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Cyclic adenosine monophosphate (cAMP) is one of the second messengers critically involved in the molecular mechanisms
underlyingmemory formation. In the CNS, the availability of cAMP is tightly controlled by phosphodiesterase 4 (PDE4), a family of
enzymes that degrades the cyclic nucleotide to inactive AMP. Among the different PDE4 isoforms, in the last few years PDE4D has
been hogging the limelight due to accumulating evidence for its crucial role in cognitive processes, which makes this enzyme a
promising target for therapeutic interventions in a variety of pathological conditions characterized by memory impairment, such
as Alzheimer’s disease. In this article, we review the role of the cAMP signal transduction pathway in memory formation with a
particular focus on the recent progress in PDE4D research.
Abbreviations
CNG, cyclic nucleotide gated; CREB, cAMP responsive element binding protein; Epac, exchange protein directly activated
by cAMP; LTP, long-term potentiation; MWM, Morris water maze; NAMs, negative allosteric modulators; ORT, object rec-
ognition task; Rap, Ras-related protein; Ras, rat sarcoma; Rho, Ras homologue gene family; LTM, long-term memory
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Introduction
Memory formation is one of the most fascinating processes of
the brain, and understanding the molecular mechanisms in-
volved in this phenomenon has been, and still is, a very chal-
lenging task for neuroscientists.

Althoughno singlemolecule can be regarded as the sole trig-
ger, during the last 30years, a large amount of evidence has
demonstrated beyond any doubt that cAMP has a prominent
role inmemory. In theCNS, cAMP is synthesized by adenylyl cy-
clases (ACs), a family of membrane-bound enzymes (AC1–AC9)
structurally composed of six hydrophobic transmembrane
helices and three cytoplasmic domains termed N, C1 and C2
(Chern, 2000), whose function is regulated by α subunits of
either stimulatory or inhibitory G proteins (Gs and Gi/o, respec-
tively), although each AC isoform can be controlled by way of
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distinct molecular mechanisms. Moreover, the Gβγ subunits of
the trimeric G proteins are able to regulate the activity of some
AC isoforms to integrate Gα-mediated signals. Several studies
have also shown that the function of the distinct AC
isoenzymes can be positively or negatively modulated by
calmodulin- and calcineurin-dependent mechanisms, various
protein kinases and phosphatases. In addition to transmem-
brane ACs, cAMP can also be synthesized by a soluble form of
the cyclase enzyme (AC10) that is directly activated by calcium
(Steegborn, 2014). As for their localization, while themajority of
AC isoenzymes show a widespread distribution in the CNS,
some of them are expressed in discrete brain regions where they
regulate specific functions, as mentioned below.

Almost 10 years after the discovery of cAMP, PKAwas iden-
tified as the downstream effector of the cyclic nucleotide
(Corbin and Krebs, 1969), which binds to the two regulatory
subunits of the enzyme, thus causing a conformational
change that releases the two catalytic subunits and allows
the phosphorylation of their substrates.

Later in the 1980s, it was found that cAMP modulates
gene expression via PKA-mediated phosphorylation of the
cAMP responsive element binding protein (CREB), a nuclear
factor that binds to the cAMP response element, a conserved
sequence found in the promoter region of several genes
(Montminy et al., 1986; Gonzalez et al., 1989).

In addition to PKA, cAMP can also transduce signals by di-
rectly activating cyclic nucleotide gated (CNG) channels or by
stimulating the exchange protein directly activated by cAMP
(Epac). CNG channels are a heterogeneous superfamily of ion
channels with a binding domain for 3′,5′-monoposphate cyclic
nucleotides in their carboxy terminal region and are, therefore,
activated by both cAMP and cGMP. Besides their localization
in rod and cone photoreceptors and in olfactory sensory neu-
rons, CNG channels are also present in other neurons (e.g. hip-
pocampal neurons), both at the pre- and postsynaptic level, as
well as in non-neuronal tissues (Kaupp and Seifert, 2002; Podda
and Grassi, 2014). The two Epac isoforms, Epac1 and Epac2, the
latter predominantly expressed in the brain (De Rooij et al.,
1998; Kawasaki et al, 1998), are characterized by a regulatory re-
gion that interacts with cAMP and a catalytic domain able to ac-
tivate different effectors, such as Rap, Ras and Rho GTPases,
MAPKs, PLC, PKB (Akt), PI3Ks (Roscioni et al, 2008).

cAMP signalling is then terminated by its degradation to
AMP operated by phosphodiesterases, a superfamily of 11 dif-
ferent enzymes (PDE1–PDE11) encoded by 21 genes, most of
which are expressed in multiple variants, thus leading to
the production of up to 100 individual proteins. Of the 11
families, three are specific for cGMP (PDE5, PDE6 and
PDE9), three are specific for cAMP (PDE4, PDE7 and PDE8)
and five hydrolyze both cAMP and cGMP (PDE1, PDE2,
PDE3, PDE10 and PDE11) although to a different extent
(Conti and Beavo, 2007).
cAMP pathways, LTP and memory
The first demonstrations for the involvement of cAMP in learn-
ing andmemory date back to the 1970s,when this feature began
to be investigated in the simple learned behaviour model of
Aplysia (Lee et al., 2008; Kandel 2012). Since then, an enormous
4786 British Journal of Pharmacology (2015) 172 4785–4789
body of evidence has accumulated demonstrating that the
cAMP transduction pathway is also critically involved in the
mechanisms underlying memory formation in mammals.

Undoubtedly, the most important milestone in memory
formation mechanisms was the discovery of long-term po-
tentiation (LTP) in the hippocampus, a form of synaptic plas-
ticity that was first hypothesised to serve for memory storage
by Bliss and Lømo in 1973. Today, we know that all forms of
LTP recorded in the three major glutamatergic synaptic path-
ways of the hippocampus (perforant pathway-granule cells,
granule cell mossy fibers-CA3 pyramidal neurons, CA3
Schaffer Collateral-CA1 pyramidal neurons) consist of two
temporally distinct phases: early LTP (E-LTP) that lasts 1–3 h
and does not require gene expression and protein synthesis,
and a transcription- and translation-dependent late LTP
(L-LTP), which can be recorded for 6–8 h in vitro (actually, as
long as the preparation is vital) and can last from days to
weeks in vivo (Krug et al., 1984; Frey et al., 1988; Matthies
et al., 1990; Bliss and Collingridge, 1993; Huang and Kandel,
1994; Huang, 1998). In addition, E-LTP can switch into L-LTP
possibly via an intermediate, protein synthesis-dependent
procedure (Reymann and Frey, 2007).

In mammals, cAMP and its downstream effectors seem to
be critical especially for the expression of hippocampal L-LTP
and hippocampal-dependent long-term memory (LTM; Poser
and Storm, 2001). In fact, the late phase of CA1 LTP does not
occur in hippocampal slices of AC1 and AC8 double knock-
out mice, an effect that is paralleled by significant deficits of
LTM in passive avoidance and contextual learning, but not
in cued learning and memory, which are amygdala-
dependent processes (Wong et al., 1999). In contrast, the
overexpression of AC1 facilitates and potentiates hippocam-
pal CA1 LTP, and improves recognition and spatial memory
without affecting the ability to extinguish old memories
(Wang et al., 2004; Zhang and Wang, 2013).

In addition, pharmacological and genetic manipulations
of the cAMP-activated PKA pathway do result in the alter-
ation of L-LTP (but not of E-LTP) and behavioural deficits in
LTM (Frey et al., 1993; Huang and Kandel, 1994; Abel et al.,
1997; Koh et al., 2002; Young et al., 2006; Bollen et al., 2014).

Similarly, gain or loss of function of CREB, the protein
generally accepted as the molecular switch between short-
term and long-term forms of synaptic plasticity, facilitates or
disrupts L-LTP and LTM respectively (Barco et al., 2002;
Pittenger et al., 2002; Suzuki et al., 2011; Kida, 2012).

More recently, the cAMP-Epac pathway has also been
shown to participate in hippocampal synaptic plasticity and
in memory formation and retrieval (Gelinas et al., 2008; Ma
et al., 2009).
Type 4 phosphodiesterases, LTP and
memory: spotlight on PDE4D
Some of the most compelling evidence for the involvement
of cAMP in LTP and memory comes from studies on PDE4 en-
zymes, as, after the discovery of rolipram as a selective pan
PDE4 inhibitor (PDE4-I), a vast number of investigations
has demonstrated that increasing cAMP, by blocking its
PDE-mediated breakdown, represents the molecular trigger
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to boost LTP and to improve memory formation and consoli-
dation in rodents and non-human primates (Figure 1).

Using a variety of behavioural tasks, these effects have
been consistently proven under physiological conditions
and in different models of pharmacologically-induced cogni-
tive deficits or in animal models of human pathologies, in-
cluding Alzheimer’s disease (Richter et al., 2013; Hansen III
and Zhang, 2015; Heckman et al., 2015). Interestingly, it has
been recently reported that the promnesic effects of PDE4-I
need several hours to manifest, again indicating the role of
cAMP in switching a transient form of memory into a more
stable one (Akkerman et al., 2014; Bollen et al., 2014).

Since the discovery that the PDE4 family consists of four
isoforms (PDE4A to PDE4D) and 25 splice variants, neurosci-
entists have tried to unravel their functions in the brain, espe-
cially PDE4D in cognition, given its predominant expression
in the hippocampus and its important role in hydrolyzing
cAMP (Pérez-Torres et al., 2000; Zhang et al., 2002).

To this purpose, given the lack of isoform selective inhibi-
tors, the first studies took advantage of knock-out (KO) strate-
gies, thus demonstrating that PDE4D KO induces an
enhancement of CA1 LTP in the hippocampus (Rutten et al.,
2008). Surprisingly enough, it was found that PDE4D KO mice
exhibited memory impairment, and not enhancement, when
cued fear conditioned responses were assessed to examine
Figure 1
The cAMP pathway to memory. At the hippocampal level, salient
stimuli to be stored in long-term memory, trigger the cAMP/PKA/
CREB-dependent phase of late long-term potentiation (LTP). Memory
deficits can be prevented by enhancing cAMP intracellular levels using
PDE4D inhibitors or negative allosteric modulators (NAMs).
associative learning and memory. However, the possibility that
knocking out PDE4D might have caused developmental alter-
ations in memory circuits should also be taken into account.

In fact, when in 2010 selective PDE4D negative allosteric
modulators (NAMs; D158681, D159153, D159404, D159687)
became available, their positive effects on recognition and spa-
tial memory performance, assessed in the object recognition
task (ORT) and in the Y-maze task, respectively, clearly indi-
cated a key role for this enzyme isoform in hippocampus-
dependent cognition (Burgin et al., 2010). Such important re-
sults were confirmed one year later, when it was shown that se-
lective inhibition of PDE4D by the full inhibitor GEBR-7b was
indeed able to enhance both recognition and spatial memory
in the ORT and in the object location test (OLT), respectively
(Bruno et al., 2011). Notably, in the behavioural tasks, both al-
losteric modulators and GEBR-7b were 3 to 10 times more po-
tent than the pan PDE4 inhibitor rolipram. More recently,
chronic administration of GEBR-7b was also found to amelio-
rate spatial memory in a murine model of Alzheimer’s disease
(Sierksma et al., 2014) and NAMs proved to have significant
pro-cognitive effects in the object retrieval task in non-human
primates (Sutcliffe et al., 2014), a test that analyses multiple
cognitive components (e.g. attention, response inhibition,
planning) involving the prefrontal corticostriatal neuronal cir-
cuits rather than the hippocampus.

Furthermore, mice with genetic deletion or miRNA-
mediated downregulation of PDE4D displayed an improve-
ment in spatial and recognition memory in the radial arm
maze, in the Morris water maze (MWM) and in the ORT (Li
et al., 2011). In addition, administration of rolipram to these
PDE4D-deficient mice did not further improve memory, defi-
nitely demonstrating that, among the PDE4 isoforms, PDE4D
is the most important in cognitive processes. Similar results
have been obtained by knocking down PDE4D selectively in
the prefrontal cortex, indicating that the lack of activity of
this enzyme isoform is also beneficial for memory in that
brain region (Wang et al., 2013).

Most importantly from a translational point of view,
PDE4D silencing in the hippocampus was able to counteract
amyloid β42-induced cAMP decrease and memory deficit in
theMWM and in the ORT; in addition, it also largely prevented
the reduction of BDNF concentration and the increase of TNFα,
IL-1β and NF-κB levels, suggesting that PDE4D loss of function
might attenuate neuroinflammation and confer neuroprotec-
tion in Alzheimer’s disease (Zhang et al., 2014).

However, all that glitters is not gold. In fact, PDE4D is also
considered the isoform responsible for the emetic effects in-
duced by pan PDE4 inhibitors such as rolipram, which have
precluded their clinical use. Indeed, this enzyme isoform is lo-
calized in brain regions associated with emesis (e.g. area
postrema and nucleus of the solitary tract; Cherry and Davis.,
1999; Lamontagne et al., 2001; Mori et al., 2010) and its dele-
tion in transgenicmice reduced the xylazine/ketamine-induced
anaesthesia, a test used to measure emetic potential in non-
vomiting species (Robichaud et al., 2002). Nevertheless, PDE4D
NAMs and GEBR-7b proved to possess a therapeutic index
much higher than rolipram, improving memory at doses de-
void of undesired emetic effects. In fact, D159404 and
D159687 did not reduce the duration of the xylazine/keta-
mine-induced anaesthesia in mice at doses 1000 times higher
than those beneficial for cognition and were also 100 to 3000
British Journal of Pharmacology (2015) 172 4785–4789 4787
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less potent as an emetic than rolipram in vomiting species
(Burgin et al., 2010). The absence of emetic adverse effects at
pro-cognitive doses was also confirmed in non-human pri-
mates (Sutcliffe et al., 2014). Similarly, GEBR-7b did not show
emetic-like effects inmice and rats at doses up to 100-300 times
higher than the pro-cognitive ones, as evaluated using two dif-
ferent tests, the xylazine/ketamine test inmice and the taste re-
activity test in rats (Bruno et al., 2011).

Thus, it emerges that a tailored inhibition of PDE4D activ-
ity can be achieved with selective modulators/inhibitors,
which could, therefore, represent successful therapeutic
agents without unwanted side effects. As a proof of concept,
second generation PDE4 inhibitors, possessing selectivity
for different isoforms, are much better tolerated than
rolipram in humans, as indicated by clinical studies regarding
asthma, inflammation and chronic obstructive pulmonary
disease (COPD; Bruno et al., 2014; Gurney et al., 2015). In-
deed, a more favourable therapeutic index has recently led
to the approval of the first orally active PDE4 inhibitors
roflumilast and apremilast for the treatment of COPD and
psoriatic arthritis respectively.

Taken together, these results demonstrate the strategic role
of PDE4D in themodulation of cognitive processes and indicate
this enzyme isoform as a suitable molecular target to counteract
memory deficits in a variety of pathological conditions, such as
Alzheimer’s disease. Will this be enough to remember? Of
course, only controlled clinical trials on selective PDE4D inhib-
itors can answer this question, and it is hoped that such drugs
will soon be available for human studies.
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