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The use of combination antiretroviral therapy (cART) to prevent HIV mother-to-child transmission during pregnancy
and delivery is generally considered safe. However, vigilant assessment of potential risks of these agents remains
warranted. Epigenetic changes including DNA methylation are considered potential mechanisms linking the in utero
environment with long-term health outcomes. Few studies have examined the epigenetic effects of prenatal exposure
to pharmaceutical agents, including antiretroviral therapies, on children. In this study, we examined the methylation
status of the LINE-1 and ALU-Yb8 repetitive elements as markers of global DNA methylation alteration in peripheral
blood mononuclear cells obtained from newborns participating in the Pediatric HIV/AIDS Cohort Study SMARTT cohort
of HIV-exposed, cART-exposed uninfected infants compared to a historical cohort of HIV-exposed, antiretroviral-
unexposed infants from the Women and Infants Transmission Study Cohort. In linear regression models controlling for
potential confounders, we found the adjusted mean difference of AluYb8 methylation of the cART-exposed compared
to the -unexposed was ¡0.568 (95% CI: ¡1.023, ¡0.149) and for LINE-1 methylation was ¡1.359 (95% CI: ¡1.860,
¡0.857). Among those exposed to cART, subjects treated with atazanavir (ATV), compared to those on other
treatments, had less AluYb8 methylation (¡0.524, 95% CI: ¡0.025, ¡1.024). Overall, these results suggest a small but
statistically significant reduction in the methylation of these repetitive elements in an HIV-exposed, cART-exposed
cohort compared to an HIV-exposed, cART-unexposed historic cohort. The potential long-term implications of these
differences are worthy of further examination.

Introduction

The use of combination antiretroviral therapy (cART) during
pregnancy has resulted in a dramatic reduction in HIV mother-
to-child transmission.1-3 The use of cART is generally considered
safe, with the benefits of HIV prevention far exceeding potential
safety concerns from in utero exposure to these drugs.1,4-7 How-
ever, there is still a continued need to monitor HIV-exposed,
uninfected infants for potential adverse effects from in utero and
postnatal exposure to these therapies.4,8-11 There is conflicting
evidence demonstrating associations between antiretroviral use
during pregnancy and birth defects, reduced birth weight, altered
growth trajectories, neurological and neurodevelopmental defi-
cits, and mitochondrial abnormalities.5,12,13 Little is known
about the mechanisms by which specific antiretrovirals can lead
to these postnatal and even childhood effects.

Epigenetic changes may play an important role as mediators
of the effects of the intrauterine environment on long-term health
outcomes in offspring, including neurodevelopmental deficits,
behavior, metabolic disorders, and obesity.14-22 Epigenetic modi-
fications are broadly defined as the mitotically heritable chemical
or structural changes to DNA, which are involved in the regula-
tion of gene expression without alteration of the underlying
DNA sequence. The most widely studied of the epigenetic modi-
fications is DNA methylation. This is particularly true in human
population-based studies, as the marker is readily accessible and
stable for measurement from biologic specimens, and requires
much smaller sample amounts and more lenient sample collec-
tion procedures than would the examination of other types of
epigenetic modification. In human populations, DNA methyla-
tion has been studied at specific genes, generally in their pro-
moter regions, as a marker of functional alteration, and at the
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“global” level, as an overall measure of the epigenetic status of a
sample. Global methylation is considered a passive dosimeter,
susceptible to alteration by various environmental insults.23 Stud-
ies of global methylation make use of analyses of repetitive ele-
ment regions of the genome, such as long interspersed nuclear
elements (LINEs) and small interspersed nuclear elements
(SINEs, represented by Alu elements), which are generally highly
methylated and can be used to assess variation in the overall
DNA methylation. Reductions in methylation of these elements
have been associated with various exposures including cigarette
smoke and environmental toxicants, as well as with disease out-
comes in retrospective and now prospective studies.24-27 As these
markers have been heavily studied, and may represent global
measures of DNA methylation status, we have focused our analy-
ses on the LINE-1 and AluYb8 repetitive elements, representing
members of both the LINE and SINE families.

Although the functional consequences of variation in methyla-
tion of LINE and SINE repetitive elements remains a topic of
debate, reduction in LINE and SINE repetitive element methyla-
tion may indicate potential epigenetic effects of an exposure.28

To date, no studies have directly examined the epigenetic conse-
quences of exposure to antiretrovirals in utero or in early life.
However, some investigators have suggested that antiretrovirals
exposure in utero is associated with mitochondrial function that
became apparent postnatally.29 Altered mitochondrial function is
linked to altered DNA methylation profiles.30-32 The association
of antiretrovirals with mitochondrial anomalies9,33-35 and meta-
bolic dysfunction36 suggests that antiretroviral drugs may also be
linked to changes in DNA methylation. Thus, the purpose of the
current study was to examine the distribution of global DNA
methylation in peripheral blood samples collected near birth and
to examine the relationship of methylation patterns and exposure
to antiretroviral drugs in utero among HIV-exposed, cART-
exposed uninfected infants compared to a historical cohort of
HIV-exposed, antiretroviral-unexposed infants.

Results

Characteristics of the study participants
The demographic characteristics of the 2 cohorts, cART-

exposed (PHACS SMARTT), and antiretroviral-unexposed cohort
(WITS) were similar (Table 1). Unexposed infants were slightly
more likely to be male. The proportions of infants weighting less
than 2500 g and considered preterm (<37 weeks) did not differ
significantly between the cohorts, consistent with the matching
design used. A higher proportion of mothers from the unexposed
population hadHIVRNA levels�400 copies/ml. Unexposed sub-
jects also had mothers with less education and lower household
incomes. In addition, greater proportions of mothers from the
unexposed group reported use of alcohol, tobacco, cocaine or
crack, heroin, andmarijuana during pregnancy.

LINE-1 and AluYb8 DNA Methylation in Newborn
Peripheral Blood

Figure 1 shows the distribution of methylation for each CpG
site within the LINE-1 and AluYb8 regions for cART-exposed

and -unexposed subjects and the means across the regions with
and without batch adjustment. For both LINE-1 and AluYb8,
the extent of methylation varied considerably across CpGs. The
mean batch adjusted LINE-1 methylation was 71.73 and 73.20
for cART-exposed and -unexposed subjects, respectively, while
AluYb8 was also lower in cART-exposed subjects (87.08) com-
pared to -unexposed (87.46).

Association of cART exposure with DNA methylation
of LINE-1 and AluYb8

The results of both unadjusted and fully adjusted models are
presented in Table 2. In unadjusted, bivariate analyses, AluYb8
methylation was significantly lower in cART-exposed subjects
compared to -unexposed subjects (P D 0.05), and was signifi-
cantly higher in infants of black race compared to other races
(P D 0.05). These results were maintained in the fully
adjusted model. AluYb8 methylation was lower in cART-
exposed subjects, compared to -unexposed subjects by
¡0.568 (95% CI: ¡1.023, ¡0.149; P D 0.009), in a model
adjusted for race, caregiver educational status, household
income, birth weight, preterm birth status, sex, and maternal
tobacco use during pregnancy. In this adjusted model, black
race, compared to all other races, was associated with higher
methylation of AluYb8 of 0.4 (P D 0.034).

LINE-1 methylation was also significantly lower in the cART-
exposed subjects compared to -unexposed subjects (P < 0.001)
in unadjusted models. These bivariate analyses also suggested
that caregiver education, male sex, and maternal tobacco use dur-
ing pregnancy were associated with increased LINE-1 methyla-
tion (P D 0.04, P < 0.001, P D 0.002, respectively). In the fully
adjusted model, LINE-1 methylation was lower by greater than
one percent (DifferenceD ¡1.36, 95% CI: ¡1.86, ¡0.86; P <

0.001). Male sex was the only other predictor significantly and
independently associated with LINE-1 methylation in this
adjusted model (DifferenceD 1.01, 95% CI: 0.58, 1.44;
P<0.001) although the estimate was attenuated.

We performed sensitivity analyses controlling for maternal
substance use during pregnancy among those with available data
for both LINE-1 and AluYb8 methylation (Table S2). Inclusion
of these variables did not substantially alter the effect estimates
for ART exposure on methylation.

Comparing those exposed to a specific cART treatment regi-
men to those unexposed to any treatment in WITS (Table S3),
we observed similar findings as the primary analysis: lower DNA
methylation at LINE-1 and AluYb8 with each of the potential
regimens of treatment compared to the unexposed subjects.
However, in a limited number of subjects exposed to non-nucleo-
side reverse transcription inhibitors (NNRTIs) and the protease
inhibitor nelfinavir, the reduction in AluYb8 methylation was
not significant, although the estimates were consistent with a
reduction in methylation.

Among those exposed to cART (SMARTT subjects only), we
estimated the effect of specific regimens that may be driving the
observed differences in methylation (Table S4). Only those sub-
jects treated with atazanavir (ATV) compared to those on other
treatments had significantly lower AluYb8 methylation [aDiff D
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¡0.524, 95% CI: (¡0.025, ¡1.024), P-value D 0.04] in fully
adjusted models (Table 3).

Discussion

We identified small but significant differences in the extent of
repetitive element DNA methylation of the LINE-1 and AluYb8
elements in the peripheral blood of newborns based on exposure
to prophylactic antiretroviral therapies in utero. Specifically,
infants exposed to antiretrovirals had 1.4% lower LINE-1 meth-
ylation and 0.6% lower AluYb8 methylation compared to infants
not exposed to these therapies. These findings suggest a reduction
of DNA methylation related to antiretroviral therapy exposure in
utero. However, questions remain as to the stability of these
changes over time and on the clinical impact of such differences
in the health of these children.

The relatively subtle differences we have observed in this
examination are consistent in size and, in some cases, in direction

with prior studies of various in utero environmental and nutri-
tional factors and methylation of these repetitive elements in
newborn cord or peripheral blood. One study of infants in Ban-
gladesh exposed to arsenic in utero through maternal drinking
water found that increases in infant cord blood arsenic were
related to a reduction of Alu methylation of 0.45%, and increases
in maternal urinary arsenic measure during pregnancy with a
reduction of LINE-1 methylation of 0.31%, but only among
female infants.37 Another study found the opposite: increased
LINE-1 methylation of 1.36% (95% CI: 0.52, 2.21%) compar-
ing the highest quartile of maternal drinking water arsenic to the
lowest.38 However, a third study found no differences in LINE-1
methylation in infant cord blood associated with various meas-
ures of internal dose of arsenic exposure.39 In a study of newborn
infants in Mexico, maternal patella lead burden in the highest
quartile was associated with a reduction in LINE-1 methylation
of greater than 1% compared to the lowest quartile, while mater-
nal tibial lead burden in the highest quartile was associated with
a reduction in ALU methylation of nearly 0.5% compared to the

Table 1: Demographic Characteristics of the Study Participants by Cohort

Characteristic
ART-exposed

(SMARTT, N D 295)
ART-unexposed
(WITS, N D 150)

Total
(N D 445) P-Value*

Gender Male 140 (47%) 84 (56%) 224 (50%) 0.088
Female 155 (53%) 66 (44%) 221 (50%)

Birth Weight (g) >D2500 256 (87%) 126 (89%) 382 (87%) 0.564
<2500 39 (13%) 16 (11%) 55 (13%)
Missing 0 8 8

Gestational Age (Weeks) >D 37 241 (82%) 130 (87%) 371 (83%) 0.183
< 37 54 (18%) 20 (13%) 74 (17%)

Last CD4 Count Prior to Delivery >D350 214 (74%) 104 (77%) 318 (75%) 0.440
<350 77 (26%) 31 (23%) 108 (25%)
Missing 4 15 19

Last Maternal HIV RNA Prior to Delivery <400 236 (83%) 21 (16%) 257 (61%) <0.001
>D400 48 (17%) 114 (84%) 162 (39%)
Missing 11 15 26

Caregiver Education Less than High School 111 (38%) 86 (58%) 197 (45%) <0.001
At least High School 181 (62%) 62 (42%) 243 (55%)
Missing 3 2 5

African American/Black No 135 (46%) 76 (51%) 211 (47%) 0.327
Yes 160 (54%) 74 (49%) 234 (53%)

Household Income <D 20k 216 (77%) 123 (91%) 339 (82%) <0.001
>20k 63 (23%) 12 (9%) 75 (18%)
Missing 16 15 31

Alcohol During Pregnancy No 268 (91%) 82 (55%) 350 (79%) <0.001
Yes 25 (9%) 68 (45%) 93 (21%)
Missing 2 0 2

Tobacco During Pregnancy No 238 (81%) 72 (48%) 310 (70%) <0.001
Yes 55 (19%) 78 (52%) 133 (30%)
Missing 2 0 2

Cocaine/Crack During Pregnancy No 283 (97%) 92 (61%) 375 (85%) <0.001
Yes 10 (3%) 58 (39%) 68 (15%)
Missing 2 0 2

Heroin During Pregnancy No 290 (99%) 117 (78%) 407 (92%) <0.001
Yes 3 (1%) 33 (22%) 36 (8%)
Missing 2 0 2

Marijuana During Pregnancy No 268 (91%) 125 (83%) 393 (89%) 0.010
Yes 25 (9%) 25 (17%) 50 (11%)
Missing 2 0 2

*Chi-Square Test
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lowest quartile of exposure in adjusted models.40 Reduced Alu
methylation of 0.37% was also identified in cord blood of new-
borns with maternal exposures to dichlorodiphenyl trichloro-
ethane insecticide in a cohort of Mexican-American children in a
rural area of California.41

Dietary supplements including folic acid supplementation
after the 12th week of pregnancy was associated with a reduction
of cord blood LINE-1 methylation of 0.34%,42 choline levels
during the periconceptual period were associated with a reduc-
tion of LINE-1 cord blood methylation of 0.1% in male infants
only within the Boston-based Project Viva cohort,43 but DHA
supplementation of maternal smokers led to an increase of
LINE-1 methylation of 0.77%.44 Only a single prior study has
examined the association of a pharmaceutical agent during gesta-
tion with global DNA methylation, specifically examining the
use of anti-epileptic drugs.45 Using a measure of DNA methyla-
tion based on the average extent of methylation profiled on the
Illumina Infinium 27K array platform, the authors identified a
reduction in global methylation associated with maternal anti-
epileptic drug use during gestation; longer durations of exposures
led to greater reductions in methylation, and a number of specific
genes were targeted for altered methylation associated with anti-
epileptic exposures.45

Within the SMARTT study of antiretroviral-exposed sub-
jects, we identified a specific effect of atazanavir compared to

other antiretroviral exposure on a reduction in AluYb8 methyl-
ation. This drug can pass into the fetal circulation through the
placenta and has been potentially linked to some cases of
hyperbilirubinemia in newborns, although without further
sequelae.46 In the SMARTT study, atazanavir was associated
with elevated odds of congenital anomalies.47 In vitro studies
have suggested that atazanavir as well as other protease inhibi-
tors can alter the expression of key metabolic genes in hepato-
cytes,48 inflammatory regulators in macrophages,49 and
mediators of adipocyte formation and autophagy in preadipo-
cytes.50,51 It is of interest that this effect appears specific to
AluYb8 and not LINE-1, and may suggest differences in the
potential mechanism through which this drug leads to these
differences, or in differences in the susceptibility of these
repetitive genomic regions for alteration by different agents.
Recent epigenomic analyses suggest that the de-methylation
and re-methylation of these repetitive elements occurs early in
embryogenesis. Hypomethylation of the SINE and LINE
repeats is observed in cells at the cleavage and blastocyst stages
of development. It is then restored in the SINE elements in
early human embryonic stem cells, but only partially in LINE
elements, which become fully hypermethylated only in differ-
entiated somatic cells.52 This could also suggest important
effects of the timing of exposure, which we were unable to
fully interrogate in this study, but would be of great interest

Figure 1. Distributions of (A) LINE-1 and (B) AluYb8 methylation extent at individual CpG sites, and the mean across the sequenced regions with and
without batch adjustment
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and could aid in providing insights into the mechanisms of
action and potential toxicity of these agents.

Pregnancy conditions and outcomes also have been related to
altered global methylation extent measured at the repetitive ele-
ments in newborn blood samples. Gestational diabetes has been
associated with a one percent decrease in Alu methylation, but a 2
percent increase in methylation at LINE-1.53 Preterm birth has
also been associated with a reduction of 0.73% in LINE-1methyla-
tion, while birth weights under 2500 g or greater than 4000 g were
also associated with reductions of 0.82% and 0.43% in LINE-1
methylation, respectively, compared to infants born between
2500–4000g.54 These latter results could suggest potential growth
related implications to alterations in global DNA methylation,
although the cross-sectional nature of those examinations cannot

definitively determine that relationship. We did not observe rela-
tionships between these markers of repetitive element DNA meth-
ylation and birth outcomes such as birth weight or gestational age
in the SMARTT cohort subjects (data not shown), and we did not
observe independent effects of birth weight or preterm birth status
on repetitive element methylation (Table 3), although our current
study design had limited power for this examination. Further stud-
ies are necessary to examine the birth and long-term implications
of the differences in methylation.

This study has a number of limitations. The most important
limitation is our reliance on a historical cohort as a comparison
group of antiretroviral unexposed individuals. Yet, this allows us
to uniquely and appropriately control for the HIV exposure,
which would occur in the SMARTT subjects as well, thereby

Table 2: Association between LINE-1/AluYb8 Mean Methylation and Exposure to ARVs in Unadjusted and Adjusted Linear Regression Models

Variable Diff (LCI, UCI) P-value aDiff (LCI, UCI)* aP-value*

ART-Exposed vs. Unexposed
AluYb8 ¡0.382 (¡0.761,¡0.004) 0.048 ¡0.586 (¡1.023,¡0.149) 0.009
LINE-1 ¡1.471 (¡1.933,¡1.008) <0.001 ¡1.359 (¡1.860,¡0.857) <0.001
Race Black vs. All Other
AluYb8 0.363 (0.007, 0.718) 0.046 0.399 (0.029, 0.768) 0.034
LINE-1 0.184 (¡0.270, 0.637) 0.43 0.366 (¡0.062, 0.793) 0.094
Caregiver Education < HS vs. � HS
AluYb8 0.112 (¡0.251, 0.474) 0.55 0.135 (¡0.257, 0.528) 0.50
LINE-1 0.469 (0.013, 0.925) 0.044 0.116 (¡0.338, 0.569) 0.62
Household Income< $20 k vs. � $20 k
AluYb8 0.088 (¡0.389, 0.565) 0.72 0.111 (¡0.389, 0.611) 0.66
LINE-1 ¡0.497 (¡1.099, 0.104) 0.11 ¡0.258 (¡0.843, 0.326) 0.39
Birth Wt � 2500 g vs. < 2500 g
AluYb8 0.291 (¡0.245, 0.827) 0.29 0.326 (¡0.298, 0.951) 0.31
LINE-1 0.526 (¡0.148, 1.199) 0.13 0.511 (¡0.210, 1.231) 0.16
Preterm Birth vs. Term (� 37 wks)
AluYb8 ¡0.153 (¡0.632, 0.326) 0.53 ¡0.043 (¡0.605, 0.520) 0.88
LINE-1 ¡0.316 (¡0.915, 0.283) 0.30 ¡0.296 (¡0.940, 0.348) 0.37
Male vs. Female
AluYb8 0.314 (¡0.041, 0.670) 0.083 0.318 (¡0.055, 0.690) 0.095
LINE-1 1.178 (0.739, 1.617) <0.001 1.010 (0.579, 1.442) <0.001
Tobacco During Pregnancy vs. No Tobacco Use
AluYb8 ¡0.118 (¡0.506, 0.271) 0.55 ¡0.293 (¡0.725, 0.139) 0.18
LINE-1 0.765 (0.277, 1.253) 0.002 0.154 (¡0.346, 0.655) 0.55

Diff D average difference; (LCI,UCI) D 95% confidence interval; aDiff D adjusted average difference; aP-value D P-value from the adjusted model; HS D High
School.
*Model adjusted for maternal race, caregiver education, household income, infant birth weight, preterm birth, infant sex, and maternal tobacco use during
pregnancy.

Table 3. Adjusted and Unadjusted Linear Regression Analyses of AluYb8 and LINE-1 comparing atazanavir (ATV) use During Pregnancy to Other Regimens.
Data on ART Exposures were Taken from in the SMARTT Cohort.

Repetitive Element Methylation N Diff (LCI, UCI) P-value aDiff (LCI, UCI)* aP-value*

LINE-1
Other Regimens 210 Ref — Ref —
ATV Exposed 71 0.130 (0.738, ¡0.479) 0.68 ¡0.087 (0.498, ¡0.671) 0.77

AluYb8
Other Regimens 207 Ref — Ref —
ATV Exposed 71 ¡0.414 (0.083, ¡0.910) 0.10 ¡0.524 (¡0.025, ¡1.024) 0.040

Diff D average difference; (LCI,UCI)D 95% confidence interval; aDiffD adjusted average difference, aP-value D P-value from the adjusted model.
*Model adjusted for maternal race, caregiver education, household income, infant birth weight, preterm birth, infant sex, and maternal tobacco use during
pregnancy
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eliminating the potential impact of this confounder. Given the
conclusive data on the efficacy for the prevention of maternal to
child transmission of HIV through the use of antiretrovirals dur-
ing pregnancy, there is no ethical means by which to study these
effects in a contemporary cohort. We aimed to appropriately
address additional confounders that could bias the results due to
the differences in the cohorts, but acknowledge that uncontrolled
confounding could still be influencing our results. We do not
believe there would be technical reasons based on the age of sam-
ples that would influence the extent of DNA methylation being
assessed. The addition or loss of the methyl-group to cytosine
requires active enzymatic processes, which are unlikely occurring
differentially in the samples, which were all stored at¡80�C. The
examination of the specific regimens, effects within the SMARTT
subjects also led to a large number of comparisons, and so our
findings may be due to chance related to the introduction of
increased Type I error. Further study of the specific effects of these
regimens in larger samples would be needed to validate these rela-
tionships. Finally, we acknowledge that we are examining general-
ized biomarkers within a mixed population of cells that make up
PBMCs. Our findings may be confounded by subtype; therefore,
future work which can address this confounding through isolation
of specific cellular subtypes would be warranted.

Important future work should aim to examine the clinical rel-
evance of this altered methylation, in terms of childhood health
outcomes such as growth, metabolic health, and immune system
function. It would also be of interest to understand how the tim-
ing of exposures during pregnancy could impact epigenetic varia-
tion, as this may provide more detailed insight into the
mechanisms through which these drugs could be impacting
the epigenome. In addition, it will be important to examine the
long-term stability of this variation, as it will be important to
know if these decrements are maintained or propagated, or are
potentially reversed over time The true functional implications
of methylation of these repetitive elements in not clear, and it
would be of interest to examine more gene-specific effects, target-
ing candidate genes related to known health effects of these
agents, or performing genome-wide discovery studies to uncover
potentially novel genes or pathways which may be altered
through these exposure.

Although we have identified potential epigenetic variability
with exposure to anti-retrovirals in utero, there remain significant
questions regarding the clinical implications of these findings. As
such, the overwhelming evidence of the benefit of the use of these
agents in preventing maternal to fetal HIV transmission far out-
weighs these effects. However, further research is needed to assess
the long-term implications of in utero antiretroviral drug expo-
sure in order to identify the most efficacious and safe treatment
and preventative antiretroviral regimens.

Patients and Methods

Study Populations. The HIV-exposed, antiretroviral exposed
population was drawn from participants in the Surveillance
Monitoring for Antiretroviral Therapy Toxicities (SMARTT)

study of the Pediatrics HIV/AIDS Cohort Study (PHACS) net-
work.55 The Dynamic Cohort of SMARTT enrolled newborns
and their mothers between 22 weeks gestation and 1 week after
birth at 22 participating PHACS network sites in the United
States including Puerto Rico starting in 2007. A more thorough
description of the particular antiretroviral regimens being exam-
ined is provided as supplementary methods.

The HIV-exposed, antiretroviral unexposed population was
drawn from the Women and Infants Transmission Study
(WITS), which enrolled newborns and their mothers between
1989 and 2003 at 6 clinical sites in the United States.56 Institu-
tional review board approval was obtained at all participating
sites and at the Harvard School of Public Health, which serves as
the coordinating center.

Subjects from WITS (n D 150) were selected from those
infants with peripheral blood samples collected prior to the third
day of life. SMARTT subjects with peripheral blood samples col-
lected prior to the third day of life were matched in a 2 to one
ratio (n D 300) to the WITS subjects. SMARTT subjects were
matched on gestational age to minimize the difference in the per-
centage of preterm delivery between the SMARTT and WITS.
Exposure to specific antiretrovirals was defined as any exposure
during pregnancy. These sample sizes were chosen based on a pri-
ori power simulations to identify a difference of methylation of
0.025.

DNA Methylation Analysis. Genomic DNA was isolated from
peripheral blood mononuclear cell pellets using the Qiamp Blood
Minikit (Qiagen). The resulting genomic DNA underwent
sodium bisulfite modification utilizing the EZ DNAMethylation
Kit (Zymo Research) in 96 sample batches. The extent of methyl-
ation of cytosines followed guanines (CpGs) of the LINE-1 and
AluYb8 repetitive regions (presenting LINE and SINE repetitive
elements, respectively) was examined with a quantitative pyrose-
quencing approach following previously described methods.57-59

These assays allow for the assessment of the percent of DNA
methylation at 4 specific CpG sites in the LINE-1 region, and
6 CpG sites within the AluYb8 region.

Statistical methods. Demographic characteristics were com-
pared between those with vs. without antiretroviral exposure
using chi-square tests. Mean LINE-1 and AluYb8 methylation at
individual CpG sites in those with vs. without cART exposure,
and adjusted means adjusting for batch effects were calculated.
Batch effects were adjusted using a 2-stage procedure.60 To assure
that our normalization procedure adequately controlled for batch
effects, we performed additional analyses that included batch in
the model. Those analyses demonstrated appropriate control for
these effects (Table S1) and so the models reported thereafter in
this report did not include the batch effect as a covariate
(Table 3), and were based on the adjusted means across all inter-
rogated CpG sites. Linear regression models were used to esti-
mate associations of cART exposure with mean LINE-1 and
AluYb8 methylation while adjusting for potential confounders.
Potential confounders were chosen a priori and included race,
caregiver education, household income, birth weight, preterm
delivery, gender, and tobacco use. Sensitivity analyses were per-
formed by adjusting for other substance use exposure during
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pregnancy including marijuana use, cocaine/crack use, heroin
and alcohol use. We further examined if any specific antiretrovi-
rals were associated with reduction in DNA methylation. Linear
regression models were constructed comparing specific antiretro-
viral therapy regimens compared to all other regimens within the
cART-exposed subjects only. In addition, models were con-
structed comparing those subjects on a specific cART regimen
compared to unexposed subjects.

Analyses with P-values < 0.05 were considered to be statisti-
cally significant, and confidence intervals (CI) are reported as
95% CI. SAS 9.2 and R version 2.15.1 were used for the
analyses.
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