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This study aims to identify effective gene networks and prognostic biomarkers associated with estrogen receptor
positive (ERC) breast cancer using human mRNA studies. Weighted gene coexpression network analysis was performed
with a complex ERC breast cancer transcriptome to investigate the function of networks and key genes in the
prognosis of breast cancer. We found a significant correlation of an expression module with distant metastasis-free
survival (HR D 2.25; 95% CI .21.03–4.88 in discovery set; HR D 1.78; 95% CI D 1.07–2.93 in validation set). This module
contained genes enriched in the biological process of the M phase. From this module, we further identified and
validated 5 hub genes (CDK1, DLGAP5, MELK, NUSAP1, and RRM2), the expression levels of which were strongly
associated with poor survival. Highly expressed MELK indicated poor survival in luminal A and luminal B breast cancer
molecular subtypes. This gene was also found to be associated with tamoxifen resistance. Results indicated that a
network-based approach may facilitate the discovery of biomarkers for the prognosis of ERC breast cancer and may
also be used as a basis for establishing personalized therapies. Nevertheless, before the application of this approach in
clinical settings, in vivo and in vitro experiments and multi-center randomized controlled clinical trials are still needed.

Introduction

Breast cancer is one of the most common malignancies among
women. This disease is characterized as a biologically heteroge-
neous group of neoplasms in reference to their clinical behavior
and response to therapies. However, treatment-decision making
relative to breast cancer remains largely dependent on conven-
tional immunohistochemical markers and histopathological
appearance that do not comprehensively consider tumor biology
and latent response to treatment.

A few prognostic and predictive biomarkers are commonly
used for breast cancer therapies. These biomarkers, such as several
receptor proteins including estrogen receptor (ER), progesterone
receptor (PR) and human epidermal growth factor 2 (HER2),
take tumor biology as a good indicator of breast cancer subtype.1

The presence of ER is the best indicator of response to anti-estro-
gen drugs, such as tamoxifen, and approximately 70% of breast
cancer patients are ER positive.2 However, 30%–40% of women
with estrogen receptor-positive (ERC) breast cancer fail to

respond to tamoxifen effectively, and even for those who
responded at the beginning of treatment would eventually
develop acquired resistance.3 The underlying biological mecha-
nisms of tamoxifen resistance remain incompletely understood,
and a benchmark for personalizing ERC breast cancer treatment
remains lacking. Thus, a novel avenue should be established to
predict prognosis and therapy response.

Given the large number of ERC breast cancer patients that fail
on tamoxifen, effective and reliable prognostic biomarkers that
could be used to monitor tamoxifen efficacy should be identified.
Identifying new targets to reverse tamoxifen resistance is also an
important long-term goal for the development of highly effective
therapeutic strategies.

Coexpression analysis has emerged as a powerful technique for
multigene analysis. This approach is designed to uncover net-
works and genes associated with phenotypes of interest. A rela-
tively novel coexpression approach is the weighted gene
coexpression network analysis (WGCNA), a statistical technique
that constructs gene sets (modules) from observed gene mRNA
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expression data with the use of unsupervised clustering and is
thus independent of a priori defined gene sets or pathways. The
basic concept of WGCNA analysis is the gene coexpression mod-
ule, in which a group of genes was found to maintain a consistent
expression relationship and may share a common biological regu-
lation function.4

WGCNA has been successfully applied to cancer-related stud-
ies. This approach gas exposed the mRNA and microRNA
expression network in prostate cancer,5 identified the ASPM
gene as a novel molecular biomarker in glioblastoma,6 and identi-
fied coexpression networks related to proastrocytic differentiation
and sprouty gignaling in glioma.7 WGCNA has been conducted
by Wirapati et al.8 to analyze a breast cancer dataset consisting of
2833 patients. In this study, a type of supervised coexpression
analysis was conducted against genes ESR1, AURKA, and
ERBB2 to represent ER status, HER2 status, and proliferation,
respectively. Moreover, Clarke et al.9 utilized WGCNA to iden-
tify 11 coregulated gene clusters across 2342 breast cancer
patients from 13 microarray-based gene expression studies and
explored the relationship between these transcriptional modules
and clinicopathological variables (e.g., tumor size and grade), sur-
vival endpoints for breast cancer as a whole, and molecular sub-
types (luminal A, luminal B, HER2C, and basal-like).

In this study, we applied WGCNA to analyze a data set
obtained from a transcriptome comprising 87 ERC breast cancer
patients. Compared with the coexpression analysis conducted by
Wirapati8 and Clarke,9 our study solely focuses on ERC breast
cancer patients who have only received tamoxifen treatment. We
identify gene modules and biomarkers (hub genes) for the prog-
nosis of tamoxifen-treated ERC breast cancer patients. Further,
we validate our findings on an independent dataset of tamoxifen-
treated samples obtained from a number of different institutions.

Results

Detection of gene
coexpression modules

To investigate the func-
tional organization of the
ERC breast cancer tran-
scriptome and identify the
gene coexpression mod-
ules, WGCNA methodol-
ogy was employed to
analyze the gene expres-
sion profiles derived from
87 ERC breast cancer
tumor tissues. Nine gene
modules were identified
(Fig. 1), and each was
assigned with a unique
color. Blue, black, green,
magenta, turquoise, pink,
brown, red, and yellow
denoted 429, 64, 139, 37,
507, 46, 395, 79, and 358
genes, respectively. Mod-

ule gray is the background color that represents the 1546 genes
not assigned to any module. A complete list of the network
metrics and the module membership for each gene is presented
in Additional file 1.

Of these modules, several were significantly associated with
tumor grade and size. This result was as expected because tumor
differences reflect different genetic backgrounds. We found a sig-
nificant association of MEs of modules turquoise [hazard ratio
(HR) D 2.25, 95% confidence interval (CI) D 1.03–4.88, p D
0.041) and magenta (HR D 2.50, 95% CI D 1.13–5.53 p D
0.024) with DFMS (Table 2). Further, the turquoise module
was significantly associated with tumor grade (r D 0.60,
P < 0 .001) and tumor size (r D 0.25, P D 0.020). Therefore,
our subsequent analysis focuses on module turquoise. In the vali-
dating data set, we found a significant association of MEs of
module turquoise (HR D 1.78; 95% CI D 1.07–2.93, p D
0.025) with DFMS. Elevated expression of the turquoise module
indicates poor outcome in ERC breast cancer patients treated
with tamoxifen in the training (Fig. 2A) and validating datasets
(Fig. 2B). For information on module turquoise, please refer to
Additional file 2.

Biological insights from module turquoise
To elucidate the potential biological mechanisms of module

turquoise, we performed GO biological enrichment analysis with
DAVID and found significant GO biological terms enriched in
module turquoise (Fig. 2C, Table S1). The most significant bio-
logical GO terms for module turquoise are “M phase” (raw p
value D 9.60 £ 10¡44 Bonferroni-adjusted p value D 1.82 £
10¡40). We also examined the module genes of turquoise for cor-
relation between gene significance (GS) and gene connectivity.
Interestingly, the survival-related GS was significantly correlated

Figure 1. Identification of ERC breast cancer specific modules using WGCNA. The clustering dendrogram of gene
profilers from the data set GSE6532 with 87 ERC breast cancer patients. Hierarchical cluster analysis dendrogram was
used to detect coexpression clusters. Each short vertical line corresponds to a gene and the branches are expression
modules of highly interconnected groups of genes with a color to indicate its module assignment. In total, 9 modules
ranging from 37 to 507 genes in size were identified. The gray color suggests the 1546 genes that are outside of all
the modules.
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with gene connectivity (R D 0.36, p D 2.22 £ 10¡16) (Fig. S1),
thereby suggesting that the genes with more significant survival
association tended to be highly connected genes and are thus the
most important genes in the module.

Definition and validation of survival-related hub genes
Hub genes are more likely to serve a key function in a highly

connected network. For the 507 genes in module turquoise, we
further defined 6 as hub genes (CDK1, DLGAP5, NUSAP1,
RRM2, MELK, and DEPDC1), which were highly connected
with the module turquoise and associated with DMFS on the
basis of the following criteria; (i) the value of intramodular con-
nectivity (k.in, described in the method section) belongs to the
first 40 ones of module turquoise and (ii) a gene significance

(GS) higher than 2. Furthermore, the gene expressions of 5 of
the 6 hub genes (CDK1, DLGAP5, NUSAP1, RRM2, and
MELK) were significantly associated with survival (DMFS and
RFS) and were replicated in the validation sets (Table 3). To
determine whether any of the 5 identified hub genes was associ-
ated with clinicopathological information, we calculated the
Pearson’s correlation coefficients (PCC) between gene expression
and tumor size and grade (Table S2). We observed that all 5 hub
genes yielded significantly positive PCCs with tumor grade in
both the training and validating data sets. Patients with a higher
gene signature have a higher risk of death than those with a lower
gene signature.

Identification of hub genes with significant breast cancer
subtype-specific survival associations

In addition to survival analysis in breast cancer as a whole, we
also determined whether significant associations could be found
between the 5 hub genes (CDK1, DLGAP5, NUSAP1, RRM2,
and MELK) and the molecular subtypes. We calculated HRs and
accompanying P-values to highlight single gene markers for the
luminal A and luminal B subtypes (Table 4). MELK is particu-
larly interesting because its increased expression is indicative of
poor prognosis within the luminal A (HR D 2.7 for DMFS, HR
D 2.04 for RFS) and luminal B subtypes (HR D 2.13 for
DMFS, HR D 1.91 for RFS) in the validating dataset. The HRs
for MELK in the training data set are 1.88 and 2.60 for the lumi-
nal A and luminal B subtypes, respectively. The corresponding
P-values of HRs failed to reach statistical significance, which may
be attributed to the small sample size.

Identification of hub genes that may participate in tamoxifen
resistance

From the above results, we can infer that high expression of
hub genes confers poor survival in ERC breast cancer patients
treated with tamoxifen, such that these hub genes may serve a
potential function in tamoxifen resistance. To validate this
hypothesis, 2 datasets, GSE3336610 and GSE26459,11 were

Figure 2. Elevated expression of the turquoise ME, a group of coexpressed genes indicates poor outcome in ERC breast cancer patients treated with
tamoxifen. Kaplan–Meier survival plots for RFS in the training (A) and validating (B) datasets. Increased expression (red) of this coexpressed group is asso-
ciated with poor RFS. (C) GO enrichment analysis for the 507 genes comprising the turquoise module identifies multiple processes related to cell prolifer-
ation. The original significance outputted from DAVID for GO biological processes were transformed in to “–log (P-value)” for plotting.

Table 1. Basic characteristics of the datasets

Characteristics Training Dataset
(n D 87)

Validating Dataset
(n D 449)

Age: mean (sd) 62.8 (8.6) 62.1 (12.1)
Grade (%)
I 17 (19.5) 116 (25.8)
II 37 (42.5) 230 (51.2)
III 16 (18.4) 64 (14.3)

Unknown 17 (19.5) 39 (8.7)
Size: mean (sd) 2.5 (1.1) 2.2 (1.2)
Lymph node status(%) 58 (66.7) 143 (31.8)
Type (%)
Basal-like 1 (1.1) 11 (2.4)
Her2C 3 (3.5) 15 (3.3)
luminal A 44 (50.6) 267 (59.5)
luminal B 39 (44.8) 156 (34.7)

RFS
Time mean (sd) – 52.8 (41.7)
Event (%) – 150 (33.4)

DMFS
Time mean (sd) 121.6 (56.1) 48.84 (39.0)
Event (%) 28 (32.2) 62 (13.8)
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downloaded from GEO and analyzed. In vivo data showed that
MELK expression was downregulated in MCF-7 tumor xenograft
treatment with tamoxifen compared with control (p D 0.033,
Fig. 3C), which indicates that tamoxifen could decrease MELK
expression in ERC breast cancer cells. In vitro experiment results
showed that MELK was overexpressed in tamoxifen-resistant
MCF-7 subclones compared with sensitive controls, regardless of
whether patients were treated with tamoxifen (Fig. 3D, P D 7.26
£ 10¡44 and 0.021, respectively), which indicates that MELK
may potentially affect tamoxifen resistance. Thus, tamoxifen
could downregulate MELK expression in vivo (Fig. 3C, P D
0.033). Similar trends are emerging in vitro (Fig. 3D, PD 0.884).
However, these findings are not statistically significant.

Discussion

In this study, we applied a system biology approach called
WGCNA to examine gene coexpression patterns in ERC breast
cancer tumor tissues of patients treated with tamoxifen. We identi-
fied a gene module enriched with cell proliferation-related genes.
Expression signatures of the module were significantly correlated
with tumor grade and size, as well as with survival. Further, 5 hub

genes proved to be biomarkers for the prognosis of ERC breast
cancer. Among these genes, increased MELK expression indicates
poor survival in the luminal A and luminal B molecular subtypes,
which may also be associated with tamoxifen resistance.

Therapy for ERC breast cancer, which represents more than
70% of breast tumors, is based on anti-hormonal compounds,
such as the commonly used anti-estrogen tamoxifen12. Tamoxi-
fen improves overall survival and reduces the risk for developing
breast cancer for adjuvant therapy of ERC breast cancer.13 How-
ever, approximately 30% of the patients who received adjuvant
tamoxifen would eventually experience relapse and may finally
die as a result of the disease.14 Several groups have performed
gene-expression analysis by combining endocrine therapy with
agents that could modulate these mechanisms to identify ER-reg-
ulated genes that are affected by tamoxifen in breast cancer
cells. 15,16 The pressing clinical need has motivated several inves-
tigators to develop gene signatures that predict clinical responses
to tamoxifen. 17-19 For instance, Retinoic acid receptor a,
CD44, and delta EF1 have been reportedly involved in the devel-
opment of tamoxifen resistance in breast cancer. 20-23 Likewise,
Cyclin D1, Acid ceramidase 1 and p53 accumulation, as well as
CCNA2 and CCNB1, have been reported to have the capability
to predict outcomes in ERC breast cancer treated with adjuvant

Table 3. Association relationship between hub genes with survival

Training data set (n D 87) Validating dataset (n D 449)

DMFS DMFS RFS

Gene HR p-value 95% CI HR p-value 95% CI HR p-value 95% CI

CDK1 2.92 8.5 £ 10–3 1.31–6.49 3.07 3.0£ 10–5 1.81–5.21 2.13 1.3 £ 10–5 1.52–3.00
DEPDC1 3.34 4.1 £ 10–3 1.47–7.62 0.93 7.9£ 10–1 0.54–1.58 0.98 8.9 V 10–1 0.71–1.35
DLGAP5 2.86 9.9 £ 10–3 1.29–6.35 1.98 7.8£ 10–3 1.20–3.26 1.77 8.2 £ 10–4 1.27–2.47
MELK 3.52 2.4 £ 10–3 1.54–8.05 2.55 2.9£ 10–4 1.54–4.24 1.97 8.9 £ 10–5 1.40–2.77
NUSAP1 2.97 7.6 £ 10–3 1.34–6.62 2.35 9.2£ 10–4 1.42–3.89 1.43 3.6 £ 10–2 1.02–1.99
RRM2 2.86 9.8 £ 10–3 1.29–6.36 1.85 1.6£ 10–2 1.12–3.06 2.04 3.9 £ 10–5 1.45–2.86

Recurrence free survival (RFS), Distant metastasis free survival (DMFS). Hazard ratios (HRs), 95% confidence intervals (CI), and p-values were calculated using
Cox proportional hazards regression analysis after grouped the breast cancer patients by the median of gene level.

Table 2. Association of expression modules with tumor grade, tumor size, and survival in discovery set

Correlation with tumor grade Correlation with tumor size Association with DMFS (n D 87)

Modules Gene count R p-value R p-value HR p-value 95% CI

Blue 429 ¡0.23 5.1£ 10–2 0.09 4.2£ 10–1 0.63 2.3 £ 10–1 0.30–1.34
Black 64 ¡0.35 3.0£ 10–2 ¡0.21 5.2£ 10–2 0.81 5.7 £ 10–1 0.38–1.70
Green 139 ¡0.30 1.1£ 10–2 ¡0.05 6.7£ 10–1 0.59 1.7 £ 10–1 0.28–1.25
Magenta 37 0.31 8.0£ 10–3 0.15 1.5£ 10–1 2.50 2.4 £ 10–2 1.13–5.53
Turquoise 507 0.63 5.4 £ 10–9 0.26 2.6£ 10–2 2.25 4.1 £ 10–2 1.03–4.88
Pink 46 0.18 1.5£10–1 ¡0.01 9.2£ 10–1 1.30 4.9 £ 10–1 0.62–2.75
Brown 395 0.05 7.1 £ 10–1 0.18 9.1£ 10–2 0.57 1.5 £ 10–1 0.27–1.22
Red 79 0.22 6.3£ 10–2 0.26 1.5£ 10–2 0.62 2.2 £ 10–1 0.29–1.33
Yellow 358 0.30 1.1 £ 10–2 0.28 8.0£ 10–3 1.12 7.6 £ 10–1 0.53–2.37

CI, confidence interval. Distant metastasis free survival (DMFS).
Hazard ratios (HRs), 95% confidence intervals (CI), and p-values were calculated using Cox proportional hazards regression analysis after grouped the breast
cancer patients by the median of module eigengenes level.
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anti-estrogen therapy. 18,24-26 Sgroi et al. reported that the
breast-cancer index (BCI) assay was a significant prognostic test
for the risk of both early and late distant recurrence that could
help to identify patients at high risk for late distant recurrence
who might benefit from extended endocrine or other therapy.19

Compared with former studies, ours is the only network-based
meta-analysis with full use of publically available records of ERC
breast cancer patient treated with tamoxifen. We adopted a sys-
tem biology approach by focusing on a handful of modules rather
than tens of thousands of individual genes. The benefit of this
network-based approach is its capability to reveal the complex
biological mechanisms responsible for the phenotype of interest.
We observed significant association of the cell proliferation-
related gene module with survival, indicating that the molecular
signatures may predict the survival of ERC breast cancer patients.
This finding further reinforces the important function of the cell
proliferation-related gene network in determining disease pro-
gression and patient survival.

Further, our analysis identified 5 hub genes (CDK1, DLGAP5,
NUSAP1, RRM2, and MELK) from the network, thus demon-
strating the significant association with survival in the training and
validating data sets. Among these genes, increased expression of

MELK was associated with the poor survival of patients within the
luminal A and luminal B subtypes. Moreover, such expression
may serve a critical function in tamoxifen resistance. MELK was
identified as a key regulator of the proliferation of malignant brain
tumors and aggressiveness in human astrocytomas 27,28 and was
associated with breast cancer 29,30 and lung cancer prognosis 31.
NOTCH3 gene amplification is known to be an important con-
tributor to the progression of many ovarian and breast cancers.
The mitotic apparatus organizing protein DLGAP5 has been
reported to be a critical target of NOTCH3 signaling.32 Integrat-
ing meta-analysis of the microarray data verified CDK1 as poten-
tial biomarker to discriminate between estrogen receptor positive
patients of high- and low-risk of disease recurrence.33 Further,
CDK1 inhibition may be a potential therapy for MYC-dependent
breast cancer.34 NUSAP1 and RRM2 were significantly upregu-
lated in mice and human ductal carcinoma in situ samples, sug-
gesting that they may be an early molecular marker for breast
cancer.35 RRM2 was also identified as a prognostic marker in
breast cancer associated with poor survival and tamoxifen resis-
tance through pathway-centric integrative analysis.36

Although considerable information on ER and breast cancer
has been provided since the availability of tamoxifen in clinical

Figure 3. Consistent associations between RFS and the MELK genes are observed across the training data set and validating data set. Kaplan–Meier sur-
vival plot for RFS for MELK indicates increased expression (red) of this gene indicates poor prognosis in the training dataset (A) and validating data set
(B). Breast cancer patients grouped by the median of gene expression level, significances were assessed by logrank test. (D) Log2 transformed mRNA
expression values of MELK in MCF-7 tumor xenografts treated with either tamoxifen or control. P values were calculated by independent 2-tailed t test.
Error bars represent mean § SD. (E) mRNA expression values of MELK in tamoxifen resistant/sensitive MCF-7 subclones treated with tamoxifen or con-
trol. P values were calculated by unpaired 2-tailed t test. Error bars represent mean § SD.

Table 4. Association relationship between hub genes with survival within breast cancer molecular subtypes

Training data set (n D 87) Validating dataset (n D 449)

DMFS DMFS RFS

luminal A luminal B luminal A luminal B luminal A Luminal B

Gene HR p-value HR p-value HR p-value HR p-value HR p-value HR p-value

CDK1 0.90 8.6£ 10–1 1.83 2.8£ 10–1 1.50 3.6£ 10–1 1.84 5.9 £ 10–2 1.52 1.0 £ 10–1 1.76 1.6 £ 10–2

DLGAP5 1.74 3.5£ 10–1 2.80 8.2£ 10–2 1.44 4.0£ 10–1 0.91 7.8 £ 10–1 1.61 6.7 £ 10–2 1.08 7.3 £ 10–1

MELK 1.88 2.8£ 10–1 2.60 9.0£ 10–2 2.70 2.8£ 10–2 2.04 2.8 £ 10–2 2.13 5.4 £ 10–3 1.91 6.4 £ 10–3

NUSAP1 1.25 7.0£ 10–1 2.88 7.5£ 10–2 2.23 7.0£ 10–2 1.12 7.2 £ 10–1 1.50 1.2 £ 10–1 0.92 7.0 £ 10–1

RRM2 1.09 8.9£ 10–1 1.16 7.9£ 10–2 1.41 4.4£ 10–1 1.08 8.1 £ 10–1 1.91 1.4 £ 10–2 1.22 3.8 £ 10–2

Recurrence free survival (RFS), Distant metastasis free survival (DMFS). Hazard ratios (HRs), 95% confidence intervals (CI), and p-values were calculated using
Cox proportional hazards regression analysis after grouped the breast cancer patients by the median of gene level.
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practice, effort should be taken to elucidate favorable therapeutic
outcomes. More specific research outcomes will require transla-
tional research that may yield safer and more efficient treatment
for breast cancer patients.

Our study has some limitations. In particular, some estab-
lished predictors of breast cancer prognosis, such as protein
expression of HER2 and PR, were not included because this
information is unavailable. Further, although WGCNA is a pow-
erful bioinformatics method, consistently co-expressed genes
may have interdependent mechanistic relationships that are not
yet appreciated. This condition may result in the co-identifica-
tion of these genes in association studies. Thus, the significance
and robustness of the network and hub genes in prognostic classi-
fication requires further confirmation, ideally with large prospec-
tive patient cohorts included in adjuvant trials.

In summary, our study has used the system biology-based
WGCNA approach to reveal a gene network that apparently serves
an important function in the regulation of ERC breast cancer
treated with tamoxifen and provides potential gene markers
(CDK1, DLGAP5, NUSAP1, RRM2, and MELK) for predicting
prognosis. In addition, the proposed approach suggests the rele-
vance of MELK in the development of tamoxifen resistance. Fur-
thermore, findings could provide guidance for personalized
therapies. Nevertheless, multi-center randomized controlled clini-
cal trials and in vivo/in vitro experiments are still required to eval-
uate the possible application of the molecular signatures for
survival prediction and to characterize the key genes functionally
for the application of this approach in clinical settings.

Methods

Publically available data sets
The training dataset used for network generation consisted of

87 ERC breast cancer samples, all of whom had only received
tamoxifen treatment. The data set was downloaded from GEO
database with accession number GSE6532.37 For data processing
methods, please refer to Loi et al.37 This dataset contains samples
from the Guys Hospital (GUYT) and has been hybridized using
Affymetrix U133 PLUS 2 GenechipsTM. All samples were
required to be ERC by ligand binding assay and have been pre-
scribed tamoxifen mono therapy for 5 year post diagnosis as adju-
vant therapy.

The independent validation set with 475 samples was used to
validate the association between gene modules/hub genes and
survival of ERC breast cancer patients treated with tamoxifen.
Samples from 3 studies were downloaded from GEO with the
accession numbers GSE6532,38 GSE3494,39 and GSE2990.40

All samples were hybridized using Affymetrix U133 A Gene-
chipsTM according to standard Affymetrix protocols. There are
327, 251, and 189 samples in GSE6532, GSE3494 and
GSE2990, respectively, and 200, 213, and 62 ERC breast cancer
patients among them were utilized in our analysis.

For all the study subjects in this training and validating data
set, the cut-off value for patient classification as positive or nega-
tive for ER was 10 fmol per mg protein. Raw gene expression

values were processed with robust multiarray average algorithms.
The primary endpoint for the training dataset was the first distant
metastatic event (distant metastasis free survival, DMFS),
whereas DMFS and recurrence free survival (RFS) were consid-
ered for the validating data set. Demographics are shown in
Table 1.

Two tamoxifen-related datasets were downloaded. GSE333-
6610 contains expression data from MCF-7 tumor xenografts
treated with tamoxifen or nothing for 28 d, with each group hav-
ing 2 biological replicates. GSE26459 11 contains expression data
from subcloned MCF-7 cell lines that were either naturally resis-
tant or highly sensitive to tamoxifen, with each group having 3
biological replicates.

Classification of breast cancer subtypes
Breast cancers were divided into luminal A, luminal B,

HER2C, and basal-like subtypes using the pam5041 classifiers
via the ‘genefu’ R package (http://www.bioconductor.org/pack
ages/release/bioc/html/genefu.html). For subsequent analyses,
samples were included within subtypes on the basis of classifica-
tion by at least one the above classifiers. The sample sizes for each
subtype in the training and validating data sets are shown in
Table 1.

Coexpression module detection
Before module detection, probesets without known gene sym-

bols were excluded, and probe-level expression profiles for all the
datasets were converted to gene-level expressions by employing a
probe merging technique with the collapseRows function. 42 We
selected the top 5000 varying genes after sorting their standard
deviations in an ascending order across the 87 samples. The
WGCNA was restricted to 3600 of the most connected genes
(based on k.total, as described below) from the 5000 genes used
for the R ‘wgcna’ package. 43 First, we compute a correlation
matrix for each pair of genes and then obtain an adjacency matrix
by raising the matrix to a soft threshold power to avoid the selec-
tion of an arbitrary cut-off. The network connectivity
(k.total) of the gene was defined as the sum of its adjacency with
all the other genes for network generation. Meanwhile, the intra-
modular connectivity (k.in) was calculated as the summation of
adjacency performed over all genes in a particular network. The
decision value of the threshold power was determined on the
basis of the scale-free topology criterion, which aims to mimic a
network structure commonly found in nature.

In this study, we selected a threshold of 6. Coexpression dis-
similarity for each gene pair from the adjacency matrix is deter-
mined via a network distance measure known as the topological
overlap measure (TOM). Modules were defined as branches of
the hierarchical cluster tree generated using the TOM dissimilar-
ity. The hybrid dynamic tree cutting method was used to cut
branches using a minimum module size of 30 and a maximum
height of 0.95. The module eigengenes (MEs) were produced by
retaining the first principal component following principal com-
ponents analysis of the processed expression data for each group
of coexpressed probesets across the 87 samples. Module member-
ship assignment (kME) was determined as the Pearson’s
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correlation coefficient (PCC) between gene -expression values
and the module eigengene.

Module and clinical trait association analysis
Survival analysis was performed with the ‘survival’ R package

(http://cran.r-project.org/web/packages/survival/index.html).
The HR and corresponding 95% CI were determined via a Cox
regression model, and survival curves were plotted from Kaplan–
Meier estimates. For multigene (module) associations, each ME
was dichotomized to high and low expression around its median
value.

Signal gene-based survival analysis and hub genes
In the training data set, a univariate Cox proportional hazards

regression model was used to regress patient DMFS on the indi-
vidual gene expression levels, which were dichotomized around
the median expression of such gene. The survival-based GS was
defined as minus log 10 of the univariate Cox-regression p-val-
ues. Hub genes were those that show high network connectivity
(k.in), which measured the connect strength (co-expressed) of a
given gene with other genes in a given module. On the basis of
the GS and k.in, we identify hub genes that showed high correla-
tion with clinical traits, as well as high connectivity in the trait-
related modules.

As regards the survival analysis in the validating dataset, allow-
ing for interstudy variation, we dichotomize each gene around its
median expression value within each individual study and then
combine all studies to conduct a meta-survival analysis with Cox
proportional hazards regression model to regress patient DMFS
or RFS.

Functional annotation of the module
To extract further biological insight from genes belonging to

modules associated with survival of ERC breast cancer patients,

we searched for overrepresentation in gene ontology (GO) cate-
gories. Functional annotation of the modules was performed on
the basis of gene composition. To test a module for enrichment
in the genes with particular GO biological process compared
with the background list of all the genes on the array, enrichment
scores (Fisher exact test p value) for all GO terms in the specified
ontologies (biological processes) were calculated with DAVID
(http://david.abcc.ncifcrf.gov/) 44. Multiple testing was corrected
using the Bonferroni method.
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