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In mammals, DNA methylation profiles vary substantially between tissues. Recent genome-scale studies report that
blood displays a highly distinctive methylomic profile from other somatic tissues. In this study, we sought to
understand why blood DNA methylation state is so different to the one found in other tissues. We found that whole
blood contains approximately twice as many tissue-specific differentially methylated positions (tDMPs) than any other
somatic tissue examined. Furthermore, a large subset of blood tDMPs showed much lower levels of methylation than
tDMPs for other tissues. Surprisingly, these regions of low methylation in blood show no difference regarding genomic
location, genomic content, evolutionary rates, or histone marks when compared to other tDMPs. Our results reveal why
blood displays a distinctive methylation profile relative to other somatic tissues. In the future, it will be important to
study how these blood specific tDMPs are mechanistically involved in blood-specific functions.

Introduction

DNA methylation, the addition of a methyl group to a cyto-
sine, is one of the most widely studied epigenetic modifications.
It plays an important role in transcriptional regulation, genomic
imprinting, and X-inactivation,1 and is perturbed in complex dis-
eases such as cancer2 as well as during aging.3 It is well known
that DNA methylation profiles are tissue specific4-6 but, recently,
we reported7 that the global methylation pattern of blood cells,
as measured by the Illumina Infinium HumanMethylation450
array (Illumina 450K), was significantly different to that of a
large number of other tissues (using unsupervised hierarchical
clustering of 1,052 healthy samples). Varley et al.8 also reported
a similar observation using reduced representation bisulfite
sequencing (RRBS), in which blood is separated from primary
cell lines and tissues, but, not surprisingly, they found that the
DNA methylation state in blood is more similar to these samples
than cancer cell lines. It is therefore of great interest to under-
stand why the methylation state of blood is so different to that of
other tissues.

To investigate this distinct clustering of blood compared to
other tissues, we extracted a set of samples for a variety of differ-
ent tissues from Marmal-aid,9 a large publicly available database
of Illumina 450K experiments. We found that blood cells

contained twice as many tissue specific differentially methylated
positions (tDMPs) and a large number of these regions showed
low DNA methylation in blood. In comparison, tDMPs for
other tissues were mostly located in regions of fractional methyla-
tion, a b value of 0.3–0.7, for the respective tissue. Interestingly,
these lowly methylated regions in blood show no difference in
genome location, sequence content, evolutionary rates, or histone
marks, suggesting that the methylation state alone may play an
important functional role in blood.

Results

Blood shows distinct patterns of methylation at tissue
differentially methylated positions (tDMPs)

In order to investigate the differences in methylation between
blood and all other tissues it was necessary to obtain a robust set
of samples for a number of different tissues. At present, while
whole genome bisulfite sequencing is the gold standard, there is a
very limited number of samples available. In addition, for sam-
ples that are available, the data is of very low coverage. In con-
trast, a large number of studies have been performed using the
Illumina 450K array, which has good coverage. Therefore, we
extracted Illumina 450K arrays from Marmal-aid,9 a database of
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publicly available Illumina 450K arrays, for tissues that contained
a minimum of 50 healthy samples, including whole blood,
breast, colon, kidney, liver, lung, prostate, and thyroid. Due to
the public nature of the data, it was necessary to perform an ini-
tial quality control step to remove samples that were outliers
(Materials and Methods). We then randomly selected 50 samples
for each of the tissues, and all further analysis was performed on
these samples (Supplementary File 1). We then called tDMPs
for each tissue between the tissue of interest and all the other tis-
sues (Materials and Methods). We found that for each set of
tDMPs, a large number of probes (25,035–171,070) were signifi-
cantly differently methylated (P-value < 2 £ 10¡8) (Table 1).
Interestingly, blood tDMPs showed more than twice as many sig-
nificant differences as those found in any of the other tissues,
excluding colon, for which blood showed 1.78 times as many sig-
nificant differences. A greater than 1.7-fold increase in the num-
ber of tDMPs was also maintained, even when filtering for those
methylation differences >0.2-fold in absolute b value. Further-
more, there was a >6-fold increase of blood tDMPs that had
methylation differences >0.5-fold compared to all other tissues
(blood: 2624, thyroid: 413, prostate: 231, kidney: 148, liver:
103, colon: 66, breast: 9, and lung: 0). This is particularly strik-
ing when looking at the top 1000 tDMPs as ranked by P-value,
in which blood tDMPs show a bimodality of methylation with
one peak at b value ffi 0.1 and the second peak at around 0.4. All
the other tissues contain a single peak located at intermediate lev-
els of methylation (b value D 0.3–0.7) (Fig. 1). This low methyl-
ation peak in blood explains why it separates out from the other
tissues when performing hierarchical clustering. To investigate
this peak further we selected the top 100 tDMPs from blood
with average methylation of b value <0.2 [unmethylated-tDMP
(u-tDMP)], top 100 tDMPs from blood with average methyla-
tion value b value >0.3 [fractionally methylated tDMP (f-
tDMP)] and the top 100 f-tDMPs from liver, kidney, and lung,
also with b value >0.3.

Cellular heterogeneity does not explain the differences
in tDMPs

Whole blood consists of a number of distinct cell types
including neutrophils (»60%), CD4C (»13%), CD8C (»6%),
CD14C (»5%), eosinophils (»4%), CD19C (»3%), and
CD56C (»2%). To investigate the effect of this cellular hetero-
geneity on the tDMPs we looked at the top 100 whole blood

u-tDMPs and f-tDMPs in a series of blood subtypes
(GSE35069).10 The whole blood u-tDMPs show a consistent
unmethylated state in all of the different blood subtypes, while a
large proportion of whole blood f-tDMPs are actually unmethy-
lated, specifically in granulocytes (42%), neutrophils (32%), and
eosinophils (28%), and, hence, the f-tDMPs found in whole
blood are due to the mixture of cell types present (Fig. 2A). This
suggests that the f-tDMPs in liver, kidney, and lung may also be
due to cell subtypes of the specific tissue. To explore this further
we downloaded Illumina 450K data for different kidney cell lines
from ENCODE11 [renal proximal tubule epithelial cells
(RPTEC), human renal epithelial cells (HRE) and human renal
cortical epithelial cells (HRCEpiC)]. While a small number of
the probes (RPTEC: 18%, HRE: 4%, HRCEpiC: 17%) are u-
tDMPs in the appropriate cell line, the majority are maintained
as f-tDMPs (RPTEC: 62%, HRE: 80%, HRCEpiC: 58%)
(Fig. 2B). Additionally, we also downloaded hepatocyte data
from ENCODE11 and found a small number of the liver f-
tDMPs are u-tDMPs in hepatocytes (17%), but the majority
were still f-tDMPs (47%) (Fig. 2C). While it is possible that the
hepatocyte and kidney cell lines may themselves be a mixture of
different cell types, it seems more likely that the tDMPs in these
tissues are not fractionally methylated due to cellular
heterogeneity.

To examine this further, we obtained RRBS data from
ENCODE11 for breast, hepatocyte, leukocyte, and liver samples
(IDs in Supplementary File 2). By examining this sequencing
data it is possible to get a measure of the methylation state on a
per molecule basis by looking at the methylation state of the
CpGs on individual reads. Unfortunately, we found that only 1
of the liver f-tDMPs was covered with enough coverage (mini-
mum of 10 reads in each sample) (Fig. 2D). Interestingly, in this
single liver f-tDMP, the approximately 50% average methylation
is maintained by bimodality of the methylation state of the reads,
e.g., the average methylation across the CpGs for each read is
either 100% or 0%. This implies that at the single cell level using
this single f-tDMP (or region) it would not be possible to deter-
mine whether each individual cell was a liver cell or a blood cell.

Whole blood u-tDMPs do not show differences in genomic
location or sequence

We next wondered whether these f-tDMPs in the other tissues
showed any difference to that of the blood u-tDMPs in terms of

Table 1. Number of significant differences called between tissue of interest and all the other tissues. Second and third column show the number of those
differences after being filtered for b value differences>0.2 and 0.5, respectively

Tissue Number of significant differences Number of significant differences (>0.2) Number of significant differences (>0.5)

Blood 171070 44940 2624
Breast 59707 12330 9
Colon 95869 21640 66
Kidney 76734 17482 148
Liver 81077 21643 103
Lung 25035 3210 0
Prostate 77328 26348 231
Thyroid 78500 24755 413
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their genomic location or sequence content. For further analysis
it was necessary to define tissue specific differentially methylated
regions (tDMRs) and this was done by combining the top
tDMPs into regions for each of the 4 tissues to create a list of the
top 100 tDMRs for u-tDMRs (blood) and f-tDMRs (blood, kid-
ney, liver and lung) (Materials and Methods). We first investi-
gated the location of these tDMRs in relation to annotated genes
and found that blood u-tDMRs showed no significant enrich-
ment or depletion for being near the transcriptional start site
(TSS), within the gene body or in an intergenic region (P-value >
0.1 for all tests). Blood f-tDMRs did, however, show significant
enrichment for being located within the gene body (1.7-fold
enrichment; P-value < 0.001) as did kidney f-tDMRs
(1.4-fold enrichment; P-value < 0.001) and lung f-tDMRs (1.5-
fold enrichment; P-value < 0.001), while liver tDMRs showed
enrichment for the TSS (1.3-fold enrichment; P-value D 0.01)
(Fig. 3A).

We next investigated whether there was any underlying differ-
ence in the sequence of these regions but found little difference
in either the CpG content or complexity of the sequence for the
blood u-tDMRs when compared to the f-tDMRs (Fig. 3B and
C). To investigate this further we wondered whether the blood
u-tDMRs showed any differences in evolutionary rates. We esti-
mated these rates as the length of the tree branch from the

human-chimp ancestor to the human using a normalization
approach to correct for differences in local mutation rates (Mate-
rials and Methods). The normalization adds variance to the esti-
mates of the branch length and, hence, it was necessary to
remove some extreme outliers that obscure the bulk of the distri-
bution. The mean rates for blood u-tDMRs, blood f-tDMRs,
kidney f-tDMRs, liver f-tDMRs, and lung f-tDMRs were 1.04

§ 0.11, 1.21 § 0.12, 0.98 § 0.1, 1.15 § 0.15, 1.06 § 0.12,
respectively. The evolutionary rates in regions for blood u-
tDMRs appeared to be no different than in the other regions (P
D 0.7, 0.44, 0.16, and 0.9, respectively, for the comparisons of
blood u-tDMRS vs. each other region; Welch’s t-test) (Fig. 3D).

tDMRs are associated with H3K4me1 and H3K4me3 marks
but show lack of correlation with steady state gene expression

We extracted histone (H3K4me1, H3K4me3, H3K27ac,
H3K36me3, and H3K9me3) read counts from the roadmap epi-
genomics project12 for each of the 4 tissues. For each of the 5 sets
of tDMRs, we calculated the read counts for the relevant tissue
and subtracted these from the average read counts of the other 3
tissues for that region. We found, for H3K4me1, a highly signifi-
cant enrichment for blood u-tDMRs (mean: 9.7; P-value D
1.2 £ 10¡15 t-test) and liver f-tDMRs (mean: 9.3; P-value <2.2
£ 10¡16; t-test for regions with methylation difference <0). For

Figure 1. A paneled plot of the different distribution of b values for the 8 tDMP calls. In blue in each panel is the density of b values for the top 1000
tDMPs in the specific tissue and in black is the density of average b values of all the other tissues for these same tDMPs. Blood tDMPs show a bimodal dis-
tribution in blue with 2 peaks: one with low methylation and one with intermediate level of methylation. In all the other tissues profiled, there is a single
peak with intermediate level of methylation.
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H3K4me3, we see highly significant enrichment for blood u-
tDMRs (mean: 11.0; P-value D 6.3 x 10¡9), kidney f-tDMRs
(mean: 5.9; P-value D 1.1 £ 10¡6), lung f-tDMRs (mean: 2.0;
P-value D 3.9 £ 10¡10), and liver f-tDMRs (mean: 8.4;
P-value D 1.9 £ 10¡12), but no significant enrichment or deple-
tion for blood f-tDMRs. This is somewhat surprising as
H3K4me3 is often associated with promoters and, yet, kidney f-
tDMRs and lung f-tDMRs are highly enriched for regions associ-
ated with gene bodies. It has been previously reported, however,
that DNA methylation within intragenic regions regulated intra-
genic promoter activity and, that this occurs tissue- and cell type-
specific manner.13 Blood f-tDMRs do however show enrichment

for H3K36me3 (mean: 4.6; P-value D 2.5 £ 10¡7). For
H3K27ac, we see small but significant enrichment for blood u-
tDMRs (mean: 5.0; P-value < 2.2 £ 10¡16), blood f-tDMRs
(mean: 1.18; P-value D 2.0 £ 10¡7), kidney f-tDMRs (mean:
2.6; P-value D 1.8 £ 10¡8) and a large enrichment for liver f-
tDMRs (mean: 25; P-value < 2.2 £ 10¡16) (Fig. 4A). To inves-
tigate this further we downloaded the chromHMM states from
the UCSC genome browser.14 We found for Gm12878 (a lym-
phoblastoid cell line) a strong association of the blood u-tDMRs
with state 4 - strong enhancer (blood u-tDMRs: 44%, blood f-
tDMRs: 6%, kidney f-tDMRs: 3%; liver f-tDMRs: 2%; lung f-
tDMRs: 2%) (Fig. 4B). Meanwhile, for Hepg2, a cell line

Figure 2. (A) The blood t-DMPs split into u-tDMPs (top panel) and f-tDMPs (bottom panel) with the methylation state recorded from low (yellow) to high
(blue). The u-tDMPs found in whole blood are shared among all the blood subsets profiled while the majority of f-tDMPs in whole blood are specific to
granulocytes. (B) Renal proximal tubule epithelial cells (RPTEC; red), human renal epithelial cells (HRE; green) and human renal cortical epithelial cells
(HRCEpiC; orange) were downloaded from ENCODE and the methylation state of kidney tDMPs is shown here as a density plot. In blue is the average
methylation state of the kidney tissues used in our calls and in black is the average methylation of the other tissues. The majority of these kidney cells
show similar intermediate levels of methylation for these sites. (C) A hepatocyte sample was downloaded from ENCODE and the methylation state is
shown in red for the liver tDMPs. In blue is the average methylation state of the liver samples originally used to call the tDMPs and in black the average
methylation of the other tissues. Hepatocytes show similar intermediate levels of methylation to that of the liver tissue. (D) RRBS data taken from
ENCODE for liver, hepatocytes, leukocytes, and breast. The top panel shows the average methylation across a region of liver tDMPs with 5 CpGs covered
by a single read. The liver and hepatocytes show an increase in methylation in this region over that of the leukocytes and breast tissue. The bottom panel
shows a histogram of the average methylation state of each read across the 5 CpGs. Each read can have one of 5 states (0, 0.2, 0.4, 0.6, 0.8, or 1). This
clearly shows that this liver tDMR is maintained by approximately half the reads having 0 state (or all the CpGs in the read unmethylated), while the other
half of the reads are in state 1.
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derived from a male patient with liver carcinoma we found liver
f-tDMRs to be similarly enriched at state 4 (blood u-tDMRs:
1%, blood f-tDMRs: 2%, kidney f-tDMRs: 2%, liver tDMRs:
28%; lung tDMRs: 3%) (Fig. 4C). Due to the limited number
of samples available with chromHMM states, these were the only
2 relevant cell lines for comparison with our results. Therefore,
the combination of both the chromHMM and histone data
shows that these tDMRs show similar tissue specificity in histone
marks for these regions but there is no distinct difference in blood
tDMRs to that of other tissues.

Finally, we extracted gene expression data from BioGPS
[Human U133A/GNF1H Gene Atlas (GSE1133)] for each of the
4 different tissues. For each of the tDMRs we calculated the expres-
sion difference for the relevant tissue against the other 3 tissues for
the gene nearest to the tDMR. For all tDMRs, we found very little
correlation between the difference in methylation and a difference
in expression. Some genes did seem to be more expressed when the

tDMR was less methylated, but this was not true generally and
there was a distinct lack of correlation (Fig. 4D).

Discussion

Using Marmal-aid, a publicly available database of Illumina
450k arrays, it was possible to define tissue-specific differentially
methylated probes that can be used to define various tissues.
Interestingly, there was double the amount of probes that showed
differential methylation in blood to that of other tissues used in
this study. In particular, we found that, for blood, the probes
were unmethylated (or u-tDMPs), while for all the other tissues
the probes were fractionally methylated in the specific tissue (or
f-tDMP). Using three kidney cell lines and a hepatocyte sample
we were able to show that the fractional methylated positions
were unlikely to be caused by cellular heterogeneity.

Figure 3. (A) The percentage of tDMRs that are located within the promoter, defined as being 2 kb upstream of the TSS to the TSS (labeled as TSS), the
gene body or intergenic region. A tDMR is associated with a promoter if it overlaps any part of the promoter, while a gene body tDMR must overlap the
gene body but not the promoter. (B) CpG% for each of the different tDMRs. No significant difference in CpG% is found between any of the tDMRs.
(C) Complexity of the sequence for the tDMRs (Methods). No significant difference is found between the tDMRs. (D) Distribution of the branch lengths
from the human-chimp ancestor to the human for the different tDMRs as a measure of the evolutionary rate. Again, no difference is seen between the
different tDMRs.
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Why do blood tDMPs in particular have such relatively low
levels of methylation, and what is the functional consequence of
this? Although standard bisulfite conversion methods cannot dis-
tinguish between methylated and hydroxymethylated cytosines,
the latter is present at very low levels in blood and most somatic
tissues (not including brain)15 and, hence, hydroxymethylation
cannot account for this. We were unable to find specific differen-
ces in genomic location, sequence content, sequence conserva-
tion, or histone marks, in comparison to tDMPs for other
tissues. Therefore, could it be that the cytosine methylation state
per se, as opposed to these other molecular correlates, plays an
important role at these tDMPs? In future studies, it could be
interesting to investigate whether the dynamic interplay between
TET and DNMT enzymes16 is different in blood compared with
other tissues. With regards to how the preponderance of u-
tDMPs in blood is involved in blood-specific functions, we can
only speculate. First, blood is not a solid tissue. Secondly, blood
subsets are critical components of the immune system that has to
react to invading pathogens with varying degrees of response

time. The potential role of blood u-tDMPs in either of these
blood-specific properties is a key avenue of research for the
future.

Methods

Extracting data and calling tDMPs
Normalized samples were extracted from Marmal-aid9 for tis-

sues that contained a minimum of 50 samples. An initial call of
tissue specific methylation differences was made using
dmpFinder function in minfi.17 This was performed for each tis-
sue by defining 2 categories: the tissue of interest was assigned to
Group 1, while the remaining tissues were assigned as Group 2.
The top 2 probes for each of the tissue specific calls were used to
visually inspect the data and any samples that were found to be
closer to the mean of Group 2 than of Group 1 were removed.
The remaining samples were then used to produce the final calls.
For each tissue, we randomly selected 50 samples and, following

Figure 4. (A) A series of scatter plots of the difference in read count for the 5 different tDMRs for 5 different histone marks. Each point represents a differ-
ent tDMR and on the x-axis is the methylation difference between the tissue of interest and the other tissues and on the y-axis is the difference in read
count of the particular histone and the other tissues. (B) Percentage overlap of the various different tDMRs with the chromHMM states of GM12878.
(C) Percentage overlap of the various different tDMRs with the chromHMM states of Hepg2. (D) Correlation of the methylation difference of each of the
tDMRs with the log fold difference in expression between the tissue of interest and the all the other tissues.
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a similar procedure to above, we called differences using
dmpFinder. The IDs of the samples used in the experiment can
be found in Supplementary file 1. The calls for each of the tissues
for all probes can be found at http://webspace.qmul.ac.uk/rlowe/
tdmps/.

RRBS analysis
Raw sequence files were downloaded from the Sequence Read

Archive (SRA) for breast, hepatocyte, leukocyte and liver sam-
ples. Sample IDs are available in Supplementary file 2. These
were mapped to the human genome (hg19) using BISMARK18

and the methylation state for each read covering the top 100
tDMPs was extracted using custom scripts from the aligned
BAM file.

Combining tDMPs into tDMRs
For certain analyses, it was necessary to define regions of dif-

ferential methylation and, hence, we combined the tDMPs into
regions.

We combined 2 or more tDMPs into regions if the tDMPs
were within 500 bp of each other and the methylation difference
was consistent. If no probes were located within 500 bp of the
tDMP then we set a default width to the region if 500 bp cen-
tered on the called tDMP.

Sequence complexity
To produce a measure for the sequence complexity of each

DMR we calculated the Shannon Entropy using the following
equation:

H Xð ÞD ¡
X

iD A;C;T ;Gf g

f xið Þ
Lseq

log2
f xið Þ
Lseq

where f xið Þ is the frequency of base i within the sequence.

Evolutionary analysis
For each of the regions identified, EPO alignments19,20 for 15

mammalian species were retrieved using Ensembl REST API.21

Alignments that did not include sequences for human, chimpan-
zee and at least one out-group species were filtered out. For each
region with an alignment retained, the first intron of the closest
gene was selected as a control region. Intron coordinates were
obtained using the BioMart21 R23 package. Alignments for these

intron sequences were obtained with Ensembl API.21 Again, only
alignments where sequences for human, chimpanzee and at least
one out-group species were present in the control region were
retained for further analysis. Evolutionary rates were estimated
using the baseml program of the PAML package24 (options:
model D REV plus Gamma-distributed rate variation over sites,
ncatG D 4). Alignments for regions of interest were concatenated
with alignments for the intronic regions and analyzed as site par-
titions (option Mgene D 1, permitting different substitution
dynamics and different evolutionary rates for each lineage and
for the regions of interest and introns).

Histone analysis
Histone marks (H3K4me1, H3K4me3, H3K27ac,

H3K36me3, and H3K9me3) for each tissue were downloaded
from the Roadmap Epigenomics Project12 as wig files. These
were converted to BigWig using the wigToBigWig program
from UCSC. Read counts were calculated for each of the tDMRs
using the bigWigSummary program.

Expression analysis
We extracted gene expression data from BioGPS [Human

U133A/GNF1H Gene Atlas (GSE1133)] for each of the 4 differ-
ent tissues blood, liver, kidney and lung. For each of the tDMRs
we calculated the nearest TSS and calculated for that gene the
logFC of expression between the tissue of interest and the other 3
tissues for each of the 4 sets of tDMRs.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

RL, VK are supported by the EU-FP7 “BLUEPRINT” pro-
gram (282510). GS, NG are supported by the European Molecu-
lar Biology Laboratory. GS is a member of Wolfson College,
University of Cambridge. This work was partly supported by the
BBSRC (BB/H012494/1).

Supplemental Material

Supplemental data for this article can be accessed on the
publisher’s website.

References

1. Bird AP. CpG-rich islands and the function of DNA
methylation. Nature 1986; 321:209-213;
PMID:2423876; http://dx.doi.org/10.1038/321209a0

2. Laird, PW. The power and promise of DNA methyla-
tion markers. Nat Rev Cancer 2003; 3:253-266;
PMID:12671664; http://dx.doi.org/10.1038/nrc1045

3. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G,
Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, et al.
Genome-wide methylation profiles reveal quantitative
views of human aging rates. Mol Cell 2013; 49(2):359-
67; PMID:23177740; http://dx.doi.org/10.1016/j.
molcel.2012.10.016

4. Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha
E, Gr€af S, Tomazou EM, B€ackdahl L, Johnson N,

Herberth M, et al. An integrated resource for genome-
wide identification and analysis of human tissue-spe-
cific differentially methylated regions (tDMRs).
Genome Res 2008; 18:1518-29; PMID:18577705;
http://dx.doi.org/10.1101/gr.077479.108

5. Slieker RC, Bos SD, Goeman JJ, Bov�ee JV, Talens RP,
van der Breggen R, Suchiman HE, Lameijer EW, Put-
ter H, van den Akker EB, et al. Identification and sys-
tematic annotation of tissue-specific differentially
methylated regions using the Illumina 450k array. Epi-
genetics Chromatin 2013; 6(1):26; PMID:23919675;
http://dx.doi.org/10.1186/1756-8935-6-26

6. Lokk K, Modhukur V, Rajashekar B, M€artens K, M€agi
R, Kolde R, Kolt Ina M, Nilsson TK, Vilo J, Salumets
A, et al. DNA methylome profiling of human tissues

identifies global and tissue-specific methylation pat-
terns. Genome Biol. 2014 15(4); PMID:24690455;
http://dx.doi.org/10.1186/gb-2014-15-4-r54

7. Lowe R, Gemma C, Beyan H, Hawa MI, Bazeos A,
Leslie RD, Montpetit A, Rakyan VK, Ramagopalan SV
Buccals are likely to be a more informative surrogate
tissue than blood for epigenome-wide association stud-
ies. Epigenetics. 2013; 8(4):445-54; PMID:23538714;
http://dx.doi.org/10.4161/epi.24362

8. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy
TE, Pauli-Behn F, Cross MK, Williams BA, Stama-
toyannopoulos JA, Crawford GE, et al. Dynamic DNA
methylation across diverse human cell lines and tissues.
Genome Res 2013; 23(3):555-67; PMID:23325432;
http://dx.doi.org/10.1101/gr.147942.112

280 Volume 10 Issue 4Epigenetics

http://webspace.qmul.ac.uk/rlowe/tdmps/
http://webspace.qmul.ac.uk/rlowe/tdmps/
http://dx.doi.org/10.1080/15592294.2014.1003744
http://dx.doi.org/10.1080/15592294.2014.1003744


9. Lowe R, Rakyan VK. Marmal-aid - a database for Infin-
ium HumanMethylation450. BMC Bioinformatics
2013; 14:359; PMID:24330312; http://dx.doi.org/
10.1186/1471-2105-14-359

10. Reinius LE, Acevedo N, Joerink M, Pershagen G,
Dahl�en SE, Greco D, S€oderh€all C, Scheynius A, Kere J.
Differential DNA methylation in purified human
blood cells: implications for cell lineage and studies on
disease susceptibility. PLoS One 2012; 7(7):e41361;
PMID:22848472; http://dx.doi.org/10.1371/journal.
pone.0041361

11. Raney BJ, Cline MS, Rosenbloom KR, Dreszer TR,
Learned K, Barber GP, Meyer LR, Sloan CA, Mal-
ladi VS, Roskin KM, et al. ENCODE whole-
genome data in the UCSC genome browser (2011
update). Nucleic Acids Res 2011; 39:D871-5;
PMID: 21037257; http://dx.doi.org/10.1093/nar/
gkq1017

12. Bernstein BE, Stamatoyannopoulos JA, Costello JF,
Ren B, Milosavljevic A, Meissner A, Kellis M, Marra
MA, Beaudet AL, Ecker JR, et al. The NIH roadmap
epigenomics mapping consortium. Nat Biotechnol
2010; 28(10):1045-8; PMID:20944595

13. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ,
D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen
C, Zhao Y et al. Conserved role of intragenic DNA
methylation in regulating alternative promoters. Nature

2010; 466(7303):253-7; PMID:20613842; http://dx.
doi.org/10.1038/nature09165

14. Ernst J, Kellis M. ChromHMM: automating chroma-
tin-state discovery and characterization. Nat Methods
2012; 9(3):215-6; PMID:22373907; http://dx.doi.org/
10.1038/nmeth.1906

15. Li W, Liu M. Distribution of 5-hydroxymethylcytosine
in different human tissues. J Nucleic Acids 2011;
2011:870726; PMID:21772996; http://dx.doi.org/
10.4061/2011/870726

16. Huang Y, Chavez L, Chang X, Wang X, Pastor WA,
Kang J, Zepeda-Mart�ınez JA, Pape UJ, Jacobsen SE,
Peters B, Rao A Distinct roles of the methylcytosine
oxidases Tet1 and Tet2 in mouse embryonic stem cells.
Proc Natl Acad Sci USA 2014; 111(4):1361-6;
PMID:24474761; http://dx.doi.org/10.1073/pnas.
1322921111

17. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C,
Feinberg AP, Hansen KD, Irizarry RA. Minfi: a flexible
and comprehensive Bioconductor package for the anal-
ysis of Infinium DNA methylation microarrays. Bioin-
formatics 2014; 30(10):1363-9; PMID:24478339;
http://dx.doi.org/10.1093/bioinformatics/btu049

18. Krueger F, Andrews SR. Bismark: a flexible aligner and
methylation caller for Bisulfite-Seq applications. Bioin-
formatics 2011; 27(11):1571-2; PMID:21493656;
http://dx.doi.org/10.1093/bioinformatics/btr167

19. Paten B, Herrero J, Beal K, Fitzgerald S, Birney E.
Enredo and Pecan: genome-wide mammalian consis-
tency-based multiple alignment with paralogs. Genome
Res 2008; 18(11):1814-28; PMID:18849524; http://
dx.doi.org/10.1101/gr.076554.108

20. Paten B, Herrero J, Fitzgerald S, Beal K, Flicek P,
Holmes I, Birney E. Genome-wide nucleotide-level
mammalian ancestor reconstruction. Genome Res
2008; 18(11):1829-43; PMID:18849525; http://dx.
doi.org/10.1101/gr.076521.108

21. Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent
S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald
S, et al. Ensembl 2014. Nucleic Acids Res 2014; 42;

22. Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor
B, Brazma A, Huber W. BioMart and Bioconductor: a
powerful link between biological databases and micro-
array data analysis. Bioinformatics. 2005; 21(16):3439-
40; PMID:16082012; http://dx.doi.org/10.1093/
bioinformatics/bti525

23. R Core Team. 2014. R: A language and environment
for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL: http://www.R-proj
ect.org/.

24. Yang, Z. PAML 4: phylogenetic analysis by maximum
likelihood. Molecular Biology and Evolution 2007; 24
(8):1586-91; PMID:17483113; http://dx.doi.org/
10.1093/molbev/msm088

www.tandfonline.com 281Epigenetics

http://www.R-project.org/
http://www.R-project.org/

