokine production. Vav is important in remodeling of the actin 

cytoskeleton to accommodate phagocytosis and activation of superoxide production by 

NADPH oxidase. PI3K catalyzes the conversion of PtdIns(4,5)P2 into PtdIns(3,4,5)P3 in the 

inner plasma membrane leaflet. Pleckstrin homology (PH) domain containing proteins such 

as PLCγ, Gab2, Akt and Btk bind PtdIns(3,4,5)P3 retaining them at the inner leaflet of the 

plasma membrane leaflet at the site of active signaling resulting their phosphorylation and 

activation.

Type II Fc receptors, including CD209, (DC-SIGN (human), SIGN-R1 (mouse)) and CD23, 

the low affinity IgE receptor, belong to C-type lectin receptor family. These receptors bind 

antibodies differently, preferring Fc domains in the closed conformation. Glycosylation of 

the Fc domain induces a conformational change of the Fc domain that occludes the binding 

site for type I Fc receptors lying near the hinge-proximal surface (open conformation) and 

reveals a binding site at the surface of the CH2-CH3 interface (closed conformation). These 

receptors bind antibodies in a 2 receptors to 1 antibody stoichiometry that may influence 

signal initiation (1). Although signaling by these receptors is not as well described as 

canonical Fc receptors, studies of CD23 have provided some insight. On B cells CD23 
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crosslinking can lead to increases in cAMP (2) and intracellular ionic calcium (3) as well as 

activation of the Src-family kinase Fyn, the Erk pathway and the PI3K pathway (4). CD23 

signaling differs somewhat depending on the cell type. Monocytes CD23 is not coupled to 

activation of Fyn, the PI3K pathway or elevation of intracellular calcium, but does activate 

the Erk pathway (4). CD23 does stimulate tyrosine kinase activity, although its identity is 

unknown, and initiate the NFκB pathway by phosphorylation and degradation of IκBα (5, 

6).

Phosphatase regulation of Fc receptor signaling

Functions of ITAM-bearing receptors are actively counteracted by the action of 

Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM)-bearing receptors. Upon co-

aggregation with activating receptors, associated kinases phosphorylate the conserved ITIM 

tyrosine, which then recruits the tyrosine phosphatases SHP-1 and SHP2 and the inositol 

phosphatases SHIP-1 and SHIP2. Below we will summarize key characteristics of these 

phosphatases before discussing their role in regulation of Fc receptors.

SH2-containing adaptors and phosphatases; SHIP-1 and SHIP-2

SHIP-1 and SHIP-2 are adaptor proteins and inositol 5-phosphatases that convert 

PtdIns(3,4,5)P3 to PtdIns(3,4)P2. This has two effects on retention of signaling molecules at 

the plasma membrane inner cell leaflet: 1) by reducing the PtdIns(3,4,5)P3 levels it prevents 

retention of molecules containing PH domains that bind PtdIns(3,4,5)P3, thus reducing, for 

example, activation of PLCγ and AKT. By increasing local PtdIns(3,4)P2 levels it promotes 

retention and activity of signaling proteins such as TAPP1, TAPP2 and Bam32 that have 

PH-domains that preferentially bind PtdIns(3,4)P2. While their precise function is still 

unclear, the TAPP proteins negatively regulate B cell activation and are important for 

maintenance of B cell tolerance (7). In contrast Bam32 appears to aid in B cell activation 

(8). The SHIP proteins contain several functional domains that control their function and 

enable them to interact with other signaling proteins. SHIP-1 contains a N-terminal SH2 

domain, a PH-like domain, a phosphatase domain, a C2 domain, two NPXY domains and a 

C-terminal proline-rich region (PRR). The SH-2 domain can interact with several proteins 

including phosphorylated Dok family proteins, Shc, ITIMs and ITAMs. Once 

phosphorylated, the NPXY motifs can also bind Dok family proteins and Shc via their PTB 

domains (9, 10). The PRR confers the ability to interaction with adaptors like Grb2 via their 

SH3 domains. Resultant Grb2 association promotes SHIP-1 binding to phosphorylated 

FcγRIIb. While it has suggested previously that SHIP-1 might require association with a 

PH-domain containing adaptor to localize to its substrate (11) recently a PH-like domain 

was identified within SHIP that allows SHIP-1 to localize to PtdIns(3,4,5)P3 directly (12). 

Finally the C2 domain associates with the SHIP-1 phosphatase product PtdIns(3,4)P2, an 

interaction that has been suggested to increase phosphatase activity, providing a positive 

feedback mechanism for further SHIP-1 activation (13). Unlike SHIP-1, which is restricted 

in expression primarily to hematopoietic cells, SHIP-2 is ubiquitously expressed. The two 

have significant sequence homology and both function as inositol phosphatases. However 

there is great amino acid sequence divergence in their C-terminal region, including one less 
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NPXY motif and the addition of a sterile α-domain in SHIP-2 that is likely to alter the 

protein’s adaptor functions, as discussed below.

Tyrosine Phosphatases, SHP-1 and SHP-2

The SH2-containing tyrosine Phosphatases SHP-1 and SHP-2 have two N-terminal SH2 

domains (N-SH2 and C-SH2), a tyrosine phosphatase domain and a C-terminal tail that 

contains 2 tyrosine phosphorylation sites. SHP-2 also contains a proline-rich domain that 

may bind to SH3 domain-containing proteins. SHPs have been reported or have been 

suggested to dephosphorylate a number of (putative) substrates, including CD79α/β (Igα/β, 

Syk, FcR ITAMs, SHIP, PI3K. Structural studies have revealed that the N-SH2 domain 

obstructs the catalytic domain of the enzyme. Upon binding of the two SH2 domains to p-

tyrosyls, SHPs undergo conformational changes that expose the catalytic domain (14, 15). 

The exposed C-SH2 domain binding is thought aid the binding of the more hidden N-SH2 

domain. Accordingly the enzymatic activity increases drastically when the enzymes are 

bound to two phosphorylated ITIMs. This non-covalent regulation suggests that SHP-1 

would only be able to dephosphorylate substrates within close range of the SHP-1-

associated receptor. Other findings suggest that phosphorylation of either or both of the 

tyrosines in the C-terminal tail of SHP-1 may lead to intramolecular interactions with the N-

SH2 domain that increase the phosphatase activity. Thus when this tyrosine is 

phosphorylated, binding of SHP-1 to a single phosphorylated ITIM might suffice to de-

repress its activity (16, 17).

SHP-2 has been reported to influence signaling both negatively, by its phosphatase function, 

and positively, as an adaptor protein that recruits proteins that aid in cell activation. An 

interesting recent study suggests the existence of a more prominent activating function that 

could be of importance for Fc receptor biology. A family of innate sensing C-type lectin 

receptors called dectins have a family member, dectin 2/3, that uses the FcRγ chain as an 

adaptor. The authors showed that to trigger Syk-mediated cytokine production through this 

molecule, SHP-2 must be recruited to phosphorylated ITAMs in FcRγ While bound to the 

pITAM, SHP-2 is phosphorylated on a previously unidentified C-terminal ITAM-like motif. 

This phosphorylated ITAM-like motif then directly recruits Syk to the receptor (18).

Inhibitory signaling by FcγRIIb

Immune complexes that contain IgG (and possibly other immunoglobulin isotypes) have the 

ability to recruit FcγRIIb to co-engaged activating receptors. This would occur on B cells, 

which among FcR express only FcγRIIb, if the immune complex contains unhindered 

antigen epitopes to which the antigen receptor is specific. If the immune complexes contain 

complement-activating immunoglobulin isotypes, FcγRIIb can also inhibit complement 

receptor signaling (19). FcγRIIb has an ITIM motif that is phosphorylated by Lyn (or other 

Src-family kinases) activated by co-aggregated ITAM-containing receptors (20). Initially 

controversy existed over the identity of the phosphatases recruited to the FcγRIIb pITIM. 

SHP-1 was first identified as being recruited to the ITIM of FcγRIIb and to be essential for 

FcγRIIb function based on studies in SHP-1 deficient (moth-eaten viable) mice (21). Shortly 

thereafter SHIP-1 was identified as being recruited to the ITIM of FcγRIIb and to be 

essential for FcγRIIb function (22). As discussed below subsequent studies confirmed a 
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primary role for SHIP-1 in FcγRIIb mediated inhibition, although under circumstances of 

highly efficient receptor coaggregation SHP-1 also plays a role. Most ITIM-bearing 

receptors utilize the SHPs. However the FcγRIIb ITIM has a leucine in the Y+2 position that 

determines its ability to bind SHIP-1 and SHIP-2. The canonical isoleucine on the Y-2 

position enables SHP-1 and SHP-2 binding (23), thus the FcγRIIb ITIM has the ability to 

bind both SHIPs and SHPs. While pull-down studies with pITIM peptides confirm binding 

of SHIP-1, SHIP-2, SHP-1 and SHP-2 (24, 25), surface plasma resonance analysis 

demonstrated that SHIP-1 binds with the highest affinity to FcγRIIb pITIM peptide (26). At 

least two factors may contribute to preferential binding of FcγRIIb to SHIP in vivo. The 

ITIM distal C-terminal region of FcγRIIb contains a second tyrosine that can be 

phosphorylated and serves as a binding site for SH2-domain of Grb2. Grb can stabilize the 

SHIP-FcγRIIb interaction by forming a stable complex by bridging the SH3 domain of Grb2 

and the PRR in SHIP-1 (27). Accordingly, upon FcγRIIb-BCR colligation, Grb2 associates 

more with Dok-3 and SHIP-1 and less with activating proteins such as CD19, PI3K and Vav 

(28). A second reason for SHIP-1 preference likely lies in the fact that FcγRIIb contains one 

ITIM. As discussed above, SHP-1 must bind via its two SH2 domains simultaneously to 

achieve optimal activation, while SHIP-1 requires interaction with its single SH2 domain. In 

agreement with this, Lesourne et al., used beads with increasing density of pITIM peptides 

to demonstrate that SHP-1 binding only occurs at high pITIM density. Thus at low ligand 

concentrations, FcγRIIb may only be aggregated and phosphorylated sufficiently to allow 

binding of SHIP. Only when phosphatase inhibitors were used to achieve high levels of 

phosphorylation could SHP-1 binding to FcγRIIB be observed (29). This model would 

predict that only under conditions leading to efficient FcγRIIB –BCR crosslinking would 

SHP-1 be recruited by binding to single pITIMs of neighboring FcγRIIbs. Indeed 

supercrosslinking of the BCR with FcγRIIb does induce both SHIP and SHP-1 recruitment 

(30). SHP-1 may play a role in other cell types as it has been found to associate with 

FcγRIIb on human monocytes (31). In addition of SHIP-1, SHIP-2 utilized in inhibitory 

signaling by FcγRIIb in activated B cells (32).

FcγRIIb coengagement with the BCR leads minimally to inhibitory signaling at least three 

qualitatively distinct levels. SHIP-1 recruitment results in enhanced hydrolysis of 

PtdIns(3,4,5)P3 reducing membrane localization and activation of PH domain-containing 

proteins such as Btk (33) and Vav (34). Dok binding to pSHIP and its subsequent 

phosphorylation leads to RasGAP activation, inhibiting Erk (10). Finally, besides 

counteracting the PI3K pathway by hydrolysis of PI3K product, FcγRIIb crosslinking also 

reduces PI3K activation by reducing phosphorylation of CD19 (35). The mechanism by 

which the latter occurs is unclear, it is independent (36) of both SHP-1 and the ITIM and c-

terminal domain of FcγRIIb (37). These mechanisms are not unique to FcγRIIb function in 

B cells, crosslinking of FcγRIIb with FcεRI on mast cells also leads to SHIP recruitment and 

phosphorylation, association with Shc and Dok, and downstream effects such as inhibition 

of calcium responses and Erk activation (38).

Aggregation of FcγRIIb on B cells independent of antigen receptors has been shown to have 

biological effects under certain circumstances, although the operative mechanisms appear to 

differ depending on developmental stage. Initially reported in mature B cells, FcγRIIb 
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crosslinking can mediate apoptotic signaling that is SHIP-1 (39). This is thought to play a 

role during affinity maturation in germinal center reactions when there is plenty of antigen-

bound IgG on FDCs to engage FcγRIIb on B cells, while only antigen-specific B cells with 

the highest affinity will be able to compete for the available antigen. FcγRIIb-BCR induced 

SHIP-1 activation is thought to somehow counteract the apoptotic signal in high-affinity B 

cells. The signaling pathway by which FcγRIIb homotypic-aggregation induces apoptosis is 

still unclear. This pathway is independent of the ITIM, SHIP-1 and Src family kinases, but 

FcγRIIb is phosphorylated and, though their exact role is unclear, the c-Abl family kinase 

pathway members, c-Abl and Arg were shown to be of importance (40). Pre-B cells respond 

to FcγRIIb aggregation by undergoing apoptosis, but also display impaired cell migration 

due to SHIP-1 activation. How SHIP-1 becomes activated is unclear because in these cells 

FcγRIIb does not seem to become phosphorylated (41). Finally in IgM+ human B cells 

FcγRIIb crosslinking causes ITIM phosphorylation and SHIP recruitment. In these cells 

FcγRIIb crosslinking does not induce apoptosis but it does inhibit B cell proliferation and Ca 

mobilization (42). Phosphorylation of FcγRIIb under condition of receptor aggregation in 

isolation may indicate association of the receptor with second receptor/adaptor capable of 

recruiting tyrosine kinases.

Regulatory signaling by FCRL

Over the past decade a family of novel receptors sharing homology with Fc receptor has 

been identified and designated Fc receptors-like receptors (FCRL)(reviewed in (43, 44). 

While the physiologic ligands for most family members are unknown, FCRL4 and FCRL5 

were recently shown to be bona fide Fc receptors. Initial analysis showed that FCRL4 binds 

heat aggregated IgA and FCRL5 binds heat aggregated IgG (45). Subsequent studies 

demonstrated that FCRL5 binds native and complexed IgG with affinity comparable to the 

canonical low affinity FcγR, although it binds IgG differently than classical Fc receptors 

(46). FCRL5 is expressed on most B cells (47) while FCRL4 is expressed only on subset of 

tissue memory B cells (48). FCRL4 contains a switch motif and two ITIMs in its 

cytoplasmic tail while FCRL5 contains a noncanonical ITAM and two ITIMs. Switch motifs 

bind SHP-2, but upon binding of a small adaptor SH2D1A, also binds SHIP-1, thus both 

receptors have the potential to signal positively and negatively. To begin characterization of 

the signaling function of these FCRLs, fusion proteins were constructed in which the 

extracellular domain of FcγRIIb was fused with the cytoplasmic domain of FCRL4 or 

FCRL5. Crosslinking of FcγRIIb-FCRL4 fusion with the BCR led to phosphorylation of the 

ITIM motifs and recruitment of SHP-1 and SHP-2, and complete inhibition of BCR-

mediated signaling (49). Subsequent studies using intact FCLR4 confirmed these findings 

and expanded them, demonstrating a requirement for all 3 FCRL tyrosines (including the 

one in the switch motif) and inhibition of Syk phosphorylation. SHP-1 and SHP-2 are 

associated with FCRL4 in resting cells as well, suggesting that they may regulate basal 

signaling levels. Finally, FCRL4 positively influences TLR9 signaling (50).

Crosslinking of FcγRIIb-FCRL5 chimeric receptors and FCRL5 with the BCR leads to 

phosphorylation of the tyrosines in the ITIMs, as well as the ITAM-like sequence, although 

only the former are required for associated suppression of BCR signaling. Only SHP-1 is 

recruited to the ITIM motifs and is responsible for dephosphorylation of Igα/β and 
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downstream signaling proteins (51). Subsequent studies showed that co-crosslinking of 

FCRL5 has both positive and negative effects on BCR signaling, occurring via recruitment 

of Lyn to the ITAM-like motif and SHP-1 to the ITIMs. Interestingly the balance tipped 

depending on B cells differentiative state, in marginal zone B cells the overall outcome was 

stimulatory but in B1 cells it was suppressive (52).

Feedback signaling by activating Fc receptors

Early studies of signaling by “activating” Fc receptors indicated that these receptors can also 

recruit phosphatases. Best described is the high affinity receptor for IgE, FcεRI, which 

contains two ITAM-containing subunits, the FcRγ chain and the FcεRI β chain, that function 

as signal transducers. Each contains a single ITAM. Association studies suggest a division 

of labor as FcRγ chain primarily recruits Syk and possibly SHIP-1 assuming a more 

activating role, while the FcεRI β chain can associate with SHIP-1, SHP-1, Lyn, Grb2 and 

Shc thus likely having a more regulatory role (53–57). Association of these phosphatases 

with an “activating” complex may have two functions; to control the magnitude of the 

biological response and to diversify the signal. As is seen in B cells, Lyn has both positive 

and negative signaling functions in mast cells. Upon stimulation with high concentrations of 

crosslinking ligands, FcεRI chain-activated Lyn phosphorylates SHIP-1 and SHP-1, while at 

low ligand concentrations it initiates cell activation (58). Further, SHP-1 has been shown to 

dephosphorylate the FcRγ chain ITAM tyrosines at different rates, creating 

monophosphorylated ITAMs that are unable to bind Syk (59). Dephosphorylation of ITAMs 

and Syk, and, possibly, phosphorylated adaptors, results in reduced receptor-mediated gene 

transcription and cytokine production. However, studies using mast cells derived from 

SHP-1 deficient bone marrow have revealed that in this context SHP-1 also has positive 

functions. Decreased calcium mobilization, PLCγ phosphorylation and degranulation were 

observed in SHP-1 deficient cells and this could be attributed to decreased association of 

SLP-67 and PLCγ, suggesting an adaptor function for SHP-1 (60). Under supraoptimal 

ligand conditions, SHIP is also recruited to FcεRI and suppresses degranulation (61, 62). By 

combining mathematical modeling with electron microscopic and biochemical analysis, the 

Wilson group proposed a model in which SHIP becomes associated with FcεRI at both 

suboptimal and supraoptimal ligand stimulation conditions, causing inhibition, and that only 

at optimal ligand concentrations is Syk recruited (63). The authors suggested that this 

differential recruitment results from differences in ITAM phosphorylation, with dual 

phosphorylation required for Syk recruitment occurring only following optimal stimulation. 

Under other conditions ITAMs would likely be inhibitory due to monophosphorylation, 

either due to inefficient phosphorylation (suboptimal stimulation) or selective 

dephosphorylation (supraoptimal stimulation). These authors also demonstrated opposing 

roles for SHP-1 (inhibitory) and SHP-2 (activating) in the degranulation response. Finally, 

SHIP-2 reportedly associates constitutively with the FcεRI β chain and, while it does not 

appear to affect receptor-mediated calcium mobilization or PLCγ activity, it does negatively 

regulate cytoskeletal function and degranulation (64).

These relationships are much less well-defined in IgG Fc receptor signaling. However, 

SHIP-1 is reported to be recruited, along with Shc, to FcγRI, FcγRIIa and FcγRIII, and to 

Getahun and Cambier Page 7

Immunol Rev. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



become phosphorylated following stimulation (65–68). In addition, SHP-1 has been shown 

to associate with the N-terminal ITAM tyrosine in hFcγRIIa, and to inhibit signaling (69).

Inhibitory signaling by activating Fc receptors

While ITAM-bearing Fc receptors recruit phosphatases in the normal course of transduction 

of signals that lead to cell activation, recently findings indicate that under appropriate 

conditions signals emanating from these receptors can be solely inhibitory. This 

phenomenon has come to be known as ITAMi or inhibitory ITAM signaling. Originally 

described for FcαRI, it was observed that low-level engagement of FcαRI by serum IgA 

suppressed, in trans, the activation signaling though independently stimulated FcγRs or 

FcεRI. An explanation may exist in the fact that dimeric IgA molecule binds two FcαRI 

(70). Based on the discussion above (63), and very early findings using FcεR1, receptor 

dimerization may generate inhibitory signals by stimulating biased ITAM 

monophosphorylation known to propagate inhibitory signals (71). Finally, it has been shown 

that by a poorly understood mechanism involving actin depolymerization, FcαRI-SHP-1 

complexes translocate into lipid rafts with activating receptors, possibly enabling SHP-1 

trans-dephosphorylation of neighboring receptors (72). This non-covalent co-localization 

would allow SHP-1 to have a wider reaching inhibitory potential, much like the broader 

range of SHIP-1 (73, 74). This phenomenon is not unique to FcαRI, similar inhibitory 

activity has been observed in the case of FcγRIIa (75). Stimulation with IVIG or F(ab’)2 

anti-FcγRIIa resulted in inhibitory signaling by FcγRIIa independent of FcγRIIb. Low level 

ITAM phosphorylation reportedly leads to a transient Syk recruitment followed by a stable 

SHP-1 recruitment.

We suggest that low avidity ligand stimulation of ITAM receptors in general leads to biased 

generation of inhibitory signals due to ITAM monophosphorylation. In addition to FcR, 

observations have been made for T cell receptors (76) and B cell receptors (71) all leading to 

inhibitory signaling. Syk recruitment to ITAMs requires engagement of two ITAM cis 

phosphotyrosines with the two SH2 domains of the kinase (77–79). Furthermore, as we have 

shown, ITAM monophosphorylation is both necessary and sufficient to activate SHIP and 

Dok inhibitory signaling (71). Accordingly in the case of FcγRIIb only one tyrosine was 

required of ITAMi activity (75). As discussed below, ITAMi signaling by Fc receptors could 

be of clinical utility. It is also worth noting that while the examples above are all mediated 

by SHP-1, in other systems such as DAP12 mediated regulation of the LPS response it has 

been shown that ITAMs can recruit SHIP-1 in a Dok2 dependent manner, and thereby 

inhibit the PI3K pathway (80, 81).

Practical application of inhibitory Fc receptor signaling: IVIG

Intravenous IgG (IVIG) has well described anti-inflammatory activity. It is likely that 

several mechanisms are at play. FcγRIIb has been reported to be indispensable for this IVIG 

anti-inflammatory signaling (82). A relative small fraction of IgG with sialic acid bound to 

its core Fc glycans is thought to interact with DC-SIGN on myeloid regulatory cells leading 

to cytokine production that causes upregulation of FcγRIIb, decreasing the threshold for 

activation of anti-inflammatory activity (83). However, other studies have suggested that 
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FcγRIIb can be dispensable for the IVIG effect and that ITAMi signaling of FcγRIII can 

mediate anti-inflammatory effects in a SHP-1 mediated manner (84, 85). Finally, as 

described above, IVIG can reportedly function though FcγRIIa via ITAMi activity and 

SHP-1 activation. The potential for use of IVIG to treat arthritis was validated by showing 

treatment-associated ITAMi-like activity in infiltrating cells from synovial fluid of RA 

patients (75).

Concluding remarks

It’s complicated, but in the context of stimulation by ligands of differing avidity, ITAMs and 

ITIMs seem to have enormous potential to tune biological responses. Appropriate surrogates 

of ligands that activate inhibitory signaling may have great utility in the clinic.
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