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Mitogen-activated protein (MAP) kinase cascades play important roles in plant immunity. Upon pathogen associated
molecular pattern (PAMP) treatment, MPK3, MPK6 and MPK4 are quickly activated by upstream MKKs through
phosphorylation. Western blot analysis using a-phospho-p44/42-ERK antibody suggests that additional MPKs with
similar size as MPK4 are also activated upon PAMP perception. To identify these MAP kinases, 7 candidate MPKs with
similar sizes as MPK4 were selected for further analysis. Transgenic plants expressing these MPKs with a ZZ-3xFLAG
double tag of 17 kD were generated and analyzed by western blot. MPK1, MPK11 and MPK13 were found to be
phosphorylated upon treatment with flg22. Our study revealed additional MAPKs being activated during PAMP-
triggered immunity.

Mitogen-activated protein (MAP) kinases are serine/threo-
nine-specific protein kinases. They are involved in signal trans-
duction during many biological processes through responding to
diverse arrays of stimuli. MAP kinase cascades play critical roles
in plant defense against pathogens.1 During pathogen-associated
molecular pattern (PAMP)-triggered immunity (PTI), trans-
membrane receptors such as FLAGELLIN-SENSING 2 (FLS2)
activate MAP kinase kinase kinases (MEKKs), which subse-
quently phosphorylate downstream MAP kinase kinases (MKKs)
that in turn activate MAP kinases (MPKs).

In Arabidopsis, there are 20 MPKs, 10 MKKs and about 60
putative MEKKs.2 Two MAP kinase cascades have been shown
to be activated downstream of PAMP receptors. One leads to
activation of MKK4 and MKK5 and the downstream MPK3 and
MPK6.3 The MEKK functioning in this cascade is still
unknown. Downstream of the MAP kinases, ethylene response
factor 6 (ERF6) was identified as a substrate of MPK3/MPK6
and ERF104 was identified as a substrate of MPK6.4,5 Activation
of these ERF proteins is critical for defense against fungal
pathogens.

Another cascade downstream of PAMP receptors leads to acti-
vation of MPK4 through MEKK1 and MKK1/MKK2.6-11 This
cascade negatively regulates defense responses mediated by the
NB-LRR resistance protein SUMM2.12 Inactivation of MPK4
by the bacterial effector protein HopAI1 leads to activation of
SUMM2-mediated immune responses. The MEKK1-MKK1/
MKK2-MPK4 kinase cascade was also found to positively regu-
late basal defense, as summ2 mekk1 and summ2 mkk1 mkk2
mutant plants exhibit enhanced susceptibility to pathogens.12

The a-phospho-p44/42-ERK antibody (Cell Signaling Tech-
nology, Inc., #4370s) recognizes a conserved phosphorylation
motif of MAP kinases. It has been widely used to analyze MAP
kinase phosphorylation in animals and plants. In Arabidopsis, 3
immunoreactive bands are usually detected in a protein gel blot
analysis of samples treated with the elicitor flg22,13,14 a peptide
derived from bacterial flagellin that is recognized by FLS2.15 In
the mpk6 single mutant, the band of the highest molecular weight
is absent, indicating that phosphorylated MPK6 is typically
detected as the top band. In mpk3, the middle band is absent,
indicating that phosphorylated MPK3 is detected as the central
band. The intensity of the lower band with the smallest molecu-
lar weight is reduced in mpk4, but is not affected in the knockout
mutant of its close homolog MPK11.13 In the mpk4 mpk11 dou-
ble mutant, the lower band is still present, but its intensity is fur-
ther reduced compared to that in mpk4,13 suggesting that
MPK11 is also phosphorylated after flg22 treatment and flg22-
treatment activates additional MAP kinases that co-migrates with
MPK4 during sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (PAGE).

In this study, we sought to identify MAPKs that have similar
sizes as MPK4 and exhibit phosphorylation upon flg22 treat-
ment. MAP kinase candidates were chosen based on their protein
sizes. Prior to phosphorylation, MPK4 is 42.9 kD. Seven MAP
kinases whose protein sizes are between 42.2 kD-43.2 kD and
that are expressed in leaf tissue based on the microarray database
at The Arabidopsis Information Resource, specifically MPK1,
MPK2, MPK5, MPK7, MPK11, MPK12 and MPK13, were
selected for further studies.
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To test whether these candidate MAP kinases are phosphory-
lated upon treatment with flg22, we analyzed the knockout
mutants of the predicted MAP kinases by western blot using the
a-phospho-p44/42-ERK antibody, and did not observe any con-
sistent difference between the wild type and the single mutants.
Most likely there is redundancy between the MAP kinases that
masks the phenotype in single mutants. We then took an alterna-
tive approach to detect single MAP kinase phosphorylation upon
flg22 treatment using transgenic plants expressing epitope tagged
candidate MAP kinases. The epitope used is a FLAG-ZZ double
tag. The FLAG tag is approximately 1 kD in size, while the ZZ
tag is approximately 16 kD, which was synthesized from the B
domain of Protein A.16 By fusing the MAP kinase to the double
tag, the protein size is expected to be increased by approximately
17 kD, allowing detection of the phosphorylated individual can-
didate MAP kinases apart from the endogenous proteins.

Constructs expressing MPK1, MPK2, MPK5, MPK7,
MPK11, MPK12 and MPK13 with a C-terminal FLAG-ZZ tag
under their own promoters were generated and transformed in
Col-0 wild type plants. Transgenic lines expressing the fusion
proteins were identified by Western blot using an anti-FLAG
antibody and used for subsequent phosphorylation analysis. As
shown in Figure 1, treatment with flg22 results in strong
increases in phosphorylated MPK1-FLAG-ZZ, MPK11-FLAG-
ZZ and MPK13-FLAG-ZZ detected by the a-phospho-p44/42-
ERK antibody, suggesting that MPK1, MPK11 and MPK13 are
phosphorylated upon flg22 induction.

To test whether the identified MAP kinases are important for
PTI, the single mutants of mpk1, mpk11 and mpk13 were assayed
for growth of the non-pathogenic bacteria Pseudomonas syringae
pv. tomato DC3000 hrcC (P.s.t. DC3000 hrcC). As shown in
Figure 2, the MAPK single mutants showed no enhanced

susceptibility to P.s.t. DC3000 hrcC, suggesting that loss of indi-
vidual MAP kinases does not affect PAMP-triggered immunity
against P.s.t. DC3000 hrcC.

In summary, we have identified additional MAP kinases that
are activated in response to flg22 treatment. Lack of obvious
defects in PTI against P.s.t. DC3000 hrcC suggests potential
functional redundancy among these MAPKs. Analysis of com-
bined mutants of the MAPKs may be required to elucidate their
roles in plant defense against pathogens. Future identification of
the target proteins of these MAPKs and their upstream MEKKs
and MKKs are also critical in understanding how they function
in plant immunity.
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