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Current computational methods used to analyze changes in DNA methylation and chromatin modification rely on
sequenced genomes. Here we describe a pipeline for the detection of these changes from short-read sequence data
that does not require a reference genome. Open source software packages were used for sequence assembly,
alignment, and measurement of differential enrichment. The method was evaluated by comparing results with
reference-based results showing a strong correlation between chromatin modification and gene expression. We then
used our de novo sequence assembly to build the DNA methylation profile for the non-referenced Psammomys obesus
genome. The pipeline described uses open source software for fast annotation and visualization of unreferenced
genomic regions from short-read data.

Introduction

Rapid advances in massive parallel sequencing allow the study
of regulatory chromatin modifications with unprecedented scope
and resolution. The epigenome describes the covalent modifica-
tions of chromatinized proteins and DNA that are critical to
chromatin structure and gene function.1 Large collaborative proj-
ects, such as the ENCODE consortium, have described impor-
tant discoveries with respect to epigenetic gene regulation.2

Furthermore, a growing body of evidence defines a central role
for chromatin modifications driving phenotypic changes associ-
ated with disease. With the reduced cost of sequencing ultimately
leading to the development of more applications for biological
discovery, improved computational methods are increasingly
required to assist researchers to accurately profile the epigenome.

Epigenomic marks are profiled by sequencing immunopreci-
pitated DNA associated with chromatinized proteins or cytosine
methylation.3,4 Currently, the genomic sources of epigenetic
marks are identified by sequence alignment to an annotated
genome. Thus, absence of a published reference genome greatly
limits the capacity of standard methods to study the epigenome
for the majority of known species. Therefore, the only method
currently available to detect epigenomic changes in non-

referenced species requires the building of a reference genome as
a precursor to the alignment of epigenomic sequencing. The cur-
rent study describes a bioinformatics pipeline that permits the
study of changes in chromatin modifications without a reference
genome. This is achieved by assembling epigenomic sequencing
data de novo and quantifying the assembled contigs by alignment
of reads to the new epigenome assembly. The assembled epige-
nome can then be used for further analysis in conjunction with
established methods of bioinformatics analysis. We assessed the
applicability of our de novo pipeline against publicly available
data sets for epigenomic profiling and demonstrate that our find-
ings are consistent with results derived by reference-based
alignment.

Further validating our novel method, we demonstrate the
application of our approach to epigenomic profiling of original
data experimentally derived from a species without a reference
genome. As a model of the metabolic syndrome, dietary modifi-
cation in Psammomys obesus (Israeli sand rat) can induce a pheno-
type closely resembling human type 2 diabetes.5,6 In striking
contrast to the normoglycemic phenotype conferred by their nat-
ural low-energy diet, rapid development of metabolic disorders,
including obesity, hyperglycemia, and hyperinsulinemia, is
observed for a proportion of animals fed standard rodent
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laboratory chow.7 The heterogeneous phenotype of this experi-
mental model reflects similar variations observed in human pop-
ulations, driving its use for discovery of gene variants and
pathways subsequently associated with metabolic disorders in
human cohorts.8-10 Poor intrauterine nutrition and low birth
weight are strongly linked with increased risk for type 2 diabe-
tes11,12 and epigenetic changes have been implicated in this
pathology.13 To examine hypothalamic methylation patterns for
associations with intrauterine nutrition, we adopted a model of
early life caloric restriction in P. obesus for analysis using our
method of de novo sequence assembly. Results of this analysis val-
idate the application of our novel approach to epigenomic profil-
ing without a reference genome.

Results

Overview
Our method for epigenomic profiling consisted of 3 steps: (i)

the epigenomic sequence data were assembled de novo; (ii) the
assembled contigs were quantified in each sample by alignment of
reads to the new epigenome assembly and; (iii) the differential
enrichment between sample groups was determined using a statis-
tical analysis method developed for high-throughput sequencing.
To demonstrate the general applicability of our methodology, 3
publicly available sequencing data sets from human, mouse, and
fly were analyzed. Our method for testing the feasibility of our
pipeline is shown diagrammatically in Figure 1. In order to vali-
date the method, in silico extension of the published sequence
was needed because virtually all publicly available chromatin
immunoprecipitation followed by high-throughput sequencing
(ChIP-seq) data have a read length of <50 nt. Read extension
was performed by derivation of read alignment coordinates and
addition of sequencing noise through random incorporation of
base call errors proportional to empirical Illumina base quality
scores. These semi-synthetic simulated reads were assembled, with
subsequent per-sample quantification, and differentially analyzed.
The results of the de novo assembly were then compared to a con-
ventional reference-based sequencing analysis method.

Publicly accessible data sets used to test the pipeline
The 3 public data sets derived from histone modification,

transcription factor binding, and DNA methylation were selected
to represent diverse epigenomic profiles from distinct species with
a range of genome sizes (Table 1). Furthermore, these data sets
contain biological replicates that permit application of sound sta-
tistical methods taking into consideration biological variation.
Two of the data sets were derived by sequencing of immunopre-
cipitated chromatin (ChIP-seq): histone 3 lysine 9 acetylation
(H3K9Ac) in Drosophila melanogaster (ModEncode),14 where
embryo-derived data sets were compared to those derived from
larvae (GSE16013), and estrogen receptor a (ER-a) ChIP-seq
data examining the effect of tamoxifen resistance in cancer cell
lines (GSE32222).15 The third data set compared genome-wide
methylated DNA immunoprecipitation (MeDIP-seq) of intesti-
nal adenoma and normal tissue from mouse (GSE38983).16

Accession numbers for these data sets are provided in Table S1,
and the accession numbers for mRNA sequencing data used for
integration analysis are provided in Table S2.

De novo assembly identifies functional genomic regions
We propose the de novo epigenome assembly pipeline as a use-

ful bioinformatics tool for epigenomic profiling of species for
which there is no published reference genome. To evaluate the
utility of the pipeline to identify genomic regions, we analyzed
the assembled contigs of publicly available data generated using
fly (fly_H3K9Ac) and human (human_ERA) ChIP-seq
for histone acetylation and estrogen receptor a transcription

Figure 1. Evaluation of the de novo method of differential epige-
nomic profiling without a reference genome. (A) Test data set acquisi-
tion. Publicly available differentially enriched sequence data is aligned to
the species-specific reference genome. (B) Simulated data generation.
The read coordinates are extracted, extended to 100 bp (3’ end),
assigned base quality scores derived from a real Illumina sequencing
run, random sequencing errors are incorporated, and low quality bases
from the 3’ ends are trimmed. Reads <30 bp are discarded. (C) Assem-
bly. Extended reads are assembled with ABySS, contigs <100 bp dis-
carded. The newly assembled regions are aligned to the original
reference genome. (D) Remapping. Extended reads are mapped to the
new assembly, and to the original reference genome. (E) Quantification.
Read mapping for each contig in the de novo assembly and its corre-
sponding region in the reference genome is counted in each sample
and case-control differential representation determined with edgeR. (F)
Verification: The efficacy of de novo epigenomic analysis is determined
by comparing de novo profiles to those derived from reference based
methods.
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factor binding, respectively. Intersection of these data with anno-
tated genomic features examining gene bodies, exons and introns
as well as CpG islands (Fig. 2) revealed that the fly_H3K9Ac and
human_ERA data sets each recovered >60% of the genome.
Similar analysis of mouse DNA methylation data sets derived by
MeDIP-seq (mouse_MeDIP) recovered approximately 25% of
the genome. In all data sets examined, exons displayed the high-
est proportion of sequence coverage. These results suggest that
our de novo sequence assembly of epigenomic profiles captures
significant regions of the genome.

Comparison of assembly method to reference-based method
Having identified differential genomic regions from publicly

accessible epigenomic data, we next evaluated the efficacy of the de
novo pipeline by comparing results derived by this method with
standard reference-based approaches. By defining our intervals as
the regions where assembled contigs align to the reference genome,
we were able to evaluate the utility of our method for measuring
changes in sequence abundance while avoiding the distributional
assumptions of common interval defining methods such as binning
or peak finding.17,18 The assembled contigs showed a high level of
realignment to their
reference genomes,
with 98% of the mouse
contigs, 96% of the fly
contigs and 99% of the
human contigs having
a mapQ >30. Refer-
ence based methods
require genomic coor-
dinate intervals to be
defined so sequence
counts can be summa-
rized and tested for dif-
ferential binding using
count-based statistical
tools such as edgeR.19

Figure 3 shows a
high degree of correla-
tion between results
obtained by both anal-
ysis pipelines for
fly_H3K9Ac, human_
ERA, and mouse_
MeDIP. Overall, the
de novo method using

simulated read-extended data yielded results that were consistent
with the reference based method.

A common approach to count ChIP-seq reads is parameter-
based binning using a sliding window.20-22 We used this method
to compare large data sets derived from ChIP-seq and MeDIP-
seq with our de novo pipeline. Compared to the reference-based
approach, de novo sequence assembly identified a larger genome
proportion as differentially enriched (P � 1e-5) in fly (71%
greater [de novo 5,496 kbp; sliding-window 3,222 kbp]), human
(94% greater [de novo 1,811 kbp; sliding-window 935 kbp]), but
not mouse (27% less [de novo 68 kbp; sliding-window 92 kbp])
(Fig. 4). In addition to recovering a significant proportion of the
differential contigs identified by the reference-based method,
these findings indicate that the de novo method recovers many
additional regions of ChIP-seq and MeDIP-seq enrichment.

De novo assembly of the P. obesus hypothalamus methylome
identifies methylation changes conferred by early life diet

Having demonstrated that our method of sequence assembly
can identify differential regions of enrichment from a range of
published epigenomic sequence data, we used the de novo

Table 1. Data sets used to evaluate de novo differential enrichment analysis

Dataset Species Enrichment protocol Experimental conditions

Drosophila development D. melanogaster ChIP-seq - histone H3K9Ac Embryo vs. larvae
Estrogen receptor binding in tamoxifen resistance H. sapiens Estrogen receptor a ChIP-seq Tamoxifen-resistant vs.

tamoxifen-responsive
DNA–methylome analysis of mouse
intestinal adenoma

M. musculus MeDIP-seq Adenoma vs. normal

Methylation in the hypothalami of offspring
with alternative prenatal diets.

P. obesus MBD-seq Prenatal high vs. low fat diet.
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Figure 2. Coverage of assembled regions when mapped to their respective reference genomes. The percentage of
genomic features covered by newly assembled contigs by ChIP-seq for H3K9Ac and ER-a, and DNA methylation enrich-
ment. Gene features derived from Ensembl ver. 72 for D. melanogaster and M. musculus, and Ensembl ver. 54 for H. sapiens
are composed of CpG islands, exons, introns, whole gene bodies, promoters (the region 3 kb upstream from the transcrip-
tion start site) and the whole genome. Genomic regions were filtered by 36 bp read mappability. Coverage is shown for
(A) D. melanogaster H3K9Ac (no CpG islands are annotated), (B) H. sapiens ER-a, (C) M. musculus DNA methylation.
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approach to examine genome methylation in the P. obesus. Cur-
rently, a reference genome for this rodent species has not been
published. Epigenomic profiling of this experimental model has
potential to identify epigenetic changes underlying susceptibility
to development of diet-induced diabetes. Using MDB-seq, dif-
ferential methylation patterns were derived from hypothalami of
animals exposed to a healthy or calorie-restricted environment
during early life, followed by standard diets from 4 weeks of age.
A k-mer of 51 provided the largest assembly size of contigs
greater than or equal to 100 bp and this was used for downstream
differential analysis. The 646 Mbp assembly comprised
2,581,742 contigs with an average contig size of 250.3 bp and
median size of 184 bp. P. obesus contigs were annotated by
sequence homology with the mouse genome (mm10) as this rep-
resents the best annotated closely-related species. Sequence
matches were examined for genomic features such as exons,
introns, and CpG islands (Fig. 5). Approximately 4% of the
mouse genome was matched to the methylome contigs. This
sequence homology increased to 5% for promoters and gene bod-
ies, and to 23% for exons. The high levels of sequence homology
in mammalian exons would account for the high level of align-
ment of these regions to the mouse genome. In contrast, inter-
genic and repeat regions were under-represented. These results
demonstrate that exons are more likely to be annotated for
MBD-seq at the same P-value threshold.

Statistical comparison of contig counts derived from the hypo-
thalamus of P. obesus on standard diets (n D 4) with those having
early-life calorie-restriction (n D 4) identified 328 differentially
methylated regions (DMRs) (P � 1e-4). Analysis identified
134 regions with increased DNA methylation and 194 differential
regions with reduced DNA methylation conferred by early-life cal-
orie restriction. The 20 most significant annotated regions for
increased and reduced differential DNA methylation are described

in Table 2. A bioinfor-
matics protocol describ-
ing the sand rat analysis is
in Table S3. DMRs iden-
tified by MBD-seq
should correspond to
independent experimental
validation. MBD-seq
revealed increased and
decreased DNA methyla-
tion of Oxct2a and
Havcr2 genes respectively,
and distinct levels of
sequence abundance.
Quantitative PCR analy-
sis of these loci following
MBD enrichment inde-
pendently confirmed the
changes observed using
massive parallel sequenc-
ing (Fig. 6).

De novo assembled
epigenomic and transcriptomic data can be integrated without a
reference genome

Accurate recovery of epigenomic regions using our de novo
method prompted us to test the consistency of our results with
known relationships to transcriptional regulation. To evaluate
the applicability of our de novo pipeline we compared assembled
transcriptomic and genomic sequencing data derived from the
same experimental conditions. RNA-seq data for Drosophila
development was assembled and matched to the H3K9Ac assem-
bly using BLASTN. Of the 14,034 assembled transcript contigs,
12,744 of these could be matched to at least one H3K9Ac contig
(E � 1e-9; Fig. 7A). An example of a gene with differential
mRNA expression and corresponding histone acetylation
between embryo and larvae samples, showed an overlap of 790
base pairs as well as demonstrating the existence of an intron
(Fig. 7B). Transcript contigs and acetylation contigs were each
ranked from most significantly upregulated to most significantly
downregulated. Genes were binned by degree of differential gene
expression. Using a rank correlation analysis, a significant posi-
tive correlation was observed (Fig. 7C). These results demon-
strate that genome-wide relationships between epigenomic and
transcriptomic data can be recovered without a reference genome
or transcriptome using our de novo method across multiple
sequencing data sets.

Discussion

The current study presents a novel method for profiling
genome-wide chromatin changes without a reference genome
using de novo epigenome assembly. The implementation we
describe incorporates established bioinformatics algorithms that
have been described in different contexts in recent years. 19,23,24
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Figure 3. Comparison of differential data derived by de novo and reference-based sequence analysis. A compari-
son of the edgeR calculated differential significance showing the signed -log10 P-value of de novo assembled contigs
(x-axis) compared to that of the same region on the reference genome (y-axis). The region on the reference genome
was defined by mapping assembled contigs to the reference and counting overlapping aligned tags for that region.
(A) D. melanogaster H3K9Ac (slope D 1.02, R2 D 0.96), (B) H. sapiens ER-a (slope D 0.995, R2 D 0.98), (C) M. musculus
DNA methylation (slopeD 0.92, R2 D 0.78).
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Data generated by de novo sequence assembly was consistent with
reference-based methods. In general this method identified a
greater proportion of the genome as differential when compared
to the standard binning scheme using a sliding window. Recent
reports suggest that there remains no single gold-standard meth-
odology for defining intervals of interest in epigenomic data sets
and this could impact the distinction of chromatin marks.17,25,26

Contrasting peak-calling and sliding window analyses, our de
novo method uses assembled contigs, thereby avoiding the need
for arbitrary selection or optimization of interval size and shape
parameters.

Our novel method was validated by the identification of sig-
nificant genomic regions by intersecting de novo assemblies of
public data with annotated genomic features. Using simulated
read-extended data we demonstrated that fly_H3K9Ac had the
highest read depth per genome size. This data set also scored the
largest average contigs and mapped to a larger proportion of

Drosophila gene bodies when compared to the mouse and human
data sets. The mouse_MeDIP data set exhibited the lowest read
depth per genome size and also scored the lowest average contig
size. Read depth influences differential detection, and the
fly_H3K9Ac data set accordingly identified a greater proportion
of the genome with differential enrichment (3.9%) when com-
pared to the mouse_MeDIP data set (0.0024%). Since base call
error rates impact the quality of genome assemblies, stringent
base quality filters are recommended for de novo epigenomic pro-
filing.27,28 We showed that de novo assembly and mapping are
achievable with 100 bp reads and this is compatible with most
deep sequencing platforms. The strong correlation of results gen-
erated using de novo assembly and reference-based methods fur-
ther validated our approach.

By matching assembled sequences from epigenomic and tran-
scriptomic data sets derived from histone acetylation profiles,
correlations were recovered in accordance with current under-
standing of the relationship of these modifications to transcrip-
tion. Specifically, we identified positive associations between
H3K9Ac and gene expression with transcriptional activation.
These results demonstrate a novel approach to epigenomic profil-
ing that is consistent with reference-based sequence assembly
while offering greater scope to identify epigenetic enrichment.

Standard methods of epigenomic profiling that necessitate
alignment of sequencing reads to an annotated reference genome
have limited capacity to characterize epigenomes of the vast major-
ity of known species. Since P. obesus belongs to theMuridae family

Figure 4. Intersection of differential regions between de novo and
reference based analyzes of enrichment sequencing. Venn diagrams
show intersection of differential (P � 1e-5) regions (kbp) between the
reference based sliding-window method and de novo method. Compari-
sons show: increased (A) and decreased (B) D. melanogaster H3K9Ac;
increased (C) and decreased (D) DNA methylation in M. musculus; and
increased (E) and decreased (F) H. sapiens ER-a binding.
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Figure 5. Distribution of assembled Psammomys obesus regions
aligned to theMus musculusmm10 reference genome. P. obesusmeth-
ylome contigs were mapped to mouse homolog regions via BLASTN (E �
1e-10). Gene features are based on Ensembl version 72 are composed of
CpG islands, exons, introns, whole gene bodies, promoters (the region
3 kb upstream from the transcription start site) and the whole genome.
Genomic regions were filtered by 100 bp read mappability.
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(subfamily Gerbillinae), we mapped the sequence assembly to the
mouse genome. Approximately 19% of P. obesus methylome con-
tigs were matched in sequence to the mouse genome. Approxi-
mately 23% of mouse exons were matched with the P. obesus
methylation contigs, with this association most likely attributable
to the increased conservation of these coding regions. Dietary mod-
ulation of P. obesus represents an important model for the investiga-
tion of diabetes and associated complications. As a central regulator
of energy homeostasis,29 the hypothalamus holds strong potential
for discovery of gene changes implicated in the development of
metabolic disorders in this animal model.30 Findings from clinical
and epidemiological studies suggest that intrauterine factors, such
as nutrition and growth, can be epigenetically assimilated during
gestation and early postnatal development to direct metabolic func-
tion in adulthood.11-13 Indeed, several studies have linked these fac-
tors with altered DNA methylation at specific loci associated with
glucose metabolism.11,31-33 De novo sequence assembly of methyl-
omes derived from the hypothalamus of P. obesus fed high- and
low-calorie prenatal diets revealed numerous DMRs.

The proposed pipeline complements existing transcriptome
assembly analysis and was validated by demonstrating a strong
correlation for a known relationship between an epigenome and
gene expression data set. We have demonstrated the applicability
of this method using public data and describe findings similar to
those derived by reference-based methods. Moreover, results of

our de novo assembly of the P. obesus methylome provide proof
of principle for comprehensive mapping of differential epige-
nomic marks without a reference genome.

Materials and Methods

Reference-based epigenome analyses
Reads were aligned to the appropriate reference genome using

the BWA aligner (version 0.6.2) using default settings.23 The
number of uniquely mapped reads (mapQ � 30) for 500 bp bins
with a 250 bp base sliding window was summarized for the whole
genome across all samples. Bins with mean count below 10 reads
per sample were removed from downstream analysis. The edgeR
(version 3.2.4) package from Bioconductor was used to determine
the statistical significance of differential regions between the exper-
imental groups using trimmed mean normalization and tagwise
dispersion using a default prior N.19,34

Simulation of long read epigenomic data
Reads were aligned to the respective genome with the BWA

aligner using default settings. Aligned reads were then extended in
silico to 100 bp using genome build mm10, hg18 or dm3 for the
appropriate species. Each of the reads was assigned quality strings
derived from a real single-end Illumina Genome Analyzer IIx run
(below). Sequencing errors were simulated by exchanging individ-
ual bases with random nucleotides at a rate proportional to the
assigned base quality value of each base. The FASTX-toolkit ver-
sion 0.0.13 fastq quality trimmer (http://hannonlab.cshl.edu/
fastx_toolkit/) was used to eliminate bases with a quality score less
than 30 from the 30 end. Trimmed reads shorter than 30 bp were
removed from further analysis.

Filtering of genomic features for sequence mappability
Mappability data sets were generated for each reference

genome using the gem-mappability software.35 The mappability
data sets were based on the read length of the original sequence
data. The mappability data sets were used to remove regions of
genomic features whose mappability score was <1.

De novo epigenome assembly of simulated reads
ABySS (version 1.2.7) was used for assembly of epigenomic

data pooled from all samples to form contigs.24 A minimum cov-
erage threshold of 3 was used. As the assembly is influenced by
selected k-mer parameter, we selected a k-mer that produced the
largest assembly after elimination of contigs shorter than 100 bp.
For the Drosophila ChIP-seq data, there was no apparent local
maximum of assembly size observed in the appropriate k-mer
range 30-60 so a k-mer of 31 was selected for that data set.

Comparison of reference based and de novo analyses
Assembled contigs were annotated by mapping them to the

appropriate reference genome to generate genomic intervals using
the BWA-MEM algorithm (version 0.7.5a-r405).36 The signed
-log 10(P-value) was used to score each contig in the de novo and
reference based method. The results of the de novo pipeline were

Figure 6. Validation of differentially methylated regions in P. obesus
using quantitative PCR. qPCR and MBD-seq differential results are
shown for Oxct2a and Havcr2. All values were normalized to the standard
diet. The sequencing results describe the reads per million values for the
whole contig. *P < 0.05 for qPCR using a one tailed Student’s t-test.
Sequencing results represent 4 biological replicates, and changes were
validated by qPCR analysis of 3 biological replicates. Error bars represent
standard error of the mean.
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compared to the results generated by a sliding window approach
by calculating the genome wide overlap using Bed Tools (version
2.16.2) between merged sliding window differential regions and
de novo based regions defined by P-values � 1e-5.37

P. obesus experimentation
Animals were maintained in accordance with the Code of

Practice of the National Health and Medical Research Council
of Australia, and all procedures were carried out subject to the
approval of the Deakin University Animal Ethics Committee. A
colony of outbred P. obesus is maintained at Deakin University,
Geelong, Australia. All animals were housed in a temperature-
controlled room (22 § 1�C) with a 12-12 h light-dark cycle
(light 06:00–18:00 h). Breeding pairs were randomly allocated
to one of two diets: A) standard diet (20% kcal/fat, 64% kcal/car-
bohydrate, 16% kcal/protein; total digestible energy 15 MJ/kg;
n D 20 breeding pairs) or; B) low fat diet (10% kcal/fat, 74%
kcal/carbohydrate, 16% kcal/protein; total digestible energy

18 MJ/Kg; n D 30 breeding pairs). The animals had ad libitum
access to food and water. Offspring were weaned on to the low
fat diet at 4 weeks of age and given ad libitum access, resulting in
2 experimental groups: 1) male offspring of animals fed a low fat
diet and weaned on to the low fat diet (male low-low) and; 2)
male offspring of animals fed a standard diet and weaned on to
the low fat diet (male standard-low). Body weight was measured
at 8, 12 and 16 weeks of age. Two hour fasted blood glucose
(Accuchek II, Roche) and plasma insulin (ELISA, Caymen
Chemicals) levels were measured at 8, 12 and 16 weeks of age.
All animals were sacrificed by anesthetic overdose (pentobarbi-
tone 120 mg/kg) at 16 weeks of age, and the whole hypothala-
mus was immediately collected and snap frozen in liquid
nitrogen, then stored at ¡80�C.

Methylome profiling of the P. obesus hypothalamus
Methyl-binding domain enrichment sequencing (MBD-seq)

was used to analyze the P. obesus methylome. DNA was isolated

Table 2. Differentially methylated regions identified using de novo profiling of P. obesusmodel of prenatal calorie restriction

Gene name Homologous mm10 location Distance to gene (bp) log2 fold change P-value

Oxct2a chr4:123322016-123322472 0 0.81 9.03E-10
Syngr3 chr17:24686122-24686475 0 1.20 7.42E-07
Gpr4 chr7:19222636-19223445 0 0.90 8.03E-07
Gchfr chr2:119171926-119172742 0 0.74 1.61E-06
Pcdha10 chr18:36999424-36999597 0 1.11 1.87E-06
Odf2 chr2:29910653-29910801 0 1.14 1.89E-06
Tmem206 chr1:191338752-191338998 0 0.81 2.47E-06
Rpp25 chr9:57511359-57511615 5,912 0.65 3.14E-06
Sema3f chr9:107682422-107683286 0 0.79 3.92E-06
Kcnj4 chr15:79484606-79484890 0 1.77 6.00E-06
Gm14314 chr2:179096367-179097333 75,234 0.77 9.48E-06
Nrf1 chr6:30116059-30116295 0 0.47 1.55E-05
AL662835.2 chr11:119153678-119154116 0 0.66 1.75E-05
Shank2 chr7:144235592-144235854 0 0.89 1.83E-05
Mcf2l chr8:12890389-12890744 0 0.97 1.85E-05
Dnm2 chr9:21481279-21481483 0 1.31 2.21E-05
Zdhhc24 chr19:4884060-4884430 0 1.19 2.56E-05
Gm831 chr4:131502583-131502831 0 0.86 2.68E-05
RP24-448C16.2 chr5:64717851-64717917 0 0.71 2.98E-05
Padi3 chr4:140803413-140803610 0 1.28 3.41E-05
Havcr2 chr11:46469804-46469670 0 ¡1.41 1.48E-07
Plxdc2 chr2:16683086-16683133 0 ¡1.18 3.50E-07
Igsf10 chr3:59379342-59379428 35,086 ¡1.40 1.21E-06
Gm10369 chr5:134677569-134677612 0 ¡1.38 2.16E-06
Zfp600 chr4:146175632-146175578 0 ¡1.39 6.40E-06
7SK chr12:96375389-96375483 119,152 ¡1.55 6.67E-06
Gm14235 chr2:168131246-168131290 16,727 ¡1.50 1.03E-05
D18Ertd653e chr18:68172466-68172877 0 ¡0.91 1.28E-05
Rngtt chr4:33500412-33500200 0 ¡1.57 1.41E-05
Kansl1 chr11:104361048-104360876 0 ¡1.16 1.55E-05
1700095J03Rik chr7:109442635-109443096 0 ¡1.22 2.01E-05
Nek11 chr9:105381416-105381626 0 ¡0.97 2.26E-05
Cyp2e1 chr7:140750537-140750586 13,153 ¡1.50 2.46E-05
AC154353.1 chr12:42845315-42845363 563,502 ¡1.51 2.65E-05
Samd8 chr14:21785123-21785185 0 ¡1.11 4.08E-05
Robo1 chr16:73049803-73049856 3,708 ¡1.16 4.22E-05
Dpysl3 chr18:43363811-43363297 0 ¡1.24 4.28E-05
Rora chr9:69328458-69328817 0 ¡0.90 5.15E-05
Lca5 chr9:83293753-83294291 96,002 ¡1.09 5.40E-05
Gm13483 chr2:50363272-50363351 0 ¡1.39 5.48E-05
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from hypothalamus homogenate using the Qiagen DNeasy Kit.
High molecular weight genomic DNA integrity was confirmed
by agarose gel electrophoresis and quantified by Qubit fluorome-
ter (Life Technologies). Purified DNA was fragmented by sonica-
tion using the BioRuptor (Diagenode), and this was confirmed
by capillary electrophoresis on the MultiNA (Shimadzu) using
the DNA-2500 kit (cat#292-27912-91). Five hundred nano-
grams of fragmented genomic DNA was used for methyl-CpG
enrichment using the MethylMiner system (Life Technologies)
following the manufacturer’s instructions (cat# ME10025).
DNA was eluted from the Methyl-CpG Binding Domain-cou-
pled magnetic beads with 2 M NaCl. Eluted DNA was

quantified with Qubit and 5 ng of this DNA was used for
sequencing library preparation using the NEB-Next DNA
Library Preparation Kit (New England Biolabs) according to the
manufacturer’s protocol (cat#E6040S). Amplified libraries were
quantified on MultiNA (Shimadzu) using the DNA-500 kit
(cat#292-27910-91). Cluster generation was performed on cBot
(Illumina) using version 4 Cluster Generation kits (single end
sequencing, cat# GD-300-100), and the flow cell was processed
on Genome Analyzer IIx (Illumina) with 151 cycles using version
4 SBS kits (cat#FC-104-4001). Base calling was performed by
the Illumina RTA software version 1.8. Fastx quality trimmer
was used to remove low quality bases from the 3’ end of the
sequence read at a base quality threshold of 30. Reads shorter
than 40 bp were discarded.

P. obesus methylome assembly and annotation
Following quality trimming, reads for all samples were com-

bined and assembled using ABySS with variable k-mer parameter
and coverage threshold of 3. The largest assembly after elimina-
tion of contigs smaller than 100 bp was used for downstream
analysis. Methylome assembly contigs were screened for homol-
ogy to the mouse genome (Ensembl version GRCm38.70/
mm10), with BLASTN (BLAST 2.2.23C) using default search
parameters.38 Contigs were assigned an annotation based upon
the closest gene to the BLASTN match coordinates on the mouse
genome (Ensembl genome annotation version GRCm38.70),
using an E-value threshold of E < 1e-9.

Epigenomic quantification and differential analysis
of P. obesusMBD-seq

Reads were aligned to the newly generated P. obesus methyl-
ome using the BWA-MEM algorithm. The reads for each contig
were counted for each sample with a minimum mapping quality
of 30. Differential contigs between sample groups were deter-
mined using edgeR groups using trimmed mean normalization
and tagwise dispersion using a default prior N. These counts
were transformed into a count matrix of samples and contigs.
Contigs without an annotated homologous region in the mouse
with a BLASTN E-value < 1e-7 were not included in down-
stream analysis.

Validation of differential methylation by quantitative PCR
To validate the differential methylation profiles identified by

our bioinformatics analysis of the P. obesus hypothalamus meth-
ylome, we used quantitative PCR (qPCR) to analyze the MBD
enriched fractions with FastStart Universal SYBR Green Master
(Rox) (Roche) (cat#04913914001). The following oligonucleoti-
des were used: Oxct2a region1 50-GTCACCATGGAACACTG-
CAC-30 and 50-CTTTAAACACGGCCTTCTCG-30; Havcr2
50-CAGAGGCTCGCTGTCTCTCT-30 and 50-TCAGAACGT
TTGTTCCCACA-30. Thermal cycling was performed on
Applied Biosystems 7500 Fast Real-Time PCR System as fol-
lows: 94�C for 2 min followed by 40 cycles of 94�C for 15 s,
55�C for 15 s, 68�C for 30 s and final extension at 68�C for
5 min. Differential enrichment was calculated as a proportion of
the input signal and products generated were analyzed on the

Figure 7. Relationships for epigenomic and transcriptomic signal are
recoverable without a reference genome. Integrative analysis of de novo
assembled fly development H3K9Ac and mRNA transcript data. (A) Over-
lap between H3K9Ac contigs and mRNA contigs. Transcript contigs were
matched to acetylation contigs using BLASTN with E � 1e-9. (B) Visuali-
zation of the matching of a contig pair showing the relative sequence
read density of decreased acetylation and mRNA expression in larvae
stage compared to embryo. Broken line indicates an exon junction.
Sequence density plots are generated using ggpolt2 with a rectangular
kernel, normalized by library size. (C) Differential mRNA rank compared
to differential H3K9Ac rank in fly development. Ranks were calculated by
signed -log10 (P-value) as determined by edgeR. Rank order bins of 500
mRNA contigs each were generated. For each bin the median and inter-
quartile range is shown for the matched differential acetylation ranks
(Spearman test: rho D 0.367, P < 2.2e-16).
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MultiNA bioanalyzer (DNA-500 kit) to confirm the presence of
a single amplicon. Statistical significance was determined by a
one tailed Student’s t-test.

Transcriptome data simulation and analysis
Downloaded short reads were aligned to the dm3 RefSeq tran-

scriptome with the BWA algorithm using default settings. Reads
were extended in silico to 100 bp using the dm3 RefSeq tran-
scriptome. Each read was assigned quality strings derived from a
real single-end Genome Analyzer IIx run. FASTX-toolkit fastq
quality trimmer was used to eliminate bases with a quality score
less than 30 from the 3’ end. Reads shorter than 30 bp were
removed from further analysis. Base miscalls were incorporated
at a rate proportional to the assigned base quality value of each
base.

Trinity (Release-2012-01-25) was used for assembly of tran-
scriptomic data pooled from all samples to generate contigs using
default settings.39 Each assembled transcript contig was anno-
tated with its top BLASTN match to the epigenomic assembly,
with a minimum E-value of 1e-9. Reads were aligned to the de
novo generated reference transcriptome using the BWA-MEM
algorithm. The reads for each contig were counted using

SAMtools (v 0.1.19-44428cd) with a minimum mapping quality
of 30 to avoid ambiguous alignments.40 These counts were sum-
marized as a count matrix of samples and contigs. Differential
transcripts between sample groups were determined using edgeR.
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