
Resistance to pathogens in terpene down-regulated orange fruits
inversely correlates with the accumulation of D-limonene in peel
oil glands

Ana Rodr�ıguez1,2, Takehiko Shimada3, Magdalena Cervera4, Ana Redondo4, Berta Alqu�ezar1,2, Mar�ıa Jes�us Rodrigo5,
Lorenzo Zacar�ıas5, Llu�ıs Palou6, Mar�ıa M L�opez4, and Leandro Pe~na1,2,*
1Fundo de Defesa da Citricultura; S~ao Paulo, Brazil; 2Instituto de Biolog�ıa Molecular y Celular de Plantas; Consejo Superior de Investigaciones Cient�ıficas-Universidad

Polit�ecnica de Valencia; Valencia, Spain; 3Okitsu Citrus Research Station; National Institute of Fruit Tree Science; National Agricultural Research Organization;

Shizuoka, Japan; 4Centro de Protecci�on Vegetal y Biotecnolog�ıa; Instituto Valenciano de Investigaciones Agrarias; Carretera Moncada-N�aquera; Valencia, Spain;
5Departamento de Ciencia de los Alimentos; Instituto de Agroqu�ımica y Tecnolog�ıa de Alimentos-Consejo Superior de Investigaciones Cient�ıficas; Valencia, Spain;
6Centro de Tecnolog�ıa Postcosecha; Instituto Valenciano de Investigaciones Agrarias

Volatile organic compounds (VOCs)
are secondary metabolites acting as a

language for the communication of
plants with the environment. In orange
fruits, the monoterpene D-limonene
accumulates at very high levels in oil
glands from the peel. Drastic down-regu-
lation of D-limonene synthase gene
expression in the peel of transgenic
oranges harboring a D-limonene syn-
thase transgene in antisense (AS) configu-
ration altered the monoterpene profile in
oil glands, mainly resulting in reduced
accumulation of D-limonene. This led to
fruit resistance against Penicillium digita-
tum (Pd), Xanthomonas citri subsp. citri
(Xcc) and other specialized pathogens.
Here, we analyze resistance to pathogens
in independent AS and empty vector
(EV) lines, which have low, medium or
high D-limonene concentrations and
show that the level of resistance is
inversely related to the accumulation of
D-limonene in orange peels, thus
explaining the need of high D-limonene
accumulation in mature oranges in
nature for the efficient attraction of spe-
cialized microorganism frugivores.

Higher plants produce a wide diversity
of chemical compounds, traditionally
known as secondary metabolites; many of
them are volatiles that defend them
against herbivores and pathogens and
influence the feeding behavior of pollina-
tors, seed dispersers, and herbivore preda-
tors.1-5

These secondary metabolites, including
terpenoids, offer great potential for bio-
technological applications, mainly with
the aim of achieving resistance to pest and
pathogens in crops. An improvement of
our knowledge beyond general phyto-
chemical cataloging of these compounds is
needed, by performing specific experi-
ments raised to identify their mode of
action within the plant and on plant inter-
actions with other organisms.6

Plants with either down- or up-regu-
lated volatile isoprenoid synthesis are
excellent tools to dissect the biological role
of specific plant VOCs. In the same way
that the up-regulation of some terpenoids
have been associated generally with plant
defense properties,7-11 the downregulation
of their production may sometimes reduce
the susceptibility to specific pests or
microorganisms, as it has been shown in
plants such as tobacco or poplar.12,13

In a previous report, we showed that
transgenic oranges (Citrus sinensis L. Osb.
cv. Navelina and Pineapple) accumulating
highly reduced levels of the monoterpene
D-limonene in the fruit peel became resis-
tant to the bacterium Xanthomonas citri
subsp citri (Xcc), to the fungus Penicillium
digitatum (Pd) and to other specialized
fungi.5,14,15 D-limonene synthase down-
regulation was associated with constitutive
upregulation of genes involved in plant
innate immune response to pathogens and
to increased accumulation of jasmonic
acid upon challenge by the pathogen.5
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Therefore, we concluded that D-limonene
is required for specialized pathogens to
establish infections in mature oranges. To
assess whether different D-limonene con-
centrations in the fruit would affect infec-
tion rate and/or symptom intensity, we
have now compared the responses to
either Pd or Xcc inoculation displayed by
transgenic oranges with very low and
medium levels of D-limonene accumula-
tion and EV transgenic oranges with very
high levels of D-limonene accumulation
(comparable to wild-type (WT) oranges).

Overexpression of the full-length
cDNA from a D-limonene synthase
gene from Satsuma mandarin (CitM-
TSE1) in antisense (AS) configuration
in transgenic oranges generally resulted
in a drastic reduction in the accumula-
tion of D-limonene and increased
amounts of monoterpene alcohols such
as nerol, geraniol and citronellol in fruit
peels.14 We have now identified inde-
pendent transformants AS2, AS4 and
AS6 harboring several insertions of the
transgene (Fig. 1), which accumulated
intermediate levels of these terpene
compounds (Fig. S1).

Attempts to alter the concentration of
D-limonene in citrus fruits may be
counter-productive, as the modification of
the flux of isoprenoids by metabolic engi-
neering potentially risks the production of
other isoprenoid derivatives and thus nor-
mal fruit growth and development. To test
this possibility, we measured the number
of oil glands and their size in green and
mature peel of AS2, AS4, AS6 and EV
fruits and found no significant differences
between them (Fig. 2). Previously, we
found no differences between fruit peel of
AS lines with highly reduced levels of D-
limonene and EV controls.5 Therefore, the
decrease of D-limonene concentrations,
either high or medium, did not cause mor-
phological alterations or other pleiotropic
effects in the AS transgenic fruits.

To compare the effect of medium, low
and high (WT) levels of D-limonene accu-
mulation on resistance to specialized
pathogens of orange fruits, we chose AS6,
AS7 and EV lines, respectively. Volatile
terpene contents were analyzed by GC-
MS as reported before for mature fruits of
the 3 transgenic lines (Fig. 3).14 Chal-
lenge inoculations of Pd and Xcc were

performed as reported before.14 We
observed that AS6 was resistant to both
pathogens compared to the EV control
line, but less than AS7, both in term of
percentage of infected wounds and in
symptom intensity (Fig. 4). The experi-
ments were repeated with AS2 and AS4,
obtaining results comparable to those of
AS6 (data not shown). The resistance phe-
notype was co-related to the decrease in
D-limonene concentration in the trans-
genic fruits. However, we cannot rule out
that changes in the accumulation of other
monoterpene compounds in peel oil
glands or activation of defense responses
derived from such constitutive changes
may also contribute to the different levels
of resistance observed in AS fruits.Figure 1. Molecular analysis of DNA isolated from orange leaves of antisense (AS) and empty vector

control (EV) Navelina sweet orange transgenic plants. (A, B) Map of the T-DNA region of the binary
vector used to transform AS (A) and EV (B) plants. LB, left T-DNA border region; RB, right T-DNA bor-
der region; nptII, neomycin phosphotransferase II transgene conferring kanamycin resistance, under
the control of the nopaline synthase (NOS) promoter and terminator regions; CitMTSE1, limonene
synthase gene in antisense orientation under control of the Cauliflower mosaic virus (CaMV) 35S pro-
moter and the NOS terminator. (C, D) Southern blot analysis of independent AS transgenic lines
(AS2, AS4 and AS6 and AS7) and the EV control line. The DNA was digested with the enzymes HindIII
for testing loci number integrations (C) or PvuII for assessing integrity of the D-limonene transgene
(D). The 35S promoter was used as a probe. M: DNA molecular weight marker II from Roche Applied
Science.

Figure 2. Characteristics of green (70 mm
diameter) and mature (90 mm diameter)
peels (flavedo) from AS and EV Navelina sweet
orange fruits. (A, B) Oil gland number and size
in green and mature flavedo, respectively.
Data represent means § SE and are derived
from analysis of 10 fruits per plant. No signifi-
cant differences were found at P � 0.05 using
Fisher’s protected LSD test at each stage. (C)
Magnification of oil glands in 4 cm2 peel
pieces of AS and EV fruits in green (GF) and
mature flavedo (MF).
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Terpenoids represent one of the largest
and diverse classes of metabolites in the
plant kingdom and are involved in many
physiological and ecological processes.16

Plants during their life cycles interact with
a vast range of different microbial species.
The ways by which plants recognize, coor-
dinate and regulate the exchange of resour-
ces and information with the myriads of
potentially interacting microbes are not yet
completely understood.17

Metabolic engineering may create great
opportunities to study the ecological
importance of terpenoids in the interac-
tions of plants with other organisms,
including microbes.18,19 D-limonene
accumulates at huge levels in mature
oranges, representing more than 95% of
total terpene compounds found in the oil
glands from their fruit peel, and it is pro-
duced at a very high metabolic cost.
We show here that reduced levels of

D-limonene as those found in AS6 fruits
are sufficient to generate good levels of
resistance against Pd and Xcc, though
lower than those found in AS lines with
very low concentrations of D-limonene.
Therefore, high levels of D-limonene are
required for efficient interactions of the
fruit with specialized microorganisms,
which may be involved in seed dispersal
by vertebrate frugivores.

For biotechnological purposes, our
results indicate that AS lines with the
highest reduction of D-limonene concen-
trations in fruit peel would be more prom-
ising ones for generating field resistance
against citrus pathogens.
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