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Nitric oxide (NO) plays important roles in plant development, and biotic and abiotic stress responses. In a recent
study, we showed that endogenous NO negatively regulates abscisic acid (ABA) signaling in guard cells by inhibiting
sucrose nonfermenting 1 (SNF1)-related protein kinase 2.6 (SnRK2.6)/open stomata 1(OST1) through S-nitrosylation.
Application of NO breaks seed dormancy and alleviates the inhibitory effect of ABA on seed germination and early
seedling growth, but it is unclear how NO functions at the stages of seed germination and early seedling development.
Here, we show that like SnRK2.6, SnRK2.2 can be inactivated by S-nitrosoglutathione (GSNO) treatment through S-
nitrosylation. SnRK2.2 and the closely related SnRK2.3 are known to play redundant roles in ABA inhibition of seed
germination in Arabidopsis. We found that treatment with the NO donor SNP phenocopies the snrk2.2snrk2.3 double
mutant in conferring ABA insensitivity at the stages of seed germination and early seedling growth. Our results suggest
that NO negatively regulates ABA signaling in germination and early seedling growth through S-nitrosylation of
SnRK2.2 and SnRK2.3.

Nitric oxide (NO) is an important signaling molecule that
regulates many physiological processes in plants, including
immunity against pathogens, senescence, growth and develop-
ment, and flowering.1-5 NO also affects the signaling of phyto-
hormones such as abscisic acid (ABA), cytokinin, auxin,
gibberellins, and salicylic acid.2,6-8 In ABA signaling, NO was
considered as a second messenger and its generation can be
enhanced by ABA.2,9-11 ABA inhibits seed germination and early
seedling growth. In contrast, application of exogenous NO
breaks seed dormancy and alleviates the inhibitory effects of ABA
on seed germination and early seedling growth.12,13 The nia1-
nia2noa1 triple mutant that is deficient in NO generation shows
delayed seed germination, and is hypersensitive to ABA at seed
germination and early seedling development stages.14 ABA indu-
ces stomatal closure, and the nia1nia2noa1 triple mutant is
hypersensitive to ABA in stomatal closure. These results suggest
that endogenous NO has a negative role in ABA signaling in
guard cells as well as in seed germination and early seedling estab-
lishment. In response to ABA, 3 SnRK2 family members,
SnRK2.2, SnRK2.3 and SnRK2.6/OST1, are activated and
phosphorylate many downstream effectors to cause stomatal
closure, and inhibition of seed germination and seedling
growth.18-22 SnRK2.6 is preferentially expressed in guard cells,
and its dysfunction impairs ABA induction of stomatal closure.21

SnRK2.2 and SnRK2.3 are mainly expressed in seeds and young

seedlings, and they play redundant roles in ABA inhibition of
seed germination and seedling growth.10 In a recent study,15 we
discovered that endogenous NO negatively regulates ABA signal-
ing in guard cells by S-nitrosylation of SnRK2.6. We showed
that NO caused the S-nitrosylation of SnRK2.6 at cysteine 137
in vitro and in vivo, and the S-nitrosylation blocked the kinase
activity of SnRK2.6. Dysfunction of the S-nitrosoglutathione
(GSNO) reductase (GSNOR) gene in the gsnor1 mutant causes
NO over-accumulation, leading to impairment of ABA effect on
stomatal movement.15 Together with a previous study showing
that NO inhibits the generation of reactive oxygen species by S-
nitrosylation of NADPH oxidase,16 the work revealed a novel
mechanism of NO-mediated negative feedback regulation of
ABA signaling in guard cells.15

The S-nitrosylation site in SnRK2.6, Cys-137, is conserved in
all 10 members of the SnRK2 family in Arabidopsis (Fig. 1A),
indicating that SnRK2s besides SnRK2.6 may also be inactivated
by S-nitrosylation. To test whether NO regulates the activity of
other SnRK2s in ABA signaling, the effect of GSNO on MBP-
tagged SnRK2.2 was tested by an in vitro kinase assay. As shown
in Figure 1B, GSNO inhibited SnRK2.2 activity in a dose-
dependent manner, and application of DTT reversed this inhibi-
tory effect of GSNO. The biotin-switch assay revealed that the
GSNO treatment induced the S-nitrosylation of SnRK2.2, which
was abolished by application of DTT (Fig. 1C). These results
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Figure 1. GSNO inhibits SnRK2.2 activity and induces the S-nitrosylation of SnRK2.2. (A) Cys137 of SnRK2.6 is conserved in all SnRK2s in Arabidopsis. The
conserved cysteine is indicated by the arrow. (B) The nitric oxide donor GSNO inhibits the activity of SnRK2.2 in a dose-dependent manner. MBP–
SnRK2.2 was incubated with the indicated concentration of GSNO for 10 min and then [g¡32P]ATP was added to determine the autophosphorylation of
SnRK2.2. In the rightmost lane (DTTC), 1 mM DTT was added to the reaction before adding [g¡32P]ATP. (C) GSNO causes S-nitrosylation of SnRK2.2 as
detected by the biotin-switch assay.

Figure 2. NO suppresses ABA inhibition of seed germination and early seedling growth. (A) Col-0 wild type, snrk2.2, snrk2.3, and snrk2.2snrk2.3 seedlings
grown on 1/2 MS medium (control) or 1/2 MS medium supplemented with 0.5 mM ABA, 50 mM SNP or 0.5 mM ABA and 50 mM SNP 10 days after imbibi-
tion. (B) Quantification of radicle emergence of each genotype 4 days after imbibition on 1/2 MS medium or 1/2 MS medium containing ABA and SNP. (C)
Percentage of seedlings with green cotyledons 7 days after imbibition on 1/2 MS medium or 1/2 MS medium containing ABA and SNP. (D) Model showing
NO negative regulates ABA signaling by S-nitrosylation of SnRK2.2, SnRK2.3 and SnRK2.6. Arrows and bars indicate positive and negative effects, respec-
tively. The red bars indicate the S-nitrosylation mediated inhibition of SnRK2s by NO.
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show that GSNO blocks the kinase activity of SnRK2.2 by S-
nitrosylation. Since the sequences of SnRK2.2, SnRK2.3 and
SnRK2.6 are very similar,17 the inhibitory effect of GSNO on
both SnRK2.2 and SnRK2.6 suggests that SnRK2.3 is likely also
inhibited by S-nitrosylation. We were able to purify GST (gluta-
thione S-transferase)-tagged but not MBP-tagged SnRK2.3 with
detectable kinase activity. Because GST can be S-nitrosylated, we
were unable to use GST-SnRK2.3 to test S-nitrosylation of
SnRK2.3.

We tested the seed germination and seedling development of
Col-0 wild type, the snrk2.2 and snrk2.3 single mutants, and the
snrk2.2snrk2.3 double mutant in the presence of ABA, NO
donor sodium nitroprusside (SNP), or combination of ABA and
SNP. As shown in Fig. 2, ABA treatment inhibited the germina-
tion and seedling development in wild type Col-0 and snrk2.2
and snrk2.3 mutants, but not in the snrk2.2snrk2.3 double
mutant. In the presence of SNP, the inhibitory effects of ABA on
germination and cotyledon development were almost totally
abolished, and there was no obvious difference among the wild

type, snrk2.2, snrk2.3 and snrk2.2snrk2.3 mutants. The result is
consistent with our notion that ABA activation of SnRK2.2 and
SnRK2.3 is blocked by the application of exogenous NO. Our
data here suggest that NO negatively regulates ABA signaling by
S-nitrosylation of SnRK2s not only in stomatal closure but also
in the inhibition of seed germination and seedling growth
(Fig. 2D). In the presence of ABA, SnRK2.2 and SnRK2.3 are
activated through the ABA-PYR/PYLs-PP2C core signaling path-
way, and thereby inhibit seed germination by phosphorylating
downstream effectors. Application of exogenous NO or accumu-
lation of endogenous NO inhibits the kinase activities of
SnRK2.2 and SnRK2.3 by S-nitrosylation and thus blocks ABA
signaling. This explains how NO breaks seed dormancy and pro-
motes seed germination, which have been observed in Arabidop-
sis, barley and many other plants.12-14,23,24
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