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The recently developed transparent soil consists of particles of Nafion, a polymer with a low refractive index (RI),
which is prepared by milling and chemical treatment for use as a soil analog. After the addition of a RI-matched
solution, confocal imaging can be carried out in vivo and without destructive sampling. In a previous study, we showed
that the new substrate provides a good approximation of plant growth conditions found in natural soils. In this paper,
we present further development of the techniques for detailed quantitative analysis of images of root-microbe
interactions in situ. Using this system it was possible for the first time to analyze bacterial distribution along the roots
and in the bulk substrate in vivo. These findings indicate that the coupling of transparent soil with light microscopy is
an important advance toward the discovery of the mechanisms of microbial colonisation of the rhizosphere.

Plant growth promoting rhizobacteria (PGPR) enhance
plant health and yield via complex interactions with the roots
and soil.1-3 Rhizobacteria can offer the plant protection from
pathogenic microorganisms by outcompeting them and
through the promotion of plant growth via the release of plant
hormones.4 They can also aid plant uptake of nutrients via the
rhizosphere, for example by releasing iron-scavenging sidero-
phores.4,5 The spatial and temporal heterogeneity of soil and
the rhizosphere undoubtedly influences the communities and
function of bacteria which inhabit niches where nutrients are
available in soil.6 However, studying the interactions between
soil bacteria and their physical habitat is currently very chal-
lenging partly due to the lack of conventional laboratory tech-
niques and protocols. Light microscopy cannot be used to
observe soil in depth because soil is opaque. X-ray imaging
techniques are suitable for studying the soil structure but can-
not simultaneously resolve microorganisms.7 Although many
molecular methods can be used to identify the structure of soil
microbial communities,8 most do not provide insight into
their spatial arrangements. In contrast, recent applications of
FISH (fluorescent in situ hybridization) have proved successful
to analyze spatial distribution of microorganisms in soil, but
the method is not suitable to study dynamic processes because
samples need to be fixed prior to imaging.9

Previously, we published a study describing a new transparent
soil analog for imaging plant roots using optical microscopy.10 It
consists of a matrix of solid particles of the low refractive index
(RI) ionomer, Nafion, water with plant nutrients and air. Trans-
parent soil can be saturated with a RI matched liquid to reveal
biological structures within. Further to this work, we have applied
transparent soil to the observation of PGPR spatial interactions
with roots and soil particles non-destructively, in vivo and in situ.
Quantitative analysis methods were developed to study the spatial
distribution of PGPR Pseudomonas fluorescens SBW25 in transpar-
ent soil, on the surface of Lactuca sativa (lettuce) roots and in the
surrounding transparent soil, in relation to the pore geometry.
The effect of substrate parameters on the colonisation of roots was
also tested by varying the substrate particle size. The aims were to
measure the effect of plants and substrate on the abundance of
PGPR both on root and on the surrounding particles. After inoc-
ulation of the transparent substrate with a culture of GFP-tagged
P. fluorescens, one day old L. sativa seedlings were added to the
microcosms. The microcosms were sealed and incubated for 5 d
allowing the plants to grow and the bacteria to colonise the roots.
The transparency of the substrate allowed images to be captured
on a 3D grid using confocal microscopy, thus sampling the micro-
bial abundance at points along the roots and in the bulk soil at 2
distances from the root (supplementary information, Fig. S1).
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Fluorescent labeling with a range of fluorophores allowed discrim-
ination of bacteria (GFP), root tissue (calcofluor) and the surfaces
of solid Nafion particles (sulphorhodamine-B) (Fig. 1), which
facilitated image analysis (Fig. 2).

Bacteria were most abundant on the root surfaces, or rhizo-
plane, and on the surfaces of Nafion particles (Fig. 1). Colonisa-
tion on the root surface was concentrated in the intercellular
junctions of the root epidermal cells (visual observation in 3 sam-
ples, e.g., Fig. 1C), which was similar to observations of field-
grown wheat roots.11 Watt et al. quantified the fraction of the
volume of soil occupied by Pseudomonas spp. found in wheat rhi-
zospheres. Results showed that on average 15%11 of the soil vol-
ume was occupied by Pseudomonas spp. We did not characterize
the colonisation of lettuce root by Pseudomonas spp. in soil, how-
ever, the overall mean rhizosphere volume occupied by P. fluores-
cens in the present study is of the same order of magnitude (10%)
as those measured by Watt et al. Further studies comparing rhi-
zosphere colonisation with the same plant and bacterial species in
both soil and transparent soil would allow a more accurate com-
parison of the 2 substrates for this application. Bacterial fluores-
cence was detected in the pore spaces of the substrate, although
at a lower level than on the surfaces (Fig. 1 and 2A). Image analy-
sis also revealed that the abundance of bacteria in positions with
no roots (Fig. 2Bi, positions A1–3 and B1–3), was constant and
independent of image position, particle size and whether a plant

was present or not in the chamber. This may indicate that the
effect of the plants on soil microbial abundance could be limited
to the substrate directly adjacent (i.e. <1.5 mm) to the root.
Along the X axis (horizontal), in samples with plants, the number
of discrete bacterial aggregates and the average size of the aggre-
gates was greater on the root (position R) than at 1.5 mm (posi-
tion A) and 3 mm (position B) from the root, and there was no
significant difference in bacterial abundance or aggregate number
between positions A and B (Fig. 2Bii). In samples with no plants,
there was no difference in bacterial abundance along the X axis
(horizontal positions). Along the Y axis (vertical), the number of
bacterial aggregates was lower at the root tip (position 1,
Fig. 2Bii) than the 2 positions further from the tip (position 2
and 3, Fig. 2Bii) but when the percentage area of the image with
bacterial fluorescence was used to quantify abundance, there was
no difference along the roots (data not shown). In samples with
no plants present, the average size of bacterial aggregate was low-
est at position 1 and highest at position 3, therefore the points
closest to the surface of the substrate had the largest bacterial
aggregates (Fig. 2Biii). This could be due to a higher concentra-
tion of dissolved oxygen closer to the surface, which has been
observed in sludge with better bacterial flocculation at high dis-
solved oxygen concentrations.12

Several studies have described the distribution of PGPR on the
surface of plant roots with a range of, and sometimes contrasting

Figure 1. Maximum projection confocal images of GFP-labeled Pseudomonas fluorescens colonies (green) on the surface of lettuce root tissues (gray) in
situ in transparent soil with Nafion particles from the substrate labeled with sulphorhodamine B fluorescent dye also visible (red). (A) The majority of the
bacterial fluorescence is associated with the root tissue. Scale bar D 150 mm. (B) Bacteria are present on the root tip and in this case also the surfaces of
Nafion particles in close proximity to the root have bacterial fluorescence associated with them. Scale bar D 150 mm. (C) At higher resolution, bacterial
colonisation was predominantly observed in the intercellular junctions of root epithelial cells. Scale bar D 45 mm.
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results. High bacterial abundance was found on the root tips11,13-15

and at root branching zones.13 Yet other studies reported an absence
or scarcity of bacterial colonisation at the root tips16-20 perhaps
caused by the high turnover of mucilage and border cells at the root
apex.20 It is likely that the choice of the technique used to determine
bacterial numbers along the root has a strong influence on bacterial
count estimates. Methods based on colony forming units (CFU)
are inaccurate because they rely on taking samples and this is diffi-
cult on the root tip, and only bacteria that grow well in lab cultures
can be quantified. Microscopy techniques such as SEM are usually
limited to detect bacteria embedded within the mucilage,16 and
methods that requires fixing of samples, e.g., FISH, are susceptible
to perturbation for example when washing the roots prior to

imaging.11 The method described in the current study involved the
addition and removal of liquids to and from the substrate. Although
fluxes of water are common in soil due to rainfall or irrigation, the
filling of soil samples by the matching liquid has the potential to
induce anaerobic stress in the plant and bacteria over long periods.
This effect was minimised by using fresh aerated solutions and by
limiting the length of time during which the substrate was satu-
rated. There are numerous non-destructive methods to image in
soil, e.g., X-rays, Neutron and Magnetic Resonance Imaging.21-23

These do not rely on filling samples in liquid, but the methods are
not able to resolve many micro-organisms, and imaging of biologi-
cal processes such as gene expression or cell division is not possible.
Molecular methods are developing rapidly, but currently these are

Figure 2. Quantification of Pseudomonas fluorescens in the rhizosphere. (A) Bacteria, Nafion particles and roots were processed sequentially to allow
quantification. (i-ii) Bacterial fluorescence before and after processing with a median filter and thresholding facilitated measuring the bacterial abun-
dance. Scale barD 40 mm. (iii-iv) Original images of particle surfaces were processed and skeletonised. Gray lines in (iv) represent skeleton of particle sur-
faces in (iii). It was then possible to select the volumes inside particles (shown here in blue) to measure them to correct for available area (pore space).
Scale bar D 200 mm. (v-vi) Example image of a section of lettuce root before and after the application of a median filter and subsequent thresholding
were applied. This allowed the selection of the internal volume of the root for measurement (shown in blue). Scale bar D 200 mm. (B) Quantification of
bacterial distribution in transparent soil with small (500–850 mm) and large particles (850–1200 mm). The positions R1 to B3 represent a 3 £ 3 grid of
points on and around the roots, where R is on the root and A and B are at intervals perpendicular to the root. 1 is the root tip and 2 and 3 are closer to
the shoot. See Figure S1 for schematic. (i) There was higher bacterial abundance in images that include a section of plant root. At all other positions,
there was a consistent area of bacterial fluorescence as a proportion of the area of backgound in images without plant roots. These values were corrected
for available area. (ii) Number and (iii) average size of bacterial aggregates at the 3 horizontal (X) positions (R, A & B) and at the 3 vertical (Y) positions (1, 2
and 3) in samples with or without plants. Letters above the bars indicate the results of Fisher’s protected LSD tests.
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either destructive,9 or unable to resolve spatial or temporal processes
e.g., T-RFLP.24

The rhizosphere hosts large and diverse bacterial communities
that establish sophisticated modes of interactions with plant roots.
To date, it has been difficult to characterize such interactions
because observation of roots and bacteria in depth and over time
has been limiting.25 The model system described here overcomes
many previous technological limitations. It combines the ability
to grow biological organisms in a physically complex soil-like
environment with optical microscopy25 and to detect multiple
fluorescent signals in situ. The application of transparent soil
microcosms is not limited to the study of roots and soil bacteria
and it holds potential for studying the function of other soil
organisms. Future developments could see the introduction of a
diversity of microorganisms such as mycorrhizal fungi, nemato-
des, small invertebrates, or the incorporation of bacterial

communities composed of several functional types (e.g., predators
and prey). Exploiting this potential now requires exploring, test-
ing and analyzing biological activity in transparent soil micro-
cosms to better understand the benefits and limitations of the
technology.
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