Abstract
Evoked cortical potentials were used to test neural models of binocular interactions in humans. The critical feature that distinguished between basic models was whether the two monocular signals combined linearly or nonlinearly. Stimuli were presented separately and simultaneously to two eyes with the relative temporal phase parametrically varied. Fourier analysis was applied to the recorded electroencephalogram to measure the frequency response of the visual cortex to this stimulation. Comparisons of the models' predictions with the experimental results indicate that the greatest contribution to the cortical response originates in a neural pathway that contains nonlinear binocular combination, and a smaller contribution originates in a pathway with linear binocular combination. Current models, based on psychophysical studies of humans and on single-cell neurophysiological investigations of cats, are inadequate to explain these results. A model of binocular interaction is proposed that does account for the present findings and is also supported by neurophysiological studies on monkeys. This model, which contains both nonlinear and linear binocular interactions, has profound implications for perceptual processing.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson P. A., Movshon J. A. Binocular combination of contrast signals. Vision Res. 1989;29(9):1115–1132. doi: 10.1016/0042-6989(89)90060-6. [DOI] [PubMed] [Google Scholar]
- Baitch L. W., Levi D. M. Evidence for nonlinear binocular interactions in human visual cortex. Vision Res. 1988;28(10):1139–1143. doi: 10.1016/0042-6989(88)90140-x. [DOI] [PubMed] [Google Scholar]
- Cogan A. I. Human binocular interaction: towards a neural model. Vision Res. 1987;27(12):2125–2139. doi: 10.1016/0042-6989(87)90127-1. [DOI] [PubMed] [Google Scholar]
- Curtis D. W., Rule S. J. Binocular processing of brightness information: a vector-sum model. J Exp Psychol Hum Percept Perform. 1978 Feb;4(1):132–143. doi: 10.1037//0096-1523.4.1.132. [DOI] [PubMed] [Google Scholar]
- De Valois R. L., Albrecht D. G., Thorell L. G. Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 1982;22(5):545–559. doi: 10.1016/0042-6989(82)90113-4. [DOI] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Legge G. E. Binocular contrast summation--II. Quadratic summation. Vision Res. 1984;24(4):385–394. doi: 10.1016/0042-6989(84)90064-6. [DOI] [PubMed] [Google Scholar]
- Movshon J. A., Thompson I. D., Tolhurst D. J. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J Physiol. 1978 Oct;283:53–77. doi: 10.1113/jphysiol.1978.sp012488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohzawa I., Freeman R. D. The binocular organization of complex cells in the cat's visual cortex. J Neurophysiol. 1986 Jul;56(1):243–259. doi: 10.1152/jn.1986.56.1.243. [DOI] [PubMed] [Google Scholar]
- Ohzawa I., Freeman R. D. The binocular organization of simple cells in the cat's visual cortex. J Neurophysiol. 1986 Jul;56(1):221–242. doi: 10.1152/jn.1986.56.1.221. [DOI] [PubMed] [Google Scholar]
- Ratliff F., Zemon V. Some new methods for the analysis of lateral interactions that influence the visual evoked potential. Ann N Y Acad Sci. 1982;388:113–124. doi: 10.1111/j.1749-6632.1982.tb50787.x. [DOI] [PubMed] [Google Scholar]
- Spitzer H., Hochstein S. Simple- and complex-cell response dependences on stimulation parameters. J Neurophysiol. 1985 May;53(5):1244–1265. doi: 10.1152/jn.1985.53.5.1244. [DOI] [PubMed] [Google Scholar]