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Carcinogenesis is etiologically associated with somatic
mutations of critical genes. Recently, a number of somatic
mutations and key molecules have been found to be involved
in functional networks affecting cancer progression. Suitable
animal models are required to validate cancer-promoting or
-inhibiting capacities of these mutants and molecules.
Sleeping Beauty transposon system consists of a transposon
that carries gene(s) of interest and a transposase that
recognizes, excises, and reinserts genes in given location of
the genome. It can create both gain-of-function and loss-of-
function mutations, thus being frequently chosen to
investigate the etiological mechanisms and gene therapy for
cancers in animal models. In this review, we summarized
current advances of Sleeping Beauty transposon system in
revealing molecular mechanism of cancers and improving
gene therapy. Understanding molecular mechanisms by
which driver mutations contribute to carcinogenesis and
metastasis may pave the way for the development of
innovative prophylactic and therapeutic strategies against
malignant diseases.

Introduction

Cancer is the leading cause of death in developed countries and
the second leading cause of mortality in developing world.1 Carci-
nogenesis is a long-term process as the human body is continuously
exposed to physical, chemical, and biological carcinogenic factors
and their complex interactions with genetic variations. It is, at least
partly, attributable to the mutations in critical genes responsible for

normal programming of cell proliferation, differentiation, and
death. These cancer-inducing somatic mutations can be generally
classified as driver and passenger mutations. Driver mutations are
indispensible for cancer development. They provide pro-cancerous
milieu and are positively selected in cancer evolution. It has been
summarized that driver mutations in more than 120 genes contrib-
ute to the development of cancers.2 However, most somatic muta-
tions are passenger mutations. Passenger mutations accumulated in
somatic cells through DNA replication are not subject to positive
selection and not directly associated with carcinogenesis. Therefore,
it is important to distinguish functional driver mutations from ran-
dom passenger mutations during systematic mutation screening.2

With the use of genome-wide association study (GWAS) and next-
generation sequencing technologies, it is possible to study the com-
plicated associations of genetic mutations with cancer occurrence
and progression. Recently, the National Cancer Institute of USA
have released the largest-ever database of cancer-related genetic var-
iations, providing a comprehensive resource to investigate targeted
treatments for cancers. This gradually enables personalized prophy-
laxis and treatment of malignant diseases. One challenge of novel
molecular therapy is to perform replicable experiments in appropri-
ate animal models before clinical trials. Nowadays, transposon sys-
tems are often applied to construct animal models. To choose a
proper transposon system for the construction of animal models in
cancer etiological research and cancer gene therapy is one of the key
steps toward personalized medicine.

Sleeping Beauty Transposon System

Transposon system
Transposon system is a non-viral DNA-mediated gene trans-

fer system. It includes a transposase that is capable of recognizing,
excising, and reinserting particular DNA sequences in targeted
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locations of the genome. In the past decades, a number of trans-
posable elements, including Tc1, Tol2, Minos, Himar1, Hsmar1,
Mos1, Frog Prince, and Piggyback, in vertebrate cells have been
developed.3-9 Of those, Sleeping Beauty (SB) has been extensively
characterized.

SB transposon system and its function
SB transposon system was created from Salmonid, which was

first reported in 1997.4 It was named the “Sleeping Beauty”
because the transposase isolated from Salmonid fish was transpo-
sitionally inactive due to the accumulation of mutations and arti-
ficially reawaken by eliminating the inactivating mutations.4,10-12

SB transposon system is a Tc1/mariner-type delivery system that
consists of 2 components: the transposase (SBase) and the inte-
gration cassette (transposon). SB transposon has 210-250 bp
inverted repeats (IRs) at their termini and directly repeated DNA
sequence motifs (DRs) at the ends of each IR (termed as IR/DR
domain). SB transposon can sandwich a desired genetic cargo
within the IR/DR domains (Fig. 1A). SBase has several conserved
domains that are critical for its function. At the N-terminus of
SBase, a bipartite DNA-binding domain [PAI (Pro, Ala, Ile) and
RED (Arg, Glu, Asp)] can confer specific binding to IRs because
it overlaps with a nuclear localization signal (NLS) sequence. A
domain directing cleavage and insertion as well as targeting
genome sequence is located at the C-terminal DDE (Asp, Asp,
Glu) motif. It binds to the IRs of SB transposon in a substrate-
specific manner, and mediates a precise “cut-and-paste” transpo-
sition in vertebrate cells (Fig. 1B).13

SBase recognizes the IR/DRs terminals of the transposon,
excises the transposon, and facilitates its insertion into targeted
chromosomal DNA through NLS, a “cut-and-paste” process.10,14

This process can be divided into 5 major steps: (i) specific bind-
ing of SBsase to designated sites within the transposon IR/DRs;
(ii) pairing of a synaptic complex within 2 ends of the elements
and binding together by SBsase subunits; (iii) excision from the
donor locus; (iv) recognition of the target sequence in genome;
and (v) reintegration at the target locus (Fig. 2).

Different subtypes of SB transposon system
To enhance the transposition efficiency, hyperactive versions

of SB transposon system have been developed via modifying
SBase or the transposon IR coding region.10-12,15,16 For example,
several modified versions of SBase including SB10, SB11,
SB100,17,18 and SB100X with increasing catalytic activities have
been developed. SB100X is up to 100 times more active than the
original one, displaying the highest efficiency (24%) compared
with SB11 (1.23%) and Piggyback (3.8%).19

However, the transposition efficiency decreases sharply if the
inserted sequence is more than 4 kb in length. To solve this prob-
lem, a biologically mimic SB transposon system has been devel-
oped. It contains a gene of interest flanked by 2 mutant SB
transposon elements in an inverted orientation. Since each single
mutant SB transposon element contains CA to GC mutations at
the terminus of the right IR/DR domain, the induced mutations
interfere only with the catalytic steps of transposition but not
with SBase binding. As a result, the new SB transposon system
has superior ability to transpose genes of >10 kb in length.11

In addition, a cyclization recombination enzyme (Cre) induc-
ible SBase allele, RosaSBaseLsL, which allows the restriction of
transposon mutagenesis to a specific tissue of interest, has been
established to facilitate the insertion of genes to specific tissue
(s).20 Since mammalian genome lacks high affiliative loxP sites,
so Cre/loxP system can be effectively applied in mammalian sys-
tem without confusing with its own system.21,22 The temporal
and spatial Cre recombinase expression in mammalian has been
well established.23-26 Thus, this system can be applied to trans-
pose gene(s) of interest to specific tissue(s).

Advantages of SB transposon system
SB transposon system becomes popular in mammalian gene

transfer due to following reasons. First, the ability of SBase to dis-
tinguish its own substrate from very similar sequences and the
correction process during synaptic complex formation period
make the SB transposon system enable to accurately recognize
IR/DRs and catalyze the right substrate.13 Second, SB transposon

system is relatively safe for transposition.
Studies have shown that neither SBase nor
SB transposon has remarkable toxicity in
mice.27-30 The effective expression of SBase
stops 4 days after hydrodynamic injection.31

Third, the expression of integrated genes via
SB system is long-term and reliable, even
pass to next generation via germline trans-
mission.32 Fourth, SB transposon system
can integrate in various tissues including
human cells, one-cell mouse embryo, mouse
embryonic stem cells, and mouse somatic
tissues. It can theoretically integrate in more
than 340 million TA sites, the target sequen-
ces for SB transposon system in mouse
genome.32-41 Although both Piggyback and
SB transposon systems display bias toward
integration in actively transcribed loci, SB
transposon system can integrate within a

Figure 1. The structures of SB transposon and transposase. (A) The transposon has a desired
genetic cargo, which is flanked by terminal inverted repeats (IR/DRs, 2 big arrows), each contain-
ing 2 binding sites for the transposase. (B) SB transposase has an N-terminal, bipartite, paired-like
DNA-binding domain [PAI (Pro, Ala, Ile), RED (Arg, Glu, Asp)] containing a nuclear localization sig-
nal (NLS); and C-terminal, which has the DDE (Asp, Asp, Glu) catalytic domain.
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wide region of 4 Mb near the donor
locus.42 Fifth, with the help of RosaSBa-
seLsL, SB system can target or integrate
genes in given tissues.

Disadvantages of SB transposon
system

Nevertheless, there are some disadvan-
tages of SB transposon system. First, overall
size of the transposon vector and the ratio
of SBase to transposon would affect trans-
position efficiency, a phenomenon that
occurs in SB but not observed in Piggy-
back.43,44 However, this limitation can be
circumvented by that the SB transposon
and SBase are transfected with different
vectors or that SBase is provided in the
form of either mRNA or protein.38,45,46

Second, SB-mediated integrated gene(s)
might be transcriptionally silenced in mam-
malian cells.47,48 Gene-regulatory domain
at the terminal of SB may produce comple-
mentary RNAs by RNA interference
response against the transposon.49,50 The
addition of 2 heterologous 5’-HS4 chicken
b-globin insulators between genetic cargo
and the IR/DR domain may prevent the
transcriptional silencing of SB transposon
system, thus improving the transposition
efficiency.47 Third, due to the “cut-and-
paste” mechanism, the SB transposon ends
may not be excised, leaving a “footprint”
mutation–a 5-bp insertion mutation con-
taining a TA element.51-55

The Application of SB Transposon
System for Genetic Etiological
Research and Gene Therapy

of Cancers

SB transposon system to construct
cancer models

Animal models are frequently used in
genetic etiological research of cancers.
Tumorigenesis can be induced via over-
expressing oncogenes and/or down-regulating tumor suppressor
genes in animal models. Thus, mammalian models of cancers
can be obtained by integrating or targeting specific genes in the
genome of animals.56 Transposition using the SB system provides
a novel method to construct cancer models.

There are several approaches for SB transposon system to
induce tumorigenesis in animals. First, as SB-mediated inte-
grated gene can be transmitted to next generation, it is relatively
easy to generate and maintain whole libraries of integrated
mutants in the founder animals. Tumors can be observed and

analyzed via breeding the founders, skipping the process of clas-
sical embryonic stem cell–germline chimera–mutant.20,29,30,57-59

Second, combination of SBase with T2/Onc2 or T2/Onc3
transposon can randomly elicit mutations that result in different
types of cancer. T2/Onc2 transposon contains the 5’ long termi-
nal repeat (LTR) of murine stem cell virus (MSCV). T2/Onc3
is identical to T2/Onc2 other than replacing the MSCV LTR
with CAG promoter, which consists of cytomegalovirus (CMV)
enhancer/b-actin promoter.20 Both transposons can elicit over-
expression of nearby proto-oncogenes. SBase can help T2/Onc

Figure 2. The “cut-and-paste” process of integrating gene(s) of interest into host genome. (A)
SBase, whose expression driven by the promoter, recognizes the IR/DR sequence of the transposon
and binds to these sites. (B) The synaptic complex formatted. (C) SBase tetramers cut the donor
sequence between IR/DR sites. (D) SBase tetramers recognize target sites in the genome and bind
to it. (E) The gene(s) of interest between IR/DR sites reintegrate into the genome.
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insert into host genome to activate proto-oncogenes. The 5’LTR
in T2/Onc2 usually drives the expression of proto-oncogenes at
higher rates in haematopoietic cells than in cells of other histo-
types.20 CAG promoter in T2/Onc3 is active in a variety of cell
types, including epithelial cells.20 In addition, the RosaSBaseLsL
can express SBase depending on the expression of Cre gene. A
variety of carcinomas can be induced in different tissues based
on different SB transposon systems.20,29,30,57-61 For example,
over 20 different types of cancers have been induced using
SBase with T2/Onc3 in mice.20 Triple transgenic (Rosa26-lsl-
SB11; T2/Onc; albumin promoter-driven Cre) and quadruple
transgenic (Rosa26-lsl-SB11; T2/Onc; albumin promoter-driven
Cre; p53-lsl-R270H) mice partially generate liver tumors dis-
playing hepatocellular carcinoma (HCC) characteristics and
lung metastasis at late stage.29 Similarly, by using Villin-Cre to
activate SBase expression in gastrointestinal epithelium specifi-
cally, the transgenic mice can develop intraepithelial neoplasia,
adenocarcinoma and adenoma.30 With the use of bovine keratin
K5 promoter to drive SB11 expression in epidermal stem cells,
the transgenic mice (K5-SB11 and T2Onc2) are more likely to
generate papilloma, squamous cell carcinoma, and basal cell car-
cinoma of the skin than the wild-type counterparts after 7,12-
dimethylbenzanthracene/12-O-tetradecanoylphorbol-13-acetate
(DMBA/TPA) or only TPA treatment.57 SB transposon system
harboring the T2/Onc element can facilitate tumorigenesis com-
pared to controls without this SB transposon system.58,59

T2/Onc3 is more powerful than T2/Onc2 in inducing

carcinogenesis.59 In addition, different genetic background can
influence tumorigenesis in mice. On the PtchC/¡ background,
the transgenic mice with T2/Onc transposon and cerebellar pro-
genitor cells-specific expressed SB11-transposase driving by
Math1 promoter have an increased progression of medulloblas-
toma. On Tp53mut (Tp53C/¡ or Tp53¡/¡) background, this
Math1-SB11/T2Onc transposon system facilitates the develop-
ment of disseminated medulloblastoma.61 Third, replacement
of T2/Onc with specific oncogene, SB transposon system can
induce specific oncogene-driven carcinomas. For example,
through hydrodynamic tail vein injection, SB transposon system
containing an activated N-RAS oncogene can elicit multifocal
liver cancer in p19Arf-null or heterozygous mice.62 Subcutane-
ous injection of SB transposon system harboring oncogenes,
including c-Myc, H-RAS, and short hairpin RNA against the
transformation related protein 53 (Trp53) gene (shp53), into
female C57BL/6 mice can induce sarcomatoid carcinomas in
skin (Table 1).63 The SB system can also be applied in other
mammalians, such as rats. Single gene transgenic rats can be
interbred to obtain double-transgenic rats.64 With the help of
electroporation method, SB transposon system can also deliver
c-Myc, H-RAS, and shp53 oncogenes into rats to produce liver
tumor.65 In addition, the SB100X transposon system has been
ever used for enzyme-catalyzed gene integration into the embry-
onic porcine genome.66 Thus, SB transposon system can be
applied to construct a variety of animal models for genetic etio-
logical research of cancers.

Table 1 SB transposon system used for the construction of cancer mouse models

Transposon insert
element Cancer type Method Animals Ref.

T2/Onc3 Squamous cell carcinoma, HCC Pro-nuclear injection, knock in ES
cell technology, ES cell
electroporation, hybridization

C57BL/6J mice and C57BL/6J
C3H hybrid mice

20

T2/Onc HCC Pro-nuclear injection, knock in ES
cell technology, hybridization

Hepatocyte-specific Alb-Cre
mice, Rosa26-lsl-SB11 mice
and p53-lsl-R270Hmice

29

T2/Onc2 Intestinal intraepithelial neoplasia,
adenocarcinoma, and adenoma

Pro-nuclear injection, knock in ES
cell technology, hybridization

Rosa26-lsl-SB11 mice, Villin-Cre
mice, and T2/Onc mice

30

T2/Onc2 Skin cancers Pro-nuclear injection,
hybridization

C57BL/6J £ DBA/2J F2 embryos,
AC heterozygous mice

57

T2/Onc Liver cancer Pro-nuclear injection, knock in ES
cell technology, hybridization

Tet-on-MYCmice, LAPtTA mice,
Rosa26-SB11 mice, and T2/
Onc mice

58

T2/Onc2 and T2/Onc3 Pancreatic adenocarcinoma Pro-nuclear injection, knock in ES
cell technology, hybridization

LSL-KrasG12D, Pdx1-Cre, T2Onc2,
T2Onc3, and Rosa26-LSL-SB11
transgenic mice

59

N-RAS liver cancer Hydrodynamic tail vein injection C57BL/6J p19Arf-null mice 62

H-RAS, c-Myc, shp53 Sarcomatoid carcinoma Subcutaneous injection C57BL/6 female mice 63

Fah, HBx, shp53 and N-RAS HCC Hydrodynamic tail vein injection Fah ¡/¡ mice 72

Alb, Albumin; c-Myc, v-myc avian myelocytomatosis viral oncogene homolog; CRC, colorectal cancer cell; Cre, a cyclization recombination enzyme; ES cell,
embryonic stem cell; Fah, fumarylacetoacetate hydrolase gene; HCC, hepatocellular carcinoma; H-RAS, Harvey rat sarcoma virus oncogene; Kras, Kirsten rat
sarcoma viral oncogene homolog; LAPtTA, a liver-specific tet-transactivator protein; lsl, loxP-stop-loxP; N-RAS, neuroblastoma ras oncogene; p19Arf, a posi-
tive regulator of the p53 tumor suppressor, and loss of Arf predisposes to a wide spectrum of tumors; Pdx1, pancreatic and duodenal homeobox 1; p53-lsl-
R270H, R270H targeted point mutations of p53, which is considered as a conditional dominant negative p53 transgene; Rosa26-lsl-SB11, SB11 transposase
cDNA preceded by lsl knocked into the Rosa26 locus; tet-o-MYC, tetracycline-repressible MYC transgene; shp53, a short hairpin RNA against tumor
suppressor Trp53 encoding gene.
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SB transposon system for the discovery of cancer driver
mutants

GWAS, microarray, and deep sequencing for cancer gene
discovery are carried out via comparing the differences between
cases and controls or between cancerous tissues and non-cancer-
ous tissues from the same individual.67-71 These designs are
hard to distinguish driver mutations from passenger mutations
because cross-sectional case-control studies can only indicate sta-
tistical associations between factors of interest with the diseases.
If loss-of-function or gain-of-function mutations can promote
carcinogenesis, these mutations are more likely to be driver
mutations. SB transposon system can introduce gain-of-function
mutations, such as combining with T2/Onc to cause mutations
randomly or deliver some oncogenes or tumor suppressor genes.
On the other hand, loss-of-function mutations can be achieved
by using SB transposon system to deliver specific elements to
silence genes, such as shp53.72 Thus, SB can be used to distin-
guish driver mutations from passenger mutations. Here, we
introduce several examples. To identify genetic drivers of malig-
nant peripheral nerve sheath tumor (MPNST), the SB transpo-
son system has been used to characterize mutations in mice
based on the following steps. First, SB expression and activity
are confirmed by immunohistochemistry and PCR-excision
assay, respectively. Second, common insertion site (CIS) analysis
is utilized to identify potential driver-mutations by both TAP-
DANCE CIS and gene centric CIS analysis. Third, relevance of
the CIS-associated genes to MPNST is evaluated by cross-spe-
cies comparative analysis of the CISs to previously generated
human array comparative genomic hybridization, SNP array,
human gene expression profiling, and methylome data from
normal Schwann cells, neurofibromas, and MPSNTs. Fourth,
Ingenuity Pathway Analysis, Database for Annotation, Visuali-
zation and Integrated Discovery are utilized to identify signifi-
cantly altered signaling pathways in CISs including Wnt/
CTNNB1, PI3K/Akt/mTOR, and growth factor receptor sig-
naling pathways. Last, further validation of novel candidate
driver-mutations, like Foxr2, is performed by over expression
and knockout experiments.60 The second Nebulin family mem-
ber, NEBL, is involved in MLL gene rearrangement, a phenom-
enon frequently observed in infant acute myeloid leukemia.
Stable transfection of SB transposon system harboring the
expression cassettes for MLL-NEBL and NEBL-MLL has dem-
onstrated that the fusions have oncogenic potential.73 In SB
transposon system–induced mouse models, retrotransposon-like
1 (Rtl1) and PDE4D have been identified as drivers of HCC
and prostate cancer, respectively.74,75 MYC is a dysregulated
gene in human malignancies. Introduction of MYC through SB
transposon system can generate liver cancer in a mouse model.
Genetic screening and functional validation studies in this
model have shown that Ncoa2/Src-2 is a tumor suppressor gene
in liver cancer.58 MyoD is a well-known muscle differentiation
factor. A recent SB transposon screening study has shown that
its expression in cerebellum hinders the development of medul-
loblastoma, providing further evidence that MyoD is a tumor
suppressor gene for medulloblastoma.76 The SB transposon

system can also be utilized to identify genes critical in tumor
dissemination. Functional genomics has demonstrated that
ectopic expression of Eras, Lhx1, Ccrk, and Akt are associated
with Sonic Hedgehog signaling induced dissemination process
of medulloblastomas in PatchedC/¡ mice.77

SB transposon system for cancer gene therapy
With the continual discovery of genes and genetic mutants

that promote cancer development, gene therapy becomes more
and more practicable options for cancer treatment. SB transposon
system can be implicated in cancer gene therapy.

Viral-based gene delivery is a preferred choice for gene trans-
fer, but it has several limitations. First, viral vectors are very likely
to elicit immune/inflammatory or neurotoxic responses that are
associated with contamination during bacterial extraction pro-
cess. Second, viral preparations impose risks of contamination by
infectious factors such as endogenous proviruses, or replication-
competent viruses. Due to their tendencies to integrate near pro-
moters or transcriptional units, viral vectors may cause unwanted
cellular consequences. Third, it is relatively costly and time con-
suming of viral preparation. To overcome these limitations, SB
transposon system is an alternative for cancer gene therapy. For
example, an engineered SB transposon system coexpressing a sin-
gle-chain chimeric antigen receptor (CAR) for human CD19
and CD20 has been used to integrate into the chromosome of T
cells from peripheral blood mononuclear cells (PBMNCs) and
umbilical cord blood. Stable dual-gene expression in T cells from
PBMNCs and umbilical cord blood allows for the enrichment by
positive selection with Rituxan. Both CD4C T cells and CD8C T
cells can display the cytotoxicity against CD19C leukemia, lym-
phoma, and erythroleukemia cell lines and release high-levels of
antigen-dependent Th1 (but not Th2) cytokines, like granulo-
cyte-macrophage colony-stimulating factor, TNF-a, and IFN-g.
In animal experiments, these engineered T cells significantly
decrease tumor growth and increase survival time.78 Following
the similar procedures, CD19-CAR-specific T cells,79-81 MART-
1 and p53 targeting PBMNCs82 and IL-11Ra-CAR-specific T
cells83 constructed using SB transposon system show optimal
effects in treating lymphoid malignance or osteosarcoma pulmo-
nary metastases. In addition, SB transposon system is able to
directly transfer therapeutic genes in vivo for cancer treatment. A
modified SB transposon system containing an angiostatin-endo-
statin fusion gene (StatinAE) has been applied in the CT26
mouse model of CRC metastatic to the liver. This study has dem-
onstrated that this SB transposon system is effective in treating
metastatic CRC.84 SB-mediated insertions of each of StatinAE
and a soluble vascular endothelial growth factor receptor are
proven to be effective for the treatment of glioma.85 The same is
true for the SB-mediated insertion of suicide gene herpes simpex
virus thymidine kinase controlled by human telomerase reverse
transcriptase promoter and a SV40 enhancer for the treatment of
HCC.86 Gene transfer mediated by SB transposon system, can
improve the efficacy of immune gene therapy via sustaining cyto-
kine secretion and direct intratumoral delivering of DNA/polye-
thylenimine complexes of mIFN-g/SB construction (Table 2).87
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Furthermore, the first clinical trial of SB-mediated gene therapy
was initiated at MD Anderson Cancer Center in 2013. After
modifying T cells collected from patients or from matched
donors, CD19-CAR-specific T cells were then used to treat
patients with leukemia or lymphoma. No acute and late toxicities
were found and one of the first 5 treated patients remained in
remission.88

SB transposon system in Hepatitis B Virus (HBV)
integration

SB transposon system had been applied in elucidating the
mechanism of HBV-induced carcinogenesis in animal model.
With the use of hydrodynamic delivery method, SB transposon
system can introduce HBV X (HBx) gene into the livers of
fumarylacetoacetate hydrolase (Fah) mutant mice and induce
hepatic inflammation. Coexpression of Fah cDNA from the
transposon vector allows for the selective repopulation of geneti-
cally corrected hepatocytes in Fah mutant mice. The subsequent
selective repopulation of hepatocytes carrying the gene(s) of
interest could provide useful genetic information about the
mechanisms of HBV-induced neoplasm. In this mouse model,

introduced HBx can activate the expression of b-catenin and
HBx coinjected with shp53 accelerates the formation of liver
hyperplasia. Constitutively active v-ras oncogene homolog with
Gly12Val substitution (NRASG12V) alone and in combination
with shp53 coinjection facilitate hepatic tumorigenesis.72 Thus,
SB transposon system can be applied to investigate the oncogenic
effects of viral genes.

Conclusion

SB transposon system is a reliable tool to integrate mutations
into mammalian cell genome and transmit the genes (or mutants)
of interest to next generations. In combination with Cre, SB
transposon system allows for the activation of introduced genes
(or mutants) in specific tissue(s). SB transposon system theoreti-
cally reintegrate in more than 340 million TA sites in mouse
genome, which can be applied in systemically screening for can-
cer-related genes. It can distinguish the driver mutations from
passenger mutations and also serve as a delivery toolkit in insert-
ing therapeutic genes into host genome to adjust the imbalances

Table 2. SB transposon system used for cancer gene therapy

Insert gene Cancer type Experimental animals or cells Method Ref.

CAR for human CD19 and
CD20

CD19C lymphoid malignancies PBMNCs and umbilical cord
blood T cells; (NOD/SCID)
mice irradiated and injected
intraperitoneally with Daudi-
LVhfflucN

Transfection; infusion in vivo 78

CAR for human CD19 and
CD28

CD19C lymphoid malignancies Daudi (Burkitt lymphoma),
HLAnull K562
(erythroleukemia) cells and
human PBMCs

Transfection 79

CD19RCD28 transgene B-lymphoid malignancies K562 cells and PBSC Electroporation 80

CAR for human CD19 and
CD28

CD19C lymphoid malignancies PBMCs from healthy adult
volunteer donors, CLL cells,
MCL cells, diffuse large B-cell
lymphoma cells

Electroporation 81

p53 TCR and anti-MART-1
TCR

Cancer and immunologic disease PBMNC Electroporation 82

IL-11Ra-CAR OS lung metastases Human T cells, K562, Human OS
cell lines (CCH-OS-D, KRIB,
SAOS-2 and LM7)

Co-electroporation 83

StatinAE CRC metastasized to liver BALB/c female mice with
intrasplenically transplanted
CT26 colorectal tumors

Hydrodynamically injected 84

sFlt-1 and statinAE Glioma Nude mice with GBM xenografts
(subcutaneous injection of
U373 or U87 cell lines)

Injection 85

Suicide gene HSV-TK HCC HepG2, Hep3B, Huh7, and
hNHeps cell lines

Transfection 86

INF-g Glioblastoma GL261 cells and C57BL/6 mice Transfection; slow injection into the
skull

87

CAR, chimeric antigen receptor; CLL, chronic lymphocytic leukemia; CRC, colorectal cancer; GBM, glioblastoma multiforme; HCC, hepatocellular carcinoma;
HLA, human lymphocyte antigen; HSV-TK, herps simplex virus thymidine kinase; IL-11Ra-CAR, Interleukin-11 receptor a-chain CAR; INF-g, interferon gamma
gene; MCL, mantle cell lymphoma; OS, osteosarcoma; PBMCs, peripheral blood mononuclear cells; PBSC, peripheral blood stem cell; sFlt-1, soluble vascular
endothelial growth factor receptor; StatinAE, an angiostatin-endostatin fusion gene; TCR, T-cell receptors.
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between oncogenes and tumor suppressor genes. SB transposon
system can combine different therapeutic approaches to improve
cancer treatment. It has been applied in clinical trial for the treat-
ment of leukemia and lymphoma. Although SB transposon sys-
tem has a number of advantages, it might activate carcinogenesis
by unwanted integrations. Furthermore, its safety and duration
of gene expression are still uncertain. More researches are needed
to improve and optimize the SB transposon system for clinical
cancer gene therapy.
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