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Tremendous knowledge has been gained in the
understanding of various modifications of IgG antibodies,
driven mainly by the fact that antibodies are one of the most
important groups of therapeutic molecules and because of
the development of advanced analytical techniques.
Recombinant monoclonal antibody (mAb) therapeutics
expressed in mammalian cell lines and endogenous IgG
molecules secreted by B cells in the human body share some
modifications, but each have some unique modifications.
Modifications that are common to recombinant mAb and
endogenous IgG molecules are considered to pose a lower
risk of immunogenicity. On the other hand, modifications that
are unique to recombinant mAbs could potentially pose
higher risk. The focus of this review is the comparison of
frequently observed modifications of recombinant
monoclonal antibodies to those of endogenous IgG
molecules.

Introduction

Most recombinant monoclonal antibody (mAb) therapeu-
tics are produced in one of three mammalian cell lines,
Chinese hamster ovary (CHO), murine NS0 or murine
SP2/0. Although, in general, the amino acid sequence of
recombinant mAbs are expressed in those cell lines with high
fidelity, low levels of variation have been observed. The use
of non-human cell lines can introduce post-translational
modifications that are not intrinsically present in the human
body. Such unnatural modifications may also be introduced
during the period between purification and patient adminis-
tration. The presence of those modifications is a concern due
to the possibility of undesired effects such as loss of efficacy
and increased immunogenicity.

In this review, we compiled data on modifications that occur
in recombinant mAbs with the aim of answering three questions:
1) What modifications occur?; 2) What happens to recombinant
monoclonal antibodies with those modifications in vivo?; and
3) Are the same modifications present in endogenous human

IgGs? An underlying assumption is that a particular modification
should pose a lower risk if it can be removed rapidly in circula-
tion or if it is also present in endogenous IgG. The main catego-
ries discussed here are N-terminal modifications, C-terminal
modifications, oligosaccharides, degradation of asparagine and
aspartate, oxidation of methionine and tryptophan, cysteine-
related variants and glycation. For each category, specific modifi-
cations will be discussed first for recombinant mAbs and then
endogenous IgG antibodies.

N-Terminal Modifications

Cyclization of the N-terminal glutamine (Gln) or glutamate
(Glu) to form pyroglutamate (pyroE) and incomplete removal of
leader sequence are the two major types of N-terminal modifica-
tions. Truncation of the N-terminus resulting in the light chain
lacking two amino acids has been reported in a recombinant
mAb.1 So far, however, truncation has not been established as a
general modification of recombinant mAbs.

N-Terminal Pyroglutamate

It is common that the first amino acid of the light chain,
heavy chain or both is either Gln or Glu, encoded in the
genes. Spontaneous cyclization of N-terminal Gln2-4 and to a
lesser degree, N-terminal Glu5-7 results in the formation of
pyroE. The presence of pyroE has no effect on antibody
structure5 and antigen binding.8 In addition, no difference in
in vivo clearance between antibodies with N-terminal Glu
compared with antibody with N-terminal pyroE has been
observed.9 One study demonstrated that the levels of pyroE
of a recombinant mAb recovered from rat serum after 1 h in
circulation did not show much difference compared with the
starting material.10 However, the reaction of cyclization of
Gln is expected to continue in circulation because of the
non-enzymatic nature of the reaction. Using a synthesized
peptide, it was found that Gln was converted to pyroE at a
rate of 1.41% per hour in cell culture.4 Assuming a compara-
ble in vivo rate, conversion of Gln to pyroE will be complete
within a day because the majority of the N-terminal Gln of
most recombinant mAbs is already cyclized after purification.
The conversion from Glu to pyroE of recombinant mAbs
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continues in vivo and pyroE naturally exists in endogenous
human IgG.9 Overall, this type of N-terminal modification is
not expected to have a substantial effect on efficacy and
safety.

Partial Leader Sequence

Incomplete removal of leader sequence has also been observed
for recombinant mAbs.1,8,11,12 Typically, only a portion of the
leader sequence remains attached to the antibody instead of the
entire leader sequence. The presence of a portion of the leader
sequence has no effect on antigen binding,8,11 structure, FcRn
binding, or pharmacokinetics.11 Signal peptides are composed of
a hydrophobic region that is flanked by a polar region often with
net positive charge on the N-terminal side and a polar region
containing proline (Pro) and glycine (Gly) with small uncharged
residues at positions -3 and -1 on the C-terminal side.13 It is
unlikely that the remaining leader sequence of recombinant
mAbs will be removed in circulation because the remaining por-
tion of the leader sequence does not have the structural character-
istics required for cleavage. The presence of partial leader
sequence in recombinant mAbs may likely be due to malfunc-
tions of the cell machinery of the recombinant cell lines that are
under stress to produce extremely high levels of proteins. In this
sense, endogenous IgG antibodies should not have a partial leader
sequence under normal physiological conditions. However, the
presence of a partial leader sequence may not be a concern if
human leader sequences were used for making the constructs of
recombinant mAbs.

C-Terminal Modifications

The heavy chain C-terminal amino acid sequences encoded in
the genes are PGK for IgG1, IgG2, IgG3, and LGK for IgG4.
The first major modification is the removal of C-terminal lysine
(Lys). The second major modification is amidation of Pro, for
IgG1, IgG2 and IgG3 and leucine (Leu) for IgG4 with concur-
rent loss of Gly.

C-Terminal Lysine

C-terminal Lys is usually partially removed during mam-
malian cell culture.14-16 Mammalian cell culture generates
antibodies containing either zero, one or two C-terminal Lys
residues. Removal of C-terminal Lys has no effect on struc-
ture,11 thermal stability,17 antigen binding and potency,8,11,18

and FcRn binding and pharmacokinetics in rats.11 Using a
recombinant human IgG2 as a model, it was found that the
half-life of the C-terminal Lys is about 62 min after intrave-
nous injection in human.19 This modification is only present
at extremely low level (0.02% of total heavy chain) in endog-
enous human IgG.19,20

C-Terminal Amidation

Amidation of the C-terminal Pro residue was first identified in
a recombinant monoclonal IgG1 antibody.21 Later, another
study demonstrated amidation is probably a common modifica-
tion of mAbs because it was observed in multiple IgG1 and IgG4
molecules.20 Amidation of IgG2 and IgG3 is also expected
because IgG1, IgG2 and IgG3 share the same C-terminal
sequence. The level of Pro amidation increased with the increase
of copper added to the culture medium.12 Amidation has no
effect on antigen binding and Fc effector functions.21 Amidation
was not detected in endogenous human IgG antibodies.20 How-
ever, because amidation has been commonly observed in biologi-
cally active peptides including peptide hormones and
neurotransmitters in humans,22 it is not considered an unnatural
modification to the human immune system.

Oligosaccharides

Oligosaccharides are a well-studied modification of antibod-
ies. In addition to glycosylation of the conserved asparagine
(Asn) in the CH2 domain, 20–30% of human IgGs include N-
linked glycosylation in variable domains.23 N-linked glycosyla-
tion in the variable domains has been reported for recombinant
mAbs.24-26 Atypical glycosylation of recombinant mAbs has also
been reported, including O-fucosylation of a serine (Ser) residue
in light chain complementary-determining region (CDR)127 and
N-glycosylation of Asn and Gln residues in non-consensus
sequences.27-29 These atypical glycosylations are only present to
an extreme low level. A single fucosylation has been reported in
human urinary-type plasminogen activator30 and N-glycosyla-
tion of Asn in non-consensus sequence has also been observed in
human endogenous IgG.28 Therefore, those modifications may
not be a concern with regard to immunogenicity.

The major glycoforms of recombinant mAbs expressed in
CHO,31-37 murine NS0,35,36,38-40 and murine SP2/0 cell
lines25,36 are G0F, G1F and G2F. Some minor species are also
common, including low percentages of afucosylated complex,
high mannose, sialylated, and hybrid oligosacchar-
ides8,25,26,32,34,36-44 and low percentage of aglycosylated spe-
cies.26,34 The major difference between CHO cell lines and
the two mouse cell lines is the presence of immunogenic
a1, 3 gal3,24,25,35,36,40,44 and N-glycolylneuraminic acid
(Neu5Gc)8,25,36,45 in recombinant mAbs expressed using murine
cell lines. The presence of oligosaccharides is critical for the struc-
tural integrity, stability and functions of IgG molecules, as will be
discussed later, but specific structures are also important. For
example, lack of core-fucose results in IgG molecules with higher
affinity to FcgIII receptor and enhanced ADCC,46,47 while the
presence of a terminal galactose47,48 or bisecting residue48 only
has a subtle effect on receptor binding and ADCC. Human IgG
antibodies share the same major and minor glycoforms with
recombinant mAbs.49,50

The majority of the oligosaccharides of human and recombi-
nant IgGs include core-fucose. In most cases, the levels of
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terminal galactose and bisecting residue are higher in human IgG
compared with recombinant IgG molecules. However, aglycosy-
lated antibodies and high mannose are usually present at much
higher levels in recombinant mAbs compared with human IgG.
In addition, immunogenic a1,3 gal and Neu5Gc are only present
in recombinant mAbs when murine cell lines are used for
expression.

Aglycosylated Antibodies

Compared with glycosylated antibodies, antibodies without
oligosaccharides show conformational changes, decreased stabil-
ity, increased propensity to aggregate, and almost complete loss
of effector functions.51-54 The effect of aglycosylation on anti-
body half-life cannot be generalized because there are studies
demonstrating shorter half-life54-57 and normal half-life.51,52,54

A very low level (0.1%) of aglycosylation has been found in
human IgG.50 Clinical experience with aglycosylated antibodies
did not demonstrate increased risk.58

High Mannose

High mannose oligosaccharides have been commonly
observed in recombinant mAbs at higher levels than in endoge-
nous IgG antibodies. Antibodies with high mannose showed
defects in Fc effector functions.59,60 Although some studies
showed no difference in clearance,51,61 the majority showed a
faster clearance of antibodies with high mannose.37,55,59,60,62

High mannose with greater than five mannose residues can be
converted to mannose 5 because of mannosidase activity in circu-
lation.37 High mannose has been observed in endogenous human
IgG at a very low level.50

Immunogenic Oligosaccharides

a-1,3 gal is not present in endogenous human IgG antibodies
due to the absence of the gene for the synthesizing enzyme,
a-1,3-galactosyltransferase.49,63,64 Therefore, a1,3 gal is foreign
to the human immune system. The presence of IgE antibodies
specific to a-1,3 gal in the Fab region of cetuximab have been
reported to cause hypersensitivity in some patients.65

Neu5Gc is not normally present in human IgG49 because of
the lack of CMP-N-acetylneuraminic acid hydroxylase activity
due to mutation in the gene.66 However, Neu5Gc can be meta-
bolically incorporated into human cells because of diet or cell cul-
ture medium containing animal derived material.67,68 Anti-
Neu5Gc antibodies have been detected69-71 or induced because
of exposure to Neu5Gc71 in humans.

Degradation of Asparagine and Aspartate

Deamidation is the major degradation pathway of Asn, which
results in the formation of aspartate (Asp) and isoaspartate

(IsoAsp). IsoAsp can also be formed from isomerization of Asp,
which is another major degradation pathway of recombinant
mAbs. Deamidation and isomerization share the same reaction
intermediate, succinimide. Deamidation of recombinant mAbs
and endogenous IgG antibodies can occur in vivo in monkeys as
well as in humans.72-74 Deamidation and isomerization has been
implicated in aging and several age-related diseases, and the exis-
tence of the repairing enzyme, protein isoaspartate methyl trans-
ferase, further highlights the importance of deamidation and
isomerization in vivo.75

Deamidation

Deamidation of Asn has been widely reported in recombinant
mAbs in either the CDR regions72,76,77 or in the constant
regions.74,78-80 Increased thermal stability of Fab with Asp and
decreased thermal stability of Fab with isoAsp compared with
Fab with the original Asn residue were observed for a recombi-
nant mAb as a result of deamidation.77 Several studies have dem-
onstrated that deamidation in the CDR regions resulted in
decreased binding affinity and potency.72,76,77,81 As expected,
deamidation in the constant domain has no effect on antigen
binding.8,81 Deamidation of Asn residues in CDR regions con-
tinues in vivo in monkey serum.72,73 No preferential clearance is
suggested by the constant ratio of Asp to isoAsp.72 Deamidation
of Asn residues in the constant region of a recombinant mAb
continues in circulation in human74 and deamidation of the
same sites was also observed in endogenous IgG.74

Isomerization

Isomerization of Asp to form isoAsp introduces a minimal
charge difference. However, isomerization can cause a conforma-
tional change because of the introduction of an additional methyl
group to the peptide backbone. An »50% decrease in binding
affinity was observed with one Fab with the original Asn and the
other one with either isoAsp or succinimide.82 Isomerization of
Asp102 in one of the heavy chain CDR3 resulted in an antibody
only 9–21% as potent as the antibody with the original Asp.76

Isomerization of Asp92 in the light chain CDR3 of a recombi-
nant monoclonal IgG2 antibody deactivated its antigen binding
capability.83 As discussed in the previous section, isoAsp can be
formed in vivo in monkey72,73 and in human74 in both recombi-
nant mAbs and human endogenous IgG antibodies.74 Therefore,
isoAsp from isomerization is not foreign to the human immune
system, indicating a lower risk of immunogenicity.

Succinimide

Although succinimide is unstable, it has been detected in sev-
eral recombinant mAbs.73,76,81,82,84-86 The presence of succini-
mide in the CDR regions of several antibodies from Asp
isomerization resulted in decreased antigen binding and
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potency.73,81,82,84,86 Succinimide of a recombinant mAb was rap-
idly converted to isoAsp and Asp after injection into cynomolgus
monkeys.73 Succinimide is expected to be present in circulation
because of in vivo Asn deamidation.72-74

Oxidation of Methionine, Tryptophan
and Other Residues

Oxidation of recombinant mAbs has been commonly
reported, mainly at methionine (Met) residues and less frequently
at tryptophan (Trp), histidine (His) and other residues. Two con-
served Met residues, Met252 and Met428, in the Fc region are
highly susceptible to oxidation.87-92 Oxidation of Met residues in
the Fc region has no effect on antigen binding,87 but results in a
conformational change in the CH2 domain90,91 and decreased
binding to protein A,89,93 protein G89 and FcRn.93-95 It also has
a subtle effect on Fc receptors.94 Decreased half-life was only
observed with relatively high levels of oxidation.95 Oxidation of
Trp has only been reported in a few cases.92,96,97 In one of those
studies, oxidation of the single Trp residue in the CDR3 caused
a substantial decrease in antigen binding and potency.92 Oxida-
tion of Trp to form various products during exposure to light or
heat causes changes to the color of mAb products.98 Metal-
catalyzed oxidation can also lead to oxidative carbonylation of
Arg, Pro, Lys and Thr, especially when those residues are located
on the surface of the molecules.99 The observation of oxidative
carbonylation on mAbs in the unstressed drug substance indicates
that such reactions can occur during manufacturing because of
product contact with metal surface. Direct His oxidation100 and
its further reaction product, His-His cross-linking,101are
observed when mAbs were exposed to light.

Oxidation of Met and Trp are probably present in endoge-
nous IgG from humans, especially for patients with inflamma-
tion.102,103 Oxidation of proteins including Met and Trp
residues has been widely detected in vivo, and may result from
aging and several pathological conditions.104

Cysteine Related Variants

In the classical view, cysteine (Cys) residues are involved in
formation of disulfide bonds with well-defined homogeneous
linkage for each subclass of IgG antibodies. However, several var-
iations have been discovered, including alternative disulfide bond
linkage, trisulfide bond, thioether linkage, free Cys and racemiza-
tion. Cysteinylation of Cys residues has also been observed, but
only to antibodies with extra Cys residues,105 which is rare.

Alternative Disulfide Bond Linkage

Alternative disulfide bond linkage was first reported for
IgG4. The two inter-heavy chain disulfide bonds of IgG4
exist in equilibrium with the formation of two intra-heavy
chain disulfide bonds,106,107 which can result in the

formation of half-molecules. The formation of half-molecules
was almost eliminated when the Ser residue in the IgG4
hinge of CPSC was mutated to a Pro residue, thereby making
an IgG1 hinge of CPPC.106-108 Trace amounts of half-
molecule were also observed for IgG1.106 The other conse-
quence of the instability of the IgG4 hinge is the formation
of hybrid molecules between two different IgG4 molecules,
which can occur in recombinant mAbs incubated with gluta-
thione or injected into mice109 and naturally in human.109,110

In addition to the classical IgG2 disulfide bond structure,
termed IgG2A, two additional structures, termed IgG2B and
IgG2A/B were discovered.111 IgG2A has a larger hydrody-
namic size than IgG2B,112 and, in a subset of IgG2, IgG2-A
shows higher potency.112 Incubation of IgG2 in vitro with
redox similar to human blood shows a decrease in IgG2A
and an increase in IgG2B.112 A similar conversion from
IgG2A to IgG2B was also observed in cell culture medium
and in circulation after administration into human body.113

The exact isoforms are also naturally present in human
IgG2.111,112

Trisulfide Bonds

Trisulfide bonds were first reported in a recombinant
monoclonal IgG2 antibody in the hinge region between the
two heavy chains.114 It was later found that trisulfide bonds
are present in all subclasses of recombinant IgGs.115 Higher
percentages of trisulfide bonds were observed between light
chain and heavy chain than between the two heavy chains
and no trisulfide bonds were associated with intrachain
disulfide bonds.115 The presence of trisulfide bonds has no
effect on thermal stability,114and antigen binding and
potency.115,116 Trisulfide bonding has also been shown to
affect the reduction step for the production of antibody-drug
conjugation.117 Cell culture parameters such as scale and age
have a significant effect on the level of trisulfide bonds.115,118

Trisulfide bonding can be eliminated by incubation with
mild reducing reagents.114,115 Trisulfide bonds were stable in
vitro in buffers and in rat serum; however, they are
completely converted to disulfide bonds after 24 h in vivo in
rat serum.115 Trisulfide bonds between the light chain and
heavy chain were also found in endogenous IgG.115,119

Thioether

Thioethers between the light chain and heavy chain were
first identified in a recombinant monoclonal IgG1 anti-
body.120 Higher pH promotes the formation of a thioether
bond.121 A thioether between the light chain and heavy chain
increases at about 0.1%/day for therapeutic antibodies in
healthy volunteers.119 There is no clearance difference
between antibodies with and without a thioether.119 Thio-
ethers naturally exist in human endogenous IgG molecules,
11.0% for IgG1l and about 5.2% for IgGk.119
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Free Cysteine

Low levels of free Cys have been widely observed for recombi-
nant mAbs, especially under denaturing conditions in the range
from trace level to 2.3 moles per mole of IgGs10,122-125 Free sulf-
hydryl is associated with every single cysteine residue in the IgG
molecules.126,127 In some cases, antibodies with incomplete for-
mation of the intrachain disulfide bond in the heavy chain vari-
able domain were identified as separated peaks.10,122,126 Higher
levels free sulhydryl resulted in decreased thermal stability,124 for-
mation of covalent aggregates123 and decreased potency.122 One
study showed a slightly higher antigen binding with no difference
in complement-dependent cytotoxicity.128 Intrachain disulfide
bond in the heavy chain variable domain can be rapidly formed
from the free sulfhydryl state during in vitro incubation with
5,50-dithiobis-(2-nitrobenzoic acid), in rat serum and human
serum or after circulation in rat serum in vivo.10 Free cysteine
has also been detected in human endogenous IgG antibodies
with levels varied in different studies,123,124,129,130 probably due
to difference in methods.

Racemization

Racemization of the heavy chain Cys residue involved in the
formation of the inter-heavy/light chain disulfide bond from L-
Cys to D-Cys was observed in a recombinant monoclonal IgG1
antibody during storage.131 It was later found that all Cys resi-
dues involved in interchain disulfide bonds of IgG1 and IgG2
can be racemized to D form to some degree under basic condi-
tions.132 In addition, racemization was also observed in endoge-
nous IgG molecules from human.132

Glycation

Glycation is a non-enzymatic reaction between reducing sug-
ars and protein N-terminal amino group or the side chain of Lys
residues. Glycation occurs during cell culture, formulation and
storage,133-144 where reducing sugars are used or generated from
non-reducing sugars. Glycation susceptibility is altered by the
surface accessibility of the Lys residues,134 and can also be cata-
lyzed by amino acids in close proximity.136 Glycation can be con-
trolled by optimizing cell culture conditions.141 A mAb
containing 17% glycation did not show any structural difference
compared with the main peak with no glycation.11 However, gly-
cation increases the propensity of aggregation of recombinant
mAbs.143 Several studies demonstrated glycation of Lys in vari-
ous CDR regions from 10% glycation to about 100% had no
effect on antigen binding and potency.11,138,140 Extensive glyca-
tion has no effect on binding to FcgRIIIa and FcRn and protein
A.144 However, those results can only demonstrate that those Lys
residues are not critical for various ligand binding. A significant
effect is expected if the glycated residues are localized in the bind-
ing pockets because of the loss of the positive charge of Lys upon
glycation. Acidic species with 17% glycation did not show

difference in pharmacokinetics in rats.11 Glycation of recombi-
nant mAbs increases with the increase of circulation time in
human.144 Glycation has also been detected in endogenous IgG
of healthy subjects with a comparable rate as recombinant mAb
in circulation.144 The risk of glycation of recombinant mAbs
may be low due to its low level and its presence in vivo. However,
it is worthwhile to mention that antibodies targeting glycated
IgG has been observed in rheumatoid arthritis patients145 and
the interaction of advanced glycation end product (AGEs) with
AGE-specific receptors can stimulate the generation of reactive
oxygen species and inflammation.146

Low Level of Sequence Variant

A low level of tyrosine (Tyr) to Gln sequence variation that
occurred during transfection of a recombinant mAb expressed in
CHO was first reported in 1993.147 Low levels of sequence var-
iants have been more widely reported recently,148-154 which can
be attributed to the advance of modern analytical techniques
offering much higher sensitivity. Sequence variants are intro-
duced because of mutation at the DNA level,153,155 during trans-
fection,147 or translation.148,154,155 Sequence variants of
recombinant mAbs can be eliminated depending on the specific
causes. For example, codon-specific low levels of Ser replaced by
Asn can be eliminated by changing the codon from AGC to
another Ser codon.155 Misincorporation of amino acids due to
amino acid starvation can be eliminated by providing sufficient
amounts of the specific amino acids.149,150,154 It should be men-
tioned that low levels of misincorporation can occur naturally,156

and it should not be a surprise that endogenous IgG molecules
also contain low levels of sequence variants. Low levels of
sequence variation may never be completely eliminated. In this
case, maintaining misincorporation at an extremely low level and
ensuring batch-to-batch consistency may be more practical and
important for the production of recombinant mAbs.

Others

Several other modifications have been reported, but only in
limited cases. Expression of intron sequence results in a recombi-
nant mAb with an additional 24 amino acids between the vari-
able and constant domain of the heavy chain.3 Homologous
recombination between the light chain gene and the heavy chain
gene results in an antibody with a minor species of heavy chain
containing the light chain variable domain.157 Reaction of meth-
ylglyoxal, a by-product of the tricarboxylic acid cycle, with argi-
nine can result in increased levels of acidic species of mAb.158

Modifications and Their Importance

A thorough characterization of mAbs and their major degra-
dation pathways is required for development of mAb therapeu-
tics. Such efforts have provided in-depth understanding of the
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basic structure and function relationships of recombinant and
endogenous IgG molecules with regard to various modifications.
Undoubtedly, more modifications will be identified due to the
application of sensitive analytical techniques such as modern
mass spectrometry.159-161

The major known modifications in recombinant mAbs and
their presence in endogenous IgG molecules are summarized in
Table 1. We defined the importance of each modification based
on an overall evaluation of their prevalence, importance to safety,
immunogenicity and efficacy. For example, pyroE is widely
observed, but it is not important because it has no effect on struc-
ture, stability and function and it is endogenous. On the other

hand, degradation of Asn and Asp is considered to be important
because it has been widely observed and can affect mAb structure,
stability and functions. In addition, although degradation of Asn
and Asp has been observed in endogenous IgG molecules, expo-
sure of patients to recombinant mAbs with high levels of those
degradation products may still pose a high risk. Although sharing
some common features, each mAb is different and should be
evaluated on a case-by-case basis. Modifications that are not
defined as highly important should also be controlled. Consis-
tency of various modifications from batch to batch is necessary to
demonstrate a well-controlled process.

Conclusions

The development of recombinant monoclonal mAbs has
evolved from mouse, chimeric, humanized to human antibodies
with the goal of reducing immunogenicity. Although significant
progress has been made to achieve this goal, significant immuno-
genicity risks remain even for fully human antibodies. Therefore,
the identification and mitigation of non-human modifications of
recombinant monoclonal therapeutics is crucial.

By far, the host cell line plays the most important role in
introducing non-human modifications. For example, a-1,3-gal
and Neu5Gc are the natural products of using murine cell lines,
where optimizing cell culture conditions may not be sufficient to
eliminate those modifications. However, cell culture conditions
could have a bigger effect on several other modifications, such as
N-terminal cyclization, C-terminal Lys removal, glycation, trisul-
fide bonds, and IgG2 isoforms. Various modifications introduced
during purification and storage, such as glycation, deamidation,
N-terminal cyclization, can also be controlled by lowering tem-
perature and optimizing pH and excipients. Some of the modifi-
cations may be eliminated rapidly in circulation, thus lowering
the risk of immunogenicity. In general, the human body can bet-
ter tolerate modifications that are natural compared with those
that are not.

Thorough characterization of modifications and risk assess-
ment at an early stage of development based on the understand-
ing of the nature of modifications and the production of batches
consistent in quality attributes throughout clinical stage and
commercial stage are critical to ensure the supply of efficacious
and safe products.
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