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As a widely used warm-season turf-
grass in landscapes and golf courses,

bermudagrass encounters multiple abi-
otic stresses during the growth and devel-
opment. Physiology analysis indicated
that abiotic stresses induced the accumu-
lation of ROS and decline of photosyn-
thesis, resulting in increased cell damage
and inhibited growth. Proteomic and
metabolomic approaches showed that
antioxidant enzymes and osmoprotectant
contents (sugar, sucrose, dehydrin, pro-
line) were extensively changed under abi-
otic stress conditions. Exogenous
application of small molecules, such as
ABA, NO, CaCl2, H2S, polyamine and
melatonin, could effectively alleviate
damages caused by multiple abiotic
stresses, including drought, salt, heat and
cold. Based on high through-put RNA
seq analysis, genes involved in ROS, tran-
scription factors, hormones, and carbo-
hydrate metabolisms were largely
enriched. The data indicated that small
molecules induced the accumulation of
osmoprotectants and antioxidants, kept
cell membrane integrity, increased pho-
tosynthesis and kept ion homeostasis,
which protected bermudagrass from
damages caused by abiotic stresses.

Bermudagrass (Cynodon dactylon) is a
warm-season turfgrass and widely used
on home lawns, golf courses and sport
fields. Bermudagrass is adapted to cultiva-
tion in a wide range of climate condition.
Analysis of natural variations of drought
stress tolerance revealed that different ber-
mudagrass cultivars exhibited varied toler-
ance to drought stress.1-3 Exogenous
application of small molecules could
effectively alleviate damages caused by

multiple abiotic stresses, including
drought, salt and cold.4-8 Exogenous
ABA treatment improved drought stress
tolerance in ‘TifEagle’ cultivar through
induction of H2O2 and NO, which, in
turn, enhanced antioxidant enzyme activ-
ities.4 Our studies indicated that exoge-
nous CaCl2, polyamines, H2S, and NO
treatments were effective to induce ber-
mudagrass tolerance to drought, salt, and
cold stresses.5,6,8

Abiotic stress tolerance is a complex
trait, therefore plants develop different
approaches to cope with adverse environ-
mental conditions. About half century
ago, Barnett and Naylor found that water
stress induced a 10- to 100-fold accumula-
tion of free proline and a 2- to fold6-
accumulation of free asparagines.9 Further
studies showed that abiotic stress treat-
ments changed antioxidant enzyme activi-
ties, ROS contents, osmoprotectant
contents (sugar, sucrose, dehydrin, pro-
line), and photosynthesis.1-2,5-6,10-14

Recently, proteomics and metabolomics
approaches have been successfully used to
detect omic level changes during bermuda-
grass stress responses. Under water-deficit
condition, 32 proteins had increases in the
abundance and 22 proteins exhibited
decreases in the abundance, which were
mainly involved in metabolism, energy,
cell growth/division, protein synthesis and
stress defense.15 In previous study, we
found that chilling treatment modulated
the abundance changes of 28 proteins and
in total 51 proteins were regulated by
CaCl2 treatment. These proteins were
enriched in redox, tricarboxylicacid cycle,
glycolysis, photosynthesis, oxidative pen-
tose phosphate pathway, and amino acid
metabolisms.8 Additionally, we identified
39 proteins with significantly changed
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abundance after drought stress treatment
in leaves and stems of Yukon and Tifgreen
cultivars.3 Among them, proteins involved
in photosynthesis, glycolysis, N-metabo-
lism, TCA and ROS pathways were
enriched. Pretreatment of exogenous poly-
amine conferred increased salt and drought
tolerances in bermudagrass. Comparative
proteomic analysis revealed that 36 com-
monly regulated proteins by at least 2
types of polyamines in bermudagrass.
Among them, proteins involved in ROS,
electron transport and energy pathways
were largely enriched.5 Metabolomics anal-
yses confirmed that amino acids, organic
acids, sugars, and sugar alcohols were sig-
nificantly changed after stress treat-
ments.8,16 All these results indicated that
abiotic stresses or exogenous small mole-
cule treatments extensively regulated
down-stream protein/enzyme and metabo-
lite biosynthesis.

To further detect up-stream changes in
bermudagrass upon stress treatment, mac-
roarray analysis was performed and 189
drought responsive candidate genes were
identified, of which 120 were up-regulated
and 69 were down-regulated. Functional
annotation analysis suggested that upregu-
lated genes were mainly involved in pro-
line biosynthesis, signal transduction
pathways, protein repair systems, and
removal of toxins, while downregulated
genes were mostly related to basic plant
metabolism such as photosynthesis and
glycolysis.17

More recently, high throughput RNA
seq analysis showed that exogenous melato-
nin treatment conferred improved salt,
drought, and cold stress tolerances in ber-
mudagrass through modulation of 3933
genes (2361 up-regulated and 1572 down-
regulated).7 Melatonin (N-acetyl-5-methox-
ytryptamine) is a well-known animal

hormone which is also found to play
important roles in plant development and
abiotic stress responses.18-19 Exogenous
melatonin treatment alleviated ROS burst
and cell damage induced by abiotic stress
in bermudagrass. This was consistent with
transcriptomic data which showed that
redox-related genes were enriched.7 More-
over, pathway and GO term enrichment
analyses indicated that 8 pathways were
over-represented after melatonin pre-treat-
ment, including nitrogen metabolism,
major carbohydrate metabolism, TCA/org
transformation, transport, hormone metab-
olism, metal handling, redox, and second-
ary metabolism. Interestingly, several key
genes involved in ABA (RCAR/PYR/PYL,
SnRK2, and NCED3) and JA (JAZs) sig-
naling were significantly changed after mel-
atonin pre-treatment, which might be
contributed to increased abiotic stress toler-
ance in bermudagrass.7

Figure 1. A possible model showing mechanisms involved small molecules induced bermudagrass stress resistance.
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Conclusions

Based on these observations, a possible
model that depicting bermudagrass abiotic
stress responses was proposed (Fig. 1).
Abiotic stress treatments severely inhibited
plant growth and development through
osmotic pressure, ROS burst, cell damage,
photosynthesis decline, and ionic disorder.
Exogenous application of small molecules,
including ABA, NO, CaCl2, H2S, poly-
amine and melatonin, induced the accu-
mulation of osmoprotectants and
antioxidants, kept cell membrane integ-
rity, increased photosynthesis and kept
ion homeostasis. These treatments might
also induce the expressions of transcrip-
tion factor and hormone signaling related
genes to activate down-stream stress
responsive pathways, resulting in stress
resistance in bermudagrass.
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