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Abstract
AIM: To observe the effects of Kupffer cells on hepatic
drug metabolic enzymes.

METHODS: Kunming mice were ip injected with GdCl310,
20, 40 mg/kg to decrease the number and block the function
of kupffer cells selectively. The contents of drug metabolic
enzymes, cytochrome P450, NADPH-cytochrom C redutase
(NADPH-C), aniline hydroxylase (ANH), aminopyrine N-
demethylase (AMD), erythromycin N-demethylase (EMD),
and glutathione s-transferase (mGST) in hepatic microsome
and S9-GSTpi, S9-GST in supernatant of 9 000 g were
accessed 1 d after the injection. The time course of
alteration of drug metabolic enzymes was observed on d
1, 3, and 6 treated with a single dose GdCl3. Mice were
treated with Angelica sinensis polysaccharides (ASP) of
30, 60, 120 mg/kg, ig, qd ×6 d, respectively and the same
assays were performed.

RESULTS: P450 content and NADPH-C, ANH, AMD, and
EMD activities were obviously reduced 1 d after Kupffer
cell blockade. However, mGST and S9-GST activities were
significantly increased. But no relationship was observed
between GdCl3 dosage and enzyme activities. With single
dose GdCl3 treatment, P450 content, NADPH-C, and ANH
activities were further decreased following Kupffer cell
blockade lasted for 6 d, by 35.7%, 50.3%, 36.5% after
3 d, and 57.9%, 57.9%, 63.2% after 6 d, respectively. On
the contrary, AMD, EMD, mGST, and S9-GST activities
were raised by 36.5%, 71.9%, 23.1%, 35.7% after 3 d,
and 155%, 182%, 21.5%, 33.7% after 6 d, respectively.
Furthermore, the activities of drug metabolic enzymes
were markedly increased after 30 mg/kg ASP treatment,
and decreased significantly after 120 mg/kg ASP treatment.
No change in activity of S9-GSTpi was observed in the
present study.

CONCLUSION: Kupffer cells play an important role in the
modulation of drug metabolic enzymes. The changes of
drug metabolic enzyme activities depend on the time of
kupffer cell blockade and on the degree of Kupffer cells
activated. A low concentration of ASP increases the activities
of drug metabolic enzymes, but a high concentration of
ASP decreases the activities of drug metabolic enzymes.
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INTRODUCTION
Drug metabolic enzymes can detoxify endogenous and
exogenous compounds and also generate potentially
carcinogenic or toxic compounds in the process of catalyzing
the metabolism of xenobiotics, and inhibition and induction of
their activities are also the key mechanisms in drug-drug
interactions[1,2]. The induction or inhibition of metabolizing
enzyme activities by a great deal of substances (including drugs,
foods, inflammatory factors, etc.) influences their toxicological
or pharmacological outcomes as well as those of other
xenobiotics or drugs[3-5].
       The role of sinusoidal cells in hepatic metabolism has been
greatly underestimated until now. However, Kupffer cells,
despite their size represents 80% to 90% of all fixed
macrophages in the body and approximately 14% of the
hepatic cellular mass, the function in hepatic metabolism of
Kupffer cells is unknown. Some reports suggested that
Kupffer cells might play an important role in xenobiotic-induced
hepatotocixity, which is often dependent on their metabolism.
Although hepatotocytes are the major site of xenobiotic
metabolism, several enzymatic activities such as glutathione
s-transferase, UDP-glucuronosyltransferase and cytochrome
P450-dependent oxidase have been found in nonparenchymal
cells (mainly Kupffer cells) and may play an important role in
the metabolism and cellular effects of paracetamol[6,7]. Only a
small number of reports demonstrated the relationship
between drug metabolic enzymes and activities of Kupffer
cells. The aim of this work was to investigate the effects of
kupffer cell mediated metabolism as demonstrated by hepatic
drug metabolic enzymes.

MATERIALS AND METHODS
Reagents
Gadolinium chloride (GdCl3), glutathione (GSH), erythromycin,
aniline, NADPH, aminophenazone, isocitric acid, isocitric acid
dehydrogenase, 1-chloro-2,4-dinitrobenzene (CDNB),
ethacrynic acid (EA) were purchased from Sigma, USA. All
other reagents used in this study were of AR grade.

Animals and treatment
Kunming strain male mice (aged 4-6 wk) weighing 18-24 g were
obtained from the Experimental Animal Center, Wuhan
University School of Medicine. The animals were fed with a
standard diet in pellets, and allowed free access to water. The
mice were randomly divided into 9 groups, 10 per group: control
group; GdCl310-1d group; GdCl320-1d group; GdCl340-1d group:
mice received ip injection of GdCl310, 20, 40 mg/kg, respectively,
and killed after 1 d; GdCl320-3 d group; GdCl320-6 d group: mice
were treated with GdCl3 at a single dose of 20 mg/kg, and killed
after 3 d, and 6 d, respectively; ASP1 group; ASP2 group; ASP3
group: mice were given ASP 30, 60, and 120 mg/kg, respectively,
i.g, qd×7 d, and were then killed on the 7th d. The livers were
collected for the assay of drug metabolic enzyme activities.
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Preparation of liver sample S9 and microsomal fractions
Microsomal fractions were preparated as previously described[8].
Total protein concentration in mice liver microsomes was
determined by the method of Lowry et al.[9] (1951) using BSA
as the standard. All operations were performed at 4 .

Assays for metabolic enzyme activities
Total cytochrome  P450 (P450) content was based on the use
of the extinction coefficient of 105 mmol/L·cm for reduced
cytochrome P450 minus oxidized P450 with a UV-1601
spectrophotometer[10].
       NADPH-cytochrome C reductase (NADPH-C) activity was
determined with a spectrophotometer at 550 nm by monitoring the
reduction of cytochrome C (0.5 mg /mL) at 37  in an incubation
mixture containing potassium phosphate (300 mmol/L, pH7.7)
EDTA (0.1 mmol/L), liver microsomes (20 µg/mL) and NADPH
(2 mg/L)[11].
      Aminopytine N-demethylase (AMD) and erythomycin N-
demethylase (EMD) were detected by measuring the production
of formaldehyde. Its reaction system contained Tris-HCl
50 mmol/L, MgCl2 10 mmol/L, KCl 50 mmol/L and an NADPH-
generating system ( including NADP+ 0.4 mmol/L, isocitric acid
10 mmol/L, and isocitric acid dehydrogenase 0.6 units).
Erythromycin 0.4 mmol/L or aminopyrine 8 mmol/L was added,
the reaction was initiated by the NADPH-generating system,
the supernatant was incubated with the Nash reagent at 60 
for 20 min and the color absorbance was measured at 415 nm
with a UV-1601 spectrophotometer[12].
     Aniline hydroxylase (ANH) was assessed with aniline as
substrate as previously described[13].
    Microsome glutathione s-transferase (mGST) and S9
glutathione s-transferase (S9-GST) activities were measured
with CDNB as substrate (ε=9.6 mmol/L·cm)[14]. The assay mixture
contained 850 µL of 0.1 mol/L sodium phosphate-1 mmol/L
EDTA (pH6.5), 50 µL of 20 mmol/L GSH, 50 µL of 50 mmol/L
CDNB, and 50 µL of sample. The absorbance at 340 nm was
continuously recorded for 1 min[15]. S9-GSTpi was determined

with EA and GSH as substrates (ε=5.0 mmol/L·cm)[14]. The assay
mixture contained 850 µL of 0.1 mol/L sodium phosphate, 1 mmol/L
EDTA (pH6.8), 50 µL of 50 mmol/L GSH, 50 µL of 50 mmol/L
EA, and 50 µL of sample. The absorbance at 340 nm was
continuously recorded for 1 minute.

Statistical analysis
The data were presented as mean±SD. Comparisons were
performed using one-way analysis of variance (ANOVA)
followed by the posteriori Student-Newman-Keuls’ t-test.
P<0.05 was considered statistically significant.

RESULTS

Influence of different dose of GdCl3 on P450 content and P450
isoform activities
The content of P450 and the activities of NADPH-C, ANH,
AMD, and EMD were obviously reduced after 1 d after Gdcl3

treatment, and no relationship was found between the enzyme
activities and the dose of Gdcl3 (Table 1).

Time course of alterations of P450 content, activities of P450
isoforms, S9-GSTpi, S9-GST and mGST by Kupffer cell blockade
The content of P450 and activities of NADPH-C and ANH
were reduced by 35.7%, 50.3%, 36.8% after Kupffer cell
blockade for 3 d, and 57.9%, 57.9%, 63.2% for 6 d, respectively.
However, the activities of AMD, EMD were raised by 36.5%,
71.9% after 3 d, and 155%, 181% after 6 d, respectively. S9-
GST, mGST were markedly increased by Kupffer cell
blockade. However, the changes were not related with the
time of Kupffer cell blockade. No changes in S9-GST were
observed (Table 2).

Influence of ASP on P450, activities of P450 isoforms, S9-GSTpi,
S9-GST and mGST
The content of P450 and the activities of NADPH-C, ANH,

Table 1  Influence of different dose of GdCl3 on P450 content and P450 isoform activities

Group    P-450                   NADPH-C     ANH   AMD    EMD
                     (nmol/mg·pro) (nmol/min·mg·pro)     (nmol/min·mg·pro)       (nmol/min·mg·pro)    (nmol/min·mg·pro)

Control   1.4±0.4         14.5±2.8 0.038±0.009 0.96±0.07 0.89±0.06
GdCl310-1 d 1.13±0.25         10.9±1.0b 0.032±0.016 0.76±0.07b 0.78±0.12
GdCl320-1 d 0.87±0.28b         10.5±1.8b 0.033±0.006 0.82±0.03a 0.74±0.13a

GdCl340-1 d 1.01±0.29a           6.0±1.0b 0.036±0.010 0.77±0.17a 0.74±0.18a

GdCl310-1 d, GdCl320-1 d, GdCl340-1 d: Mice were intraperitoneally injected with GdCl3 10, 20, 40 mg/kg, respectively, and
sacrificed after 1 d. The hepatic microsome was prepared to assess the content of P450 and the activities of P450 isoforms. P450:
cytochrome P450; NADPH-C: NADPH-cytochrome c reductase; ANH: aniline hydroxylase; AMD: aminopytine N-demethylase;
EMD: erythomycin N-demethylase (n=8, mean±SD, aP<0.05, bP<0.01 compared with control group).

Table 2  Time course of alterations of P450 content, activities of P450 isoforms, S9-GSTpi, S9-GST and mGST by Kupffer cell blockade

Group       Control        GdCl320-1 d  GdCl320-3 d  GdCl320-6 d

P-450 (nmol/mg·pro)       1.4±0.4         0.87±0.28b   0.90±0.21b   0.59±0.24b

NADPH-C (nmol/min·mg·pro)     14.5±2.8         10.5±1.8b     7.2±1.0b     6.1±0.8b

ANH (nmol/min·mg·pro)   0.038±0.009       0.033±0.006 0.024±0.006b 0.024±0.006b

AMD (nmol/min·mg·pro)     0.96±0.07         0.82±0.03a   1.31±0.24b   1.31±0.24b

EMD (nmol/min·mg·pro)     0.89±0.06         0.74±0.13a   1.53±0.26b     2.5±0.3b

S9-GSTpi (nmol/min·mg·pro)     1.07±0.28         0.93±0.17     1.1±0.4   0.98±0.23
S9-GST (nmol/min·mg·pro)       8.3±0.91           0.2±1.5a   11.4±0.9b   11.1±1.3b

mGST (nmol/min·mg·pro)     0.25±0.03         0.28±0.06   0.31±0.04b 0.305±0.015b

GdCl320-1 d, GdCl320-3 d, GdCl320-6 d: Mice were intraperitoneally injected with a signal dose of 20 mg/kg of GdCl3 , and sacrificed
after 1 d, 3 d, and 6 d of GdCl3 treatment. The hepatic microsome was prepared to assay the P450 content, and activities of P450
isoforms, S9-GSTpi, S9-GST and mGST. (n=8, mean±SD, aP<0.05, bP<0.01 compared with control group).



AMD, EMD were obviously increased by 50.0%, 35.9%, 18.4%,
34.4%, and 46.1% after 30 mg/kg ASP treatment, and obviously
decreased by 57.1%, 47.6%, 73.7%, 36.5%, and 53.9% after
120 mg/kg ASP treatment, respectively. Thirty and 60 mg/kg of
ASP could increase the activity of S9-GST by 26.5%, 42.3%,
respectively. The alterations of mGST activity were similar to
those of S9-GST. The activities of S9-GST and mGST were
reduced by 4.8%, 38.0% after administration of  120 mg/kg ASP,
respectively. No changes in S9-GSTpi were observed (Table 3).

Influence of different dose of GdCl3 on activities of S9-GSTpi,
S9-GST and mGST
S9-GST activity was increased by 18.1%, 22.9% after 10 mg and
20 mg/kg of GdCl3 treatment, respectively, and the alterations in
mGST activity were similar to those of S9-GST. No changes in
S9-GSTpi were observed (Table 4).

Table 4  Influence of different dose of GdCl3 on activities of S9-
GSTpi, S9-GST and mGST

S9-GSTpi     S9-GST     mGST
Group

     (nmol/min·mg·pro)

Control           1.07±0.28   8.3±0.9   0.25±0.03
GdCl310-1d           1.16±0.0.19   9.8±1.5a 0.289±0.026a

GdCl320-1d           0.93±0.17 10.2±1.5a   0.28±0.06
GdCl340-1d           0.91±0.12   7.9±0.8 0.264±0.012

The administration of GdCl3 and the treatment of animals were
the same as described in Table 1. S9-GST: glutathione s-trans-
ferase in S9; S9-GSTpi: glutathione s-transferase pi in S9; mGST:
glutathione s-transferase in microsome. (n=8, mean±SD, aP<0.05
compared with control group).

DISCUSSION
Neyrinck et al.[16,17] reported that Kupffer cells might play a role
of xenobiotic metabolism in hepatocytes in vitro, and treatment
of GdCl3 could decrease the total hepatic content of cytochrome
P450. Kupffer cells were involved in some liver diseases in
which the activities of drug metabolic enzymes changed[18,19].
Few studies until now have reported an effect of GdCl3 injection
on the activities of specific CYP isoforms and GST, and on the
time course of developmental changes of their activities after
Kupffer cells blocked by GdCl3 in vivo. The present study
showed that Kupffer cell blockade indicated a tendency to
decrease cytochrome P450 content and its isoform activities,
and to increase GST (including S9-GST, and mGST) activities.
However, CYP isoforms and GST activities showed different
changes following different time of Kupffer cell blockade. The
total cytochrome P450 content, NADPH-C and ANH (as marker
of CYP2E1) activities had a sustained decrease following

prolonged Kupffer cell blockade, but AMD, EMD (as marker of
CYP3A) activities obviously raised 3 d after Kupffer cell
blockade, and GST activities kept a high level 6d after Kupffer
cell blockade. Some authors have already reported that the
treatment of GdCl3 causing inactivation of Kupffer cells could
protect liver against damage induced by some toxic chemicals
(such as ethanol, CCl4, etc.) through inhibiting CYP2E1[20, 21].
The present study offered further support for a relevant role of
Kupffer cells through the control of hepatocyte metabolism
mediated liver injury. CYP3A contributed significantly to the
biotransformation of xenobiotic chemicals such as drugs, and
toxic chemicals[22]. GSTs constitute a multigene family of phase
II conjugating enzymes broadly distributed phylogenetically.
Detoxification of electrophilic compounds by GSTs may occur
via catalytic conjugation of electrophilic intermediates with GSH,
via GSH-dependent reduction of organic peroxides, or via direct
binding to lipophilic compounds. GST might have an important
cytoprotective function[23]. The current study showed CYP3A
and GST activities were rapidly recovered, which might be a
self-regulated and self-protected mechanism of the body.
      The changes in CYP and GST activities were related with
the state of Kupffer cells activated by Angelica sinensis
polysaccharides (ASP). Now, some new functions of ASP have
been reported. ASP could promote ulcer healing, protect hepatic
injury and might have antitumor effects[24-26]. Immunoactivity
is the most important function of ASP. It could enhance the
proliferative response of lymphocytes in vitro and differential
expression of genes in the liver of immunological injury mice[27,28].
In the present study, 30 mg/kg ASP could increase cytochrome
P450 content , P450 isoform activities and GST activities.
However, 120 mg/kg ASP could obviously decrease the activities
of these enzymes. This phenomenon might be concerned with
the immunoactivity of ASP. Its mechanism remains to be further
studied.
      GSTpi, a glutathion s-transferase of placenta type, often
presented high expression in tumor tissues related with drug
resistance[29]. The present study indicated that GSTpi activity
was not influenced by Kupffer cell blockade or activated,
suggesting that GSTpi activity is not easily induced in normal
tissues.
       In conclusion, Kupffer cells and their adjacent hepatocytes
capable of regulating interactions could be demonstrated[30],
suggesting that Kupffer cells may mediate hepatic functions
including drug metabolism.
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