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Spatial Correlations in Natural Scenes Modulate Response
Reliability in Mouse Visual Cortex

Rajeev V. Rikhye and Mriganka Sur

Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). Certain stimuli can suppress
this intertrial variability to increase the reliability of neuronal responses. In particular, responses to natural scenes, which have broad-
band spatiotemporal statistics, are more reliable than responses to stimuli such as gratings. However, very little is known about which
stimulus statistics modulate reliable coding and how this occurs at the neural ensemble level. Here, we sought to elucidate the role that
spatial correlations in natural scenes play in reliable coding. We developed a novel noise-masking method to systematically alter spatial
correlations in natural movies, without altering their edge structure. Using high-speed two-photon calcium imaging in vivo, we found that
responses in mouse V1 were much less reliable at both the single neuron and population level when spatial correlations were removed
from the image. This change in reliability was due to a reorganization of between-neuron correlations. Strongly correlated neurons
formed ensembles that reliably and accurately encoded visual stimuli, whereas reducing spatial correlations reduced the activation of
these ensembles, leading to an unreliable code. Together with an ensemble-specific normalization model, these results suggest that the

coordinated activation of specific subsets of neurons underlies the reliable coding of natural scenes.
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ignificance Statement

information processing in V1.

The natural environment is rich with information. To process this information with high fidelity, V1 neurons have to be robust to
noise and, consequentially, must generate responses that are reliable from trial to trial. While several studies have hinted that both
stimulus attributes and population coding may reduce noise, the details remain unclear. Specifically, what features of natural
scenes are important and how do they modulate reliability? This study is the first to investigate the role of spatial correlations,
which are a fundamental attribute of natural scenes, in shaping stimulus coding by V1 neurons. Our results provide new insights
into how stimulus spatial correlations reorganize the correlated activation of specific ensembles of neurons to ensure accurate
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Introduction

A challenge faced by the visual system is to rapidly and accurately
extract salient features from rich natural scenes while discarding
redundant information. The fidelity with which visual informa-
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tion is processed is limited by both the intrinsic variability of
neurons and the correlation structure of the network (Shadlen
and Newsome, 1998; Azouz and Gray, 1999; Averbeck et al., 2006;
Moreno-Bote et al., 2014). Despite these sources of noise, evi-
dence from several studies indicates that natural scenes are pro-
cessed efficiently in V1 (Simoncelli and Olshausen, 2001;
Olshausen and Field, 2004). This suggests that response variabil-
ity is reduced for natural scenes, permitting information to be
represented efficiently and with high fidelity (Borst and Theunis-
sen, 1999). How this is achieved in V1 remains unclear.

The degree of trial-to-trial variability in a response is com-
monly measured in terms of reliability. A neuron is said to be
reliable if it fires the same number of precisely timed spikes on
every repetition of a stimulus (Tiesinga et al., 2008). Several phys-
iological studies in cats have shown that both spike trains and
subthreshold potentials are reliable and sparse when stimulated
with full-field natural movies (Haider et al., 2010; Baudot et al.,
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2013). This coding strategy increases the amount of information
conveyed per spike (Vinje and Gallant, 2002; Pecka et al., 2014).
In contrast, vignetting these movies such that they only stimulate
the classical receptive fields (RFs) of neurons degrades both reli-
ability and sparseness. These results hint at a paradoxical
population-coding regime, where response variability decreases
when larger numbers of neurons are activated (Shadlen and
Newsome, 1994; Renart and Machens, 2014). Supporting this
idea, both attention (Cohen and Maunsell, 2009) and neuro-
modulatory mechanisms (Goard and Dan, 2009), which change
correlations between neurons, also improve response reliability.
However, the relationship between interneuronal correlations
and reliable coding of natural scenes remains unexplored.

Apart from population coding, stimulus statistics are also
known to influence reliability. A previous study showed that re-
liability was highest for natural scenes and weakest for simple
stimuli, such as gratings and dense noise (Baudot et al., 2013).
Statistically, sinusoidal gratings contain only one spatial fre-
quency (SF), whereas dense noise contains a spectrum of differ-
ent SFs with constant power spectral density. This is in contrast to
natural scenes, which contain a power law distribution of SFs.
Particularly, most natural scenes have higher power in the low SF
bands (broad image features) and weaker power in high-SF bands
(fine structural details; Ruderman and Bialek, 1994; Bar, 2004). It
has been hypothesized that the visual system uses these unique
statistical properties to efficiently encode information (Barlow,
2001; Simoncelli and Olshausen, 2001). This theory is bolstered
by several psychophysical studies, which demonstrate that image
statistics are critical for rapid and accurate discrimination (Tor-
ralba and Oliva, 2003; McCotter et al., 2005). However, how
stimulus statistics modulate the reliability and, in turn, the effi-
ciency of the neural code remains unknown. One hypothesis is
that specific features of natural scenes improve response reliabil-
ity by reducing correlated variability (Kohn and Smith, 2005;
Snyder et al., 2014). To test this hypothesis, it is important to
parametrically relate stimulus statistics to changes in population
coding and neural reliability.

In this study, we sought to answer the following two questions.
(1) What properties of natural scenes influence response reliabil-
ity? (2) What population coding mechanisms improve reliability?
To address these questions, we developed a novel stimulus set
where we systematically perturbed spatial correlations in natural
movies, while preserving their edge structure. By applying in vivo
two-photon calcium imaging to layer 2/3 neurons in mouse V1,
we found that spatial correlations in natural movies strongly
influenced response reliability. Cluster analysis of neuronal
responses showed that reliable coding was achieved via a
stimulus-driven restructuring of interneuronal correlations.
These findings, supported by a normalization model, demon-
strate that a hallmark of reliable coding is the coordinated activa-
tion of specific neuronal ensembles.

Materials and Methods

Experiments

Animals and surgery. Experiments were performed under protocols ap-
proved by the Massachusetts Institute of Technology’s Animal Care and
Use Committee and conformed to NIH guidelines. All data in this study
were collected from adult (>8 weeks old) C57BL/6 (Charles River Lab-
oratory) mice of either sex. Mice were anesthetized using isoflurane (3%
induction, 1.5-2% during surgery). A custom-built metal head post was
attached to the skull using dental cement (C&B-Metabond, Parkell), and
a 3-mm-diameter craniotomy was performed over binocular V1 (~2-3
mm lateral and 0.5 mm anterior to lambda). Care was taken not to
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rupture the dura mater. The core body temperature was maintained at
37.5°C using a heating blanket (Harvard Apparatus).

For anesthetized experiments, anesthesia was maintained with 0.5—
0.8% isoflurane during imaging. A solution of Oregon Green BAPTA-1
AM (OGBI1; 1 mm; Invitrogen) and Sulforhodamine 101 (SR-101; 100
uM; Invitrogen) was pressure injected (10 psi for 1 min; Picospritzer) into
the brain 180-250 wm below the pial surface via a borosilicate glass
pipette (5—7 M(Q) tip resistance) under visual guidance. After confirming
successful expression of OGB1 (~20 min following injection), the crani-
otomy was covered with a 3 mm glass coverslip (Warner Instruments)
and sealed with a silicone elastomer (Kwik-Sil; WPI).

For awake experiments, mice were first habituated for 5 d to head
fixation on a custom-built stage. Once habituated, the mice received a
microinjection of 100-200 nl of AAV1.Syn.GCaMP6f.WPRE.SV40
(University of Pennsylvania Vector Core, diluted to a titer of 10'* ge-
nomes ml '), following which a cranial window was implanted over the
craniotomy and sealed as described above. Mice were allowed to recover
for 2-3 weeks to allow for adequate expression of the virus before imag-
ing commenced. It has been shown previously that both OGB1 and
GCaMPe6f have similar response kinetics (Chen et al., 2013), permitting
us to make direct comparisons of the influence of brain state on coding.

Two-photon calcium imaging and analysis. Imaging was performed
using a Prairie Ultima two-photon system (Bruker) driven by a Spectra
Physics Mai-Tai laser passed through a Deep-See module (Spectra Phys-
ics) and a high-performance objective lens (25X Olympus XL Plan N
objective, 1.05 numerical aperture). Cells were excited at 960 nm for
OGB1 and 910 nm for GCaMP6f.

A custom-built MATLAB-based (MathWorks) software system was
used to collect optimized raster scans at 50 frames/s and to perform
offline data analysis, as described previously (Wilson et al., 2012, 2013).
Briefly, image segmentation algorithms were first used to identify cell
bodies from a scanned image (see Fig. 2A4). Next, a genetic algorithm was
used to determine the shortest scan path between cells, and this line scan
was run at 50 Hz, ensuring a 90% dwell time inside the cells. This higher
dwell time ensured calcium transients with slightly larger amplitudes
(AF/F range, 20—50%). Frames with excessive brain movement were
ignored.

Significantly visually responsive cells were determined from the fluo-
rescence time changes (AF/F) by performing a one-tailed Student’s ¢ test
between visually evoked and spontaneous responses (gray screen col-
lected for 2 min before start of experiment). Only cells with p < 10 >
were classified as visually responsive. Firing rates of these cells were then
inferred using a fast nonnegative deconvolution algorithm (Vogelstein et
al., 2010) using parameters that were verified previously in our lab (Wil-
son et al., 2012; El-Boustani and Sur, 2014). The Vogelstein algorithm
infers the probability of spiking from calcium transients. To convert this
probability into a firing rate (measured in events per second), we multi-
plied each probability by 50 Hz, the frequency at which the calcium
transients were sampled. Unless stated otherwise, all data analysis was
performed using inferred firing rates.

Visual stimuli
Creation of noise movies. We developed an algorithm that allowed us to
create noise images with a user-defined spectral slope. To do so, we took
advantage of the inverse-square law: P ~ k ~ ¢, which translates to a circle
with radius = in two-dimensional Fourier space. Thus, we constructed all
noise movies in the Fourier domain. We first defined a matrix of the same
size as the original image (256 X 256 pixels) and then created a noise
amplitude spectrum as a 2D circle of radius «, with « taking values from
0 (K0 movie) to \5 (K2 movie). This was due to the squared relationship
between the amplitude spectrum and the power spectrum. To create the
final noise image, we combined this noise amplitude spectrum with a
random phase spectrum, where phase values were randomly sampled
from the range 0—2 . The final noise images were visualized by comput-
ing its 2D inverse Fourier transform. Each frame of the noise movie was
created using a new random seed, and as a result, the raw noise movies
had no temporal correlations between frames.

Noise-masking procedure. Figure 1A provides a schematic of the noise-
masking procedure. First, each frame of a natural movie was decomposed
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Perturbing spatial correlations in natural movies. 4, lllustration of the noise-masking procedure. Briefly, we combined the Fourier phase spectrum of a natural movie frame with the

amplitude spectrum of a synthetic noise mask to create a noise-masked movie frame. B, Top, Example frames from a set of noise-masked movies with four different levels of spatial correlations.
Bottom, Comparison between the power spectra of these movies (colored lines) and the original movie (black line). Note that the slope of all original movies used in this study is 1.3. C, Pixel intensity
distribution from one original movie (black) and its noise-masked variants (gray). All noise-masked movies were adjusted to have the same luminance (gray triangle), contrast (see inset), kurtosis,
and skewness as the original movie. Inset, A plot of the change in contrast against the difference in spectral slope, computed relative to the original movie. D, Representative spatial ACFs of the
noise-masked movies shown in B. E, Spatial decay constant obtained by fitting a single exponential function to the ACF (inset). The decay constant decreased as spatial correlations were removed
from the stimulus (p << 10 ~°, 5 movies). The inset shows that the ACF can be well fit with a single exponential function. F, SSIM between noise-masked movies and their original versions. The SSIM
was averaged over frames for each movie (1200 frames in total). The p values for F and E were computed using the Cochran—Armitage test for trend. Error bars indicate SEM. Colors indicate

noise-masked movies labeled in B. *p << 0.05; ***p << 10 ~*.

into its Fourier components (phase and amplitude) via a 2D fast Fourier
transform implemented in MATLAB. Next, a noise image was created as
described above. The phase spectrum of the original movie was then
combined with the amplitude spectrum of the noise movie. The resulting
image was then inverse Fourier transformed to yield a noise-masked
movie frame. This procedure was repeated for all frames. We used a total
of five different natural movies, each 4 s in duration, from the van Hat-
eren movie database (van Hateren and Ruderman, 1998).

Adjusting image statistics. Gray scale values of each movie frame were
discretized to 255 values, and each frame was normalized to have equal
mean luminance (mean of luminance histogram, 128; mean luminance,
77 cd/m?; luminance range, 0.02—-134 cd/m?) and contrast (SD of lumi-
nance histogram, 32). This normalization was performed using custom-
written MATLAB code together with the lumMatch function in the
SHINE toolbox (Willenbockel et al., 2010). To minimize differences be-
tween the different original movies, we used the sftMatch function to
ensure that all original movies had the same SF distribution and ampli-
tude spectra (o = 1.3, which was the average spectral slope of the selected

movie database). We also used the histMatch function to match the
histogram of an image with a target (set to the original movie) by remap-
ping pixel values to how frequently they occur in the target histogram.
This ensured that all pixel statistics, such as mean, contrast, kurtosis, and
skewness, were the same for both the noise movies and the original
movies. Additionally, we normalized each power spectrum to have the
same integral; that is, all power spectra have the same total SF content.
The noise-masking technique only reshuffles power into different bands,
without changing the total SF content.

To slow down the movie from its original 60 Hz frame rate, we updated
every three frames, creating an effective frame rate of 20 Hz. The monitor
refresh rate was fixed at 60 Hz. All visual stimuli were displayed on a 23
inch gamma-corrected LCD monitor (Dell) covering a visual space of
~96 X 54 deg?. Stimuli were displayed using the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997).

Image quality metrics. We assessed the impact of perturbing spatial
correlations on the quality of image using the structural similarity index
(SSIM). The SSIM uses image structural information, such as mean,
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variance, and covariance, to estimate dependencies between pixels
(Wang et al., 2004). Specifically, we computed SSIM between images i
and j using the following equation:

Cuipy + (kD))o + (L))
(uF + 1 + (D)7 + o7 + (KLY

SSIM(i, j) =

where, p;;and o ;are the mean and SD of images i and j, respectively; o;
is the covariance; and L is the dynamic range of the image. Further details
on the SSIM metric are provided by Wang et al. (2004).

Data analysis

Response similarity, sparseness, and reliability analysis. Let the response of
a neuron to trial i of movie A be f; ,; then, the response similarity index
(ST; Fig. 2) between natural movie A and a noise movie B was calculated
using the following equation:

1 &
Sl = T2 Zf p(f/',A;ﬁ,B)>

where, p( f; 4, f; p) is the Pearson correlation coefficient (CC), and T'is the
total number of trials. From this equation, SI is the average correlation of
all possible pairwise combinations of single-trial response vectors of two
movies. Lifetime sparseness (selectivity; Fig. 2) was computed using the
following equation:

< EJ'(fi,A)j) 2
&:N_ > Afis);

N-1 ’

where ( f; ,); is the trial-averaged response to frame j of movie A, and N is
the total number of movie frames.

Similarly, response reliability to movie A (R,) was calculated using the
following equation:

2

T
W—T;

Thus, the response reliability (Fig. 3) is the average correlation of all
pairwise combinations of trials for a single movie. Only neurons with
significant responses on more than five trials were selected for this
analysis.

To compute cluster activation reliability (see Fig. 10C), we used the
same equation above, but instead let f; , be the population-averaged
firing rate (i.e., averaged over all neurons in a population) of neurons on
trial i of movie A.

Mapping neuron spatial frequency preferences. In experiments where we
mapped the spatial frequency tuning of neurons (see Fig. 5), we pre-
sented alternating blocks of noise-masked movies and sinusoidal grat-
ings at full contrast. Here, we used gratings with 2 Hz temporal frequency
at eight different orientations (0—180°) and at nine different spatial fre-
quencies [0.01 to 0.32 cycles/degree (cpd)]. Each grating was presented
for 3 s and was flanked by 1 s gray screens. We quantified spatial fre-
quency responses by fitting the following empirical difference-of-
Gaussians function to the spatial frequency tuning curves (Sceniak et al.,
2002):

R, =

E P(fi,A; fj,A)~

j=ir1

R(sf) = Ry + Rye [~ w¥oi]l — R =[S~ wier].

Here R, is the spontaneous rate, measured from the 1 s blank screen
epochs. The parameters (Rg;, i, and o) were optimized to provide a
least-square error fit of the data using the MATLAB function Isqcurvefit
with the Levenberg—Marquardt algorithm. The quality of fit was assessed
by calculating the adjusted R* (coefficient of determination) value as
follows: R? = 3,( f — 7)/2(y — ), where fis the fit and y is the raw data.
Only neurons with fits better than 75% were selected for further analysis.
The preferred spatial frequency and bandwidth (BWs) were determined
empirically from the fitted curves. We defined the preferred spatial
frequency as the spatial frequency that elicits the maximal response
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(i.e., preferred SF = w). The bandwidth (measured in octaves) was
computed as the log ratio of the SFs that elicited half the maximal re-
sponse for the high-frequency cutoff to the low-frequency cutoff: BW =
1og, (SFpigh/SFiow)-

Mapping receptive fields and measuring cortical magnification. In exper-
iments where we mapped the RF centers of neurons (see Fig. 84), we
presented sparse noise stimuli, which consisted of black and white
squares (4 X 4° each, 1 pixel corresponded to 0.8°) on an isoluminant
gray background (128 on a 256 gray scale). Each square was presented at
arandom location (7 X 12 grid) for 200 ms followed by a 300 ms blank
period. The location of each black/white square was chosen from a pseu-
dorandom distribution such that two consecutive squares were at least
three nodes away from each other. Reponses to white squares were use to
calculate the ON receptive field, and responses to black squares were used
to calculate the OFF receptive field following methods described previ-
ously (Smith and Hausser, 2010). We computed the cortical magnifica-
tion factor (CMF) in both the rostrocaudal (CMFy_) and mediolateral
(CMF,,_,) axes by performing a linear regression between RF position
(in degrees) and neuron position (in micrometers) and computing the
slope of the best-fit regression line. The overall CMF was computed using
the following equation: CMF = CMF,, ; X CMF_c. For neural popu-
lations in which we were not able to calculate the CMF (see Fig. 8B), we
used a CMF of 1 X 10 > mm*/deg” to scale between cortical space and
visual space. This value is consistent with previously published reports
(Garrett et al., 2014).

Analysis of signal and noise correlation between neurons. Signal correla-
tions (SCs) between pairs of neurons were calculated as the Pearson
correlation coefficient between trial-averaged responses binned at 200
ms. To compute noise correlations (NCs), we first subtracted the trial
average from responses in each trial and then computed the Pearson CC
between these mean-subtracted responses, again binned at 200 ms (Singh
and Lesica, 2010).

To compute signal and noise correlation decay functions (see Fig. 8),
we first binned neurons according to the pairwise Euclidean distance
between their centroids, determined from the imaging software. On av-
erage, a majority of neurons were located within 20-180 wm of each
other, and only <1% were separated by a distance of 300 um. Next, we
computed the median CC within each distance bin. We adjusted the bin
width (range, 30-50 wm) to ensure at least five neurons per bin. Data
were then pooled from different experiments by first normalizing the CC
to the first distance bin and then by computing a bootstrapped estimate
of the median CC and its 95% confidence interval (CI) for each subse-
quent bin. To estimate the decay constant, we fit single exponential func-
tions to each correlation decay function using a least-squares algorithm,
and assessed fit using an adjusted R? value. Only populations with R* >
80% were selected for further analysis.

Clustering analysis. Clustering analysis (see Figs. 9, 10) was used to
visually represent the correlation structure of the network. Clustering
analysis was performed on all neurons in the imaged population and was
repeated for each spectral condition. We first arranged either signal or
noise correlation values in a matrix, where each element is the CC for a
pair of neurons. Next, an agglomerative hierarchical clustering algorithm
was used to cluster this matrix by maximizing between-cluster variance
and minimizing within-cluster variance. Intercluster linkages were
formed using the Ward metric, and within-cluster linkages were formed
by minimizing the Euclidean distance between CCs. This was achieved
via a custom-written code that used built-in MATLAB functions (link-
age, pdist, and cluster). The optimal number of clusters (7, typically
ranging between 2 and 4) were selected using the Calinski-Harabasz
metric (Bayati et al., 2008), which minimizes within-cluster variance
and maximized between-cluster variance according to the following
formula:

SSB/<n -1
fi = argmax

" $w/m;nf
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of a movie. The trial-averaged response is shown below together with the reliability ( R) values. The shaded area indicates the SEM. B, Cumulative distribution of reliability values. The inset shows
the median reliability value. , Percentage change in reliability relative to the original movie. D, Left, Scatter plots showing the relationship between reliability calculated from calcium signals (AF/F)
and reliability calculated from inferred firing rates for KO spectrum movies, original movies, and K2 spectrum movies. The red line shows the linear least-squares regression. All examples show a
strong linear relationship between the two reliability measures (p values computed using Student’s ¢ test). Right, No significant difference in the Spearman’s correlation between reliability
calculated from AF/F and reliability calculated from inferred firing rates for all spectral conditions. £, Same plot as in C, but using reliability was computed from AF/F instead. Measured calcium
signals also show a monotonic decrease in reliability as spatial correlations are removed from natural movies. Data in B, (, and E are presented as the median == 95% CI. F, Scatter plot showing the
relationship between reliability and mean firing rate, illustrated for K0 (left) and K2 movies (middle). The thick black and red lines are the local regression (LOESS) lines for the original movie and the
noise movien respectively. Right, Quantification of the Spearman rank correlation coefficient between response reliability and mean firing rate for all noise movie conditions. Only K1 movies had a
significantly smaller correlation (p = 0.035, two-tailed rank-sum test; 650 neurons). G, Quantification of the reliability of strongly responding neurons. Strongly responding neurons
were defined as neurons, which had a firing rate >2 SDs above the original movie (z score > 20). Reliability was also z-scored to pool data from different experiments. Data in B—F were
obtained from 650 neurons (16 mice). The p values were computed using Bonferroni-corrected two-tailed rank-sum tests relative to the original movie. Error bars denote SEM. *p << 0.05;
*-x-p <10 *3; **-x—p <10 —4

where SSB = 3 (x; — £)’and SSW = 3| 2, > (x; — c(j))*arethe  ies (Goard and Dan, 2009; Kampa et al., 2011). First, we created popula-

between- and within-cluster sums of squares, respectively; x; is the cor-
relation coefficient of the ith element; and N is the maximum number of
clusters, which was set to 4. The index 7 references all elements within a
cluster, whereas the index j references the clusters. Neurons belonging to
each cluster were color-coded as shown in Figure 9.

Discrimination analysis. We used a template-matching algorithm to
determine whether a single-trial response could be matched to one of five
population templates (the five movies used in each spectral condition;
see Fig. 11). This unsupervised classification was based on previous stud-

tion templates for each movie by averaging (over trials) the responses of
all neurons in a population. Next, individual trials for each neuron were
assigned to a particular stimulus category by minimizing the Euclidean dis-
tance between the template and the single-trial response. The classified stim-
ulus identities were then compared to the stimulus presentation to compute
the percentage of correctly classified trials for each neuron. To test the de-
pendence of the number of neurons on classification, we used a Monte Carlo
sampling technique (repeated 500 times) to pick # neurons (range, 1 to
population size) at random from the population with replacement. The
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single-trial responses from these 7 neurons were compared to the template as
described above. The decoding accuracy was quantified by computing mu-
tual information (MI) using the following equation:

Dij
['l ( ))
P] 5] Pipj

where, p;; is the probability of observing movie i given that the true
label is j.

V1 linear—nonlinear normalization model. We first determined a best-
fit RF estimate from neural responses to two original movies using a bank
of linear and nonlinear filters (Fig. 12). The spatial part of the linear filter
bank was log-Gabor RFs, at 6 different orientations (0-180°) and ranged in
size from 12 to 18° of visual angle (Bonin et al., 2011). Because we did not
know the locations of the RFs a priori, we randomly picked 50 possible
locations on the screen. The temporal part of the linear bank consisted of
gamma functions with a range of temporal delays (140—200 ms). Responses
from each branch of this filter bank were summed and then passed through
a pointwise exponential nonlinearity to provide a response estimate. We
used a least squares method to determine the best-fit model. Only neurons
with adjusted R values >80% were selected for further analysis.

In the independent model, we convolved each noise movie frame with
the best-fit RF model for each neuron. In the normalization model, we
modulated the output of each independent model ( f) using the divisive
normalization rule:

MI =

i €{1,5} j € {1,5}

2
o’ + ]_fj

where j indexes neurons in either the high- or low-correlation cluster.
The adjusted R* was computed between the predicted and actual re-
sponses to assess the percentage of variance explained by each model.

Statistical analysis. All statistical analysis was performed using custom-
written scripts in MATLAB and R. No tests were conducted to determine
sample size. Data from anesthetized experiments came from 16 mice,
yielding a total of 1006 neurons. For reliability analysis, we picked neu-
rons (650 neurons, 16 mice) that had significant visually evoked re-
sponses from six or more trials. These same 650 neurons were used for all
correlation analysis. For SF tuning analysis, we collected data from 308
neurons for four mice. In awake experiments, we obtained data from 230
neurons in four mice.

Data were first tested for normality using the Shapiro-Wilk test. All
data presented in this paper are nonnormally distributed; thus, all statis-
tical tests were conducted using nonparametric statistics. Our experi-
ments involved testing the influence of different movies on the same
population of neurons; thus, all comparisons were performed using non-
parametric repeated-measures ANOVA (Friedman test) with Bonferro-
ni’s correction for multiple comparisons. For Bonferroni corrections, the
significance value was set to 0.05. Post hoc tests were performed using
the two-tailed Wilcoxon rank-sum test. All other statistical tests that were
performed are described in the text. The 95% Cls of the medians were
computed by bootstrapping. In most figures, data are presented as the
median * 95% CI, unless stated otherwise. Visually nonoverlapping 95%
Cls imply that the data are significant to at least p < 0.05.

Results

Perturbing spatial correlations in natural movies

With the aim of understanding the properties of natural scenes
that influence reliability, we developed a novel noise-masking
technique that allowed us to selectively increase or decrease
second-order spatial correlations in time-varying natural scenes
without altering their underlying edge structure (Fig. 1). To do
so, we took advantage of the fact that power (P) in most natural
images decreases with increasing SF (k) according to the power
law P ~ k™~ %, where the parameter « is the spectral slope (van
Hateren and van der Schaaf, 1998). White-noise images, for ex-
ample, lack correlations between pixels, possess constant power
in all SF bands, and have a zero spectral slope. Thus, the spectral
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slope can succinctly parameterize both spatial correlations and
the distribution of SFs in natural images. Furthermore, because
the phase spectrum contains information about edges, spatial
correlations can be altered without significantly changing the sa-
liency of an image (Wichmann et al.,, 2010). Thus, in our noise-
masking technique, we preserved the phase spectrum and added
noise masks with precisely defined spectral slopes to each frame
of a set of natural movies (Fig. 1A; five movies; see Materials and
Methods for details).

We used this method to generate movies with four different
spectral slopes: 0, 1, 1.5, and 2, henceforth referred to as KO—K2
respectively. Example frames from these noise-masked movies
together with their power spectra are shown in Figure 1B. Since
changes in pixel statistics, especially mean luminance and con-
trast, are known to affect coding in the visual system (Bonin et al.,
2006), we adjusted each noise-masked frame to have the same
mean luminance, contrast, kurtosis, and skewness (Fig. 1C). As a
result, our noise-masked movies differed only in their spectral
slope and not in their relative distribution of light and dark pixels.
For example, KO movies possessed no spatial correlations be-
tween pixels and, consequentially, had a flat power spectrum
(Fig. 1B) and a flat spatial autocorrelation function (ACF; Fig.
1D). Visually, edges in KO movies appeared sharper than the
original movie because of an increase in high SF power. K2 mov-
ies, on the other hand, were strongly spatially correlated and
appeared blurry due to an increase in low SF power. Thus, our
noise-masking technique is equivalent to applying a zero-phase
SF filter to change the SF content of natural movies. Specifically,
in KO and K1 movies, low SF content is attenuated, whereas high
SF content is attenuated in K1.5 and K2 movies.

Next, by fitting single exponential functions to each ACF, we
parametrically measured the distance, in visual space, over which
pixels remained strongly correlated (Fig. 1E, inset shows example
fit). As expected, K2 movies had the largest decay constant, with
pixels strongly correlated with each other up to a distance of ~10°. In
contrast, pixels in K1 movies became decorrelated beyond 3°. Thus,
pixels in both KO and K1 movies decorrelate within the span of a
typical mouse V1 receptive field (5-7° Niell and Stryker, 2008). No-
tably, the remarkably low variability in noise-masked movie data
points reinforces the fact that these movies are spatially homoge-
neous: all noise-masked movies have the same power spectra regard-
less of differences in their phase spectrum.

In addition, we also assessed changes in image quality by com-
puting a framewise SSIM between each noise movie and its original
version. The SSIM uses image structural information, such as lumi-
nance and contrast, to assess the degree of similarity between two
images. Images that are similar in appearance have a SSIM close to
one, whereas statistically dissimilar images have a SSIM close to zero.
We found that SSIM decreased as the difference in spectral slope
became more negative (p = 0.036, Cochran—Armitage test for
trend). This implies that KO and K1 movies were the most dissimilar
to their original version despite having edges that were visually
sharper. Thus, our noise-masking technique revealed that perturb-
ing the spectral slope alters the statistical structure of natural scenes
by changing correlations between pixels.

Neurons respond to spatially decorrelated movies with

weak responses

To assess how populations of neurons in layer 2/3 of V1 repre-
sented these noise-masked movies, we preformed high-speed
two-photon calcium imaging in lightly anesthetized mice using
the synthetic calcium indicator OGB1 (Fig. 2A). Our high-speed
imaging method (Wilson et al., 2013) allowed us to scan a cortical
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area of 250 X 250 wm at a rate of 50 frames/s. Within each area,
we were able to record up to 100 neurons simultaneously, out of
which 46 * 20 neurons (21 populations, 16 mice) were visually
responsive. Firing rates were inferred from the calcium signals
using a temporal deconvolution algorithm (Vogelstein et al.,
2010; Fig. 2B). The parameters used for accurate deconvolution
were determined in previous studies (Wilson et al., 2012; El-
Boustani and Sur, 2014). Expectedly, we found a significant cor-
relation between inferred firing rate and average fluorescence
change for all spectral conditions (Fig. 2C), implying a strong
correspondence between the measured calcium signal and in-
ferred firing rate.

The majority of neurons responded strongly and synchro-
nously to the original movie at distinct epochs (Fig. 2D, center
panel). Surprisingly, the same neurons responded weakly, and at
random times, to the decorrelated stimuli (KO and K1 movies),
which resulted in flat population-averaged responses (Fig. 2D,
bottom row). In contrast, these neurons responded to K1.5 and
K2 movies with similar amplitudes and during the same epochs as
the original movie. We assessed how similar the noise movie
firing dynamics were to the original movie by computing a sim-
ilarity index (see Materials and Methods) for each neuron. On
average, neural responses became more dissimilar as spatial cor-
relations were removed from the movie, with responses to KO
movies being the most different (p < 10 ~° Friedman test; 1006
neurons; 16 mice; Fig. 2E). The SI was also significantly lower for
responses to KO movies than responses to K1 movies (p = 8.12 X
10 ~°, Bonferroni-corrected rank-sum test). In contrast, both
K1.5 and K2 movies evoked very similar responses to the original
movie, even though they had stronger spatial correlations (p =
0.27, Bonferroni-corrected rank-sum test). When compared with
image SSIM (Fig. 1D), these observations suggest that neurons in
mouse V1 are highly sensitive to subtle changes in natural movie
spatial correlations.

Flattening the power spectrum strongly decreased the mean
firing rate of KO and K1 movies relative to the original movie (p <
10 ~°, Friedman test with Bonferroni correction; 16 mice; Fig.
2F). Surprisingly, even though K1.5 and K2 movies had stronger
spatial correlations than the original movie, they failed to evoke
stronger firing rates (K1.5, p = 0.95; K2, p = 0.07, Bonferroni-
corrected rank-sum tests). In addition, we found that the trial-
to-trial variance for KO and K1 movies also increased (p < 10 -6
Friedman test with Bonferroni correction; 16 mice; Fig. 2G).
Thus, V1 neurons have reduced and highly variable responses
when spatial correlations are removed from natural movies.

Next, we computed lifetime sparseness from the inferred fir-
ing rates as a measure of selectivity to the different stimuli. By
definition, a neuron with high lifetime sparseness responds selec-
tively to only a few frames in the stimulus (Willmore et al., 2011).
Not surprisingly, KO and K1 movies evoked highly unselective
responses, whereas increasing stimulus correlations increased
lifetime sparseness (K1.5, p = 0.23; K2, p = 2.1 X 10 >, rank-
sum test relative to original movie; 1006 neurons; Fig. 2H ). Thus,
the selectivity of V1 neurons is also strongly modulated by stim-
ulus spatial correlations. Taken together, these observations sup-
port the conclusion that attenuating the low SF power of natural
scenes has a detrimental effect on neural responses.

Decorrelating movies reduces response reliability

We next asked whether removing spatial correlations also af-
fected response reliability. Reliability is traditionally measured in
terms of the number of spikes produced by a neuron on every
stimulus repetition (Tiesinga et al., 2008). However, because we
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did not have single spike resolution in our recordings, we rea-
soned that a highly reliable neuron would respond with stereo-
typical responses on every repetition and, as a result, would have
a high, positive correlation coefficient between trials. Thus, we
defined response reliability as the average Pearson’s correlation
coefficient between every pairwise combination of trials (see Ma-
terials and Methods). Since this metric quantifies the degree of
response similarity between trials, it provides a measure of both
reliability and temporal precision (Haider et al., 2010; Bathellier
et al., 2012; Baudot et al., 2013).

Neurons responded reliably to the unperturbed movies, as
well as their K1.5 and K2 spectrum versions (Fig. 3A). Relative to
the original movie, we found no difference between K1.5 and K2
movie reliability (K1.5, p = 0.565; K2, p = 0.624, Bonferroni-
corrected rank-sum test; Fig. 3 B, C). In contrast, KO and K1 mov-
ies evoked responses with significantly lower reliability (p <
10 %, Friedman test; 650 neurons; 16 mice; Fig. 3B,C), due to the
high variability between trials. As expected, we also found a sig-
nificant linear relationship between reliability measured using
inferred firing rates and reliability measured using fluorescence
signals for all spectral conditions (Fig. 3D). This implies that
neurons, which had reliable inferred firing rates, also responded
with reliable calcium transients. Therefore, removing spatial cor-
relations and attenuating low SF power caused a strong mono-
tonic decrease in response reliability (Fig. 3C,D). In contrast,
attenuating high SF power did not change reliability.

Was the reduced reliability to decorrelated movies a conse-
quence of reduced firing rates? We found a linear relationship
between average firing rate and reliability, for all stimulus condi-
tions (Spearman’s p = 0.65 = 0.22;p = 8.9 X 10 ~3: 650 neurons;
Fig. 3F). Partitioning data according to firing rates, we found a
small fraction of neurons that responded strongly to both K0 and
K1 movies (132 of 650, z-score > 20 above original movie re-
sponse). Interestingly, despite having higher firing rates, these
neurons still responded less reliably to both decorrelated movies
(KO, p < 10 %4 K1, p = 0.035; 132 neurons; rank-sum test; Fig.
3G). Taken together, these results suggest that KO and K1 movies
evoke unreliable responses because they do not possess the ap-
propriate spectral content. Thus, reliable coding of natural scenes
requires intact low SF information.

Stimulus-induced changes in neuronal responses in

awake mice

Our results so far show that the response properties of neurons in
mouse V1 are sensitive to the spectral properties of the visual
stimulus; specifically, removing spatial correlations decreases
both response amplitudes and between-trial reliability. Since an-
esthesia is known to influence cortical computations (Haider et
al,, 2013), we next sought to extend the generality of these find-
ings to awake mice by repeating the same experiments in pas-
sively viewing, head-fixed mice using the genetically encoded
calcium indicator GCaMP6f instead of OGB-1 (Fig. 4A; see Ma-
terials and Methods).

Neurons in awake mice also responded to both KO and K1
movies with significantly weaker responses than the original
movie (p < 10 2, Friedman test with Bonferroni correction; 230
neurons; Fig. 4B). Surprisingly, firing rates to K1 movies were
slightly higher than in anesthetized mice (p = 6.7 X 10>, one-
tailed rank-sum test relative to anesthetized data). However,
despite this increase in firing rate, K1 movie responses were sig-
nificantly less reliable (Fig. 4C) and unselective (Fig. 4D) than
responses to original movies. Similar to data from anesthe-
tized mice, we also found that removing spatial correlations
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Decorrelated movies evoke weak and unreliable responses in awake mice. A, Two-photon image of a population of 29 neurons expressing GCaMP6f. See Materials and Methods for

details. B, Example raster plots (left and middle) and trial-averaged response (right) of the two cells marked in A. Both cells responded strongly to the spatially correlated stimuli (original, K1.5, and
K2 movies), but less so to K1 and very weakly to KO movies. The shaded region indicates the SEM computed over 20 trials. C, Percentage change of mean firing rate relative to the original movie.
Neurons in awake mice also responded with significantly lower firing rates to spatially decorrelated stimuli. The decrease in firing rate is commensurate with 0GB1 data in anesthetized mice (Fig.
2F). D, Change in reliability relative to the original movie shows a strong decrease in reliability as spatial correlations are removed, similar to anesthetized animals (Fig. 3C). E, Significant reduction
in selectivity (measured from lifetime sparseness) for K0 movies (p << 10 ~*), but less so for K1 movies (p = 0.012). F, Quantification of similarity index relative to the original movie. Similar to
Figure 2D, response similarity monotonically decreased as spatial correlations were removed from the natural movie. The p values in F were computed using a post hoc rank-sum test relative to K2
movies. All other p values were computed via Bonferroni-corrected rank-sum test. Data for C~F are from 230 neurons (4 mice) and are represented as median = 95% Cl. *p << 0.05; **p <10 %

-x--)e*p <10 74.

led to a monotonic decrease in response similarity in awake
mice (Fig. 4E).

Thus, our awake imaging experiments show that weak and
unreliable responses to decorrelated stimuli are unlikely to be
caused by a change in brain state imposed by anesthesia. Rather,
decorrelated stimuli, which lack crucial low SF information, are
not effective at eliciting reliable responses from V1 neurons.

Responses to noise-masked movies cannot be predicted from
spatial frequency tuning
V1 neurons are known to be strongly selective for SF, in addition
to orientation (Niell and Stryker, 2008; Gao et al., 2010). Since
our noise-masking technique alters the SF content of natural
movies by redistributing power in different bands, we next asked
whether our observed results could be attributed to SF tuning
properties alone (Fig. 5A). Specifically, because K2 movies have
higher power in the low SF band (SF <0.012 cpd; Fig. 5B), we
expected low SF-preferring neurons to respond more strongly to
K2 movies than the original movie. Conversely, because KO mov-
ies had more power than the original movie at SFs >0.14 cpd, we
expected high-SF-preferring neurons to prefer KO movies.

The spatial summation properties of V1 neurons have been tra-
ditionally modeled as a linear—nonlinear (LN) cascade (Movshon et

al.,, 1978; Carandini et al., 1997). In this model, the linear compo-
nent resembles the spatiotemporal RF, whereas the nonlinear
component models the spike-generating mechanism. We used
this simple model to predict the responses of neurons preferring
different SFs (Fig. 5Ci, top). As expected, the model predicted
that high-SF-preferring neurons would respond with higher fir-
ing rates to decorrelated movies, whereas low-SF-preferring neu-
rons would prefer the more strongly correlated movies (Fig. 5Ci,
bottom).

To test the veracity of this prediction, we determined SF tun-
ing properties of neurons empirically from tuning curves that
were well fit by a difference of Gaussians function (average R> =
82.4 = 8.22%; 308 neurons; four mice). Surprisingly, only very
few neurons obeyed the predicted trend. Representative re-
sponses of two neurons that obeyed the model’s prediction are
shown in Figure 5D. Rather, on average, both high-SF-preferring
(neurons with preferred SF >0.04 cycles/degree) and low-SE-
preferring cells responded weakly to KO movies (Fig. 5E, left).
Similarly, there was only a weak correlation between the actual
and predicted firing rate difference for K2 movies (r = 0.153,
Spearman’s rank correlation coefficient; Fig. 5E, right).

V1 neurons also have different tuning bandwidths; that is,
they respond to a range of SFs, in addition to their preferred SF.
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Figure 5.  SF tuning of neurons cannot explain responses to noise-masked movies. A, Schematic illustrating the portion of the power spectrum sampled by a typical low-SF- (gray) or high-SF-
preferring (red) cell. The yellow arrow indicates the cutoff frequency, which is defined as the SF at which the power in the noise-masked movie is the same as that in the original movie. B,
Quantification of the cutoff frequency (cycles per degree) for the different spectral conditions. As expected, cutoff frequency is the highest for K0 and lowest for K2 movies. Data are pooled from five
movies. The gray lines show the mean == SEM preferred SF of 308 neurons (four mice). i, Top, Schematic of an LN model of a V1 neuron used to predict responses to the noise movies. Briefly, a Gabor
filter was convolved with a noise-masked movie, and the resultant was rectified with a pointwise nonlinearity to obtain a predicted firing rate. Bottom, Plot showing the predicted firing rate
difference (ARate = noise movie rate — original movie rate) for Gabor filters of different sizes. Decreasing the size of the Gabor filter is equivalent to increasing the preferred spatial frequency. Gii,
Plots showing predicted firing rate difference of a typical low-SF-preferring cell (top, SF denoted by gray arrow in Gi) and high-SF-preferring cell (bottom, red arrow). Di, Left, Representative tuning
curve of a low-SF-preferring cell, which responds more to the spatially correlated movies. The SF tuning curve of this cell is well fit with a difference of Gaussians model (red line). Right, Plot of firing
rate difference of this neuron demonstrating that this cell responds more to K2 movies. Dii, Same plot as Di, but for a high-SF-preferring cell that responds more to spatially decorrelated movies
instead. E, Plots of the difference in firing rate against the preferred SF. Data are from 78 simultaneously recorded neurons. Dark gray dots indicate low-SF-preferring neurons (SF, <<0.04 cpd), and
red dots indicate high-SF-preferring neurons. Also plotted on the same axes is the difference in firing rate predicted from the model in Cto illustrate the expected trend. There was no statistically
significant trend in the data for either spectral condition (K0, p = 0.65; K2, p = 0.071; Spearman’s rank correlation coefficient). F, Plots of the difference in firing rate against SF tuning bandwidth.
The same neurons as in E were sorted according to bandwidth (see Materials and Methods). Similar to E, dark gray dots indicate low-SF-preferring neurons, and red dots indicate high-SF-preferring
neurons. The dashed vertical line separates narrowband neurons (bandwidth, <2 octaves) from broadband neurons. G, H, Difference in firing rates plotted against difference in slopes for
low-SF-preferring cells (G) and high-SF-preferring cells (H). Cells were further partitioned into narrowband and broadband based on tuning bandwidth. *p << 0.05; ***p < 10 —*,
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Additionally, we also found no corre-
lation between reliability and preferred SF
for either spectral condition (Fig. 6A).
Both high- and low-SF-preferring neu-
rons responded unreliably to KO movies
(both p < 107>, Bonferroni corrected
rank sum test; 308 neurons) and reliably
to K2 movies (Fig. 6B). Interestingly, K1
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movies evoked reliable responses from
high- but not low-SE-preferring cells
(high SF, p = 0.21, 130 neurons; low SF,
p < 1077, 178 neurons, Bonferroni cor-
rected rank-sum test; Fig. 6B). These
results support the hypothesis that reli-
ability is a network-dependent phenome-
non and may not be explained solely from
the SF tuning properties of neurons.

el = = = —
—_

e

Perturbing spatial correlations

0

0
-
Noise Corr. Coeff. (NC)

-05 0 05 1

Figure 7.

Bonferroni-corrected rank-sum test relative to the original movie. ***p << 10 %,

Thus, we next investigated the relationship between bandwidth
and firing rate difference (Fig. 5F). This allowed us to further
categorize neurons into narrowband (bandwidth of <2 octaves;
106 of 308 neurons) and broadband (202 of 308 neurons). On
average, both narrowband and broadband low SF neurons re-
sponded marginally more to K2 movies than the original movie
(broad, p = 0.042; narrow, p = 0.53; Bonferroni corrected rank
sum test; Fig. 5G). In contrast, only narrowband neurons re-
sponded with marginally higher rates to KO movies (Fig. 5H).
Surprisingly, high-SF-preferring neurons responded equally
to K2 movies (p = 0.871), even though high SF power was
significantly attenuated in these movies. Thus, these results
are notably different from the prediction of the simple model
(Fig. 5Cii), suggesting that responses to the noise-masked
movies cannot be predicted from SF tuning alone. Rather,
neural activity is modulated by the entire power spectrum of
natural scenes.

Slope Difference (Aa)

Bidirectional modulation of interneuronal correlations. A, Cumulative distribution of SCs for all spectral conditions.
Theinset shows the median SC. B, Pairwise difference in signal correlation as a function of spectral slope difference for neuron pairs
<50 m apart (left) and >50 wum apart (right). C, D, Same as A and B, but for NCs. All data are presented as the median = 95%
(l from 16 mice (650 neurons; 210,925 neuronal pairs). All p values were computed using a Friedman test followed by post hoc

bidirectionally modulates signal and
noise correlations between neurons
Computations in L2/3 of visual cortex de-
pend on an intricate balance between
feedforward stimulus drive and recurrent
network dynamics. As a result, the ability
of V1 to encode information is influenced
by both the structure and magnitude of
correlations between neurons (Zohary et
al., 1994; Ecker et al., 2011; Moreno-Bote
et al., 2014). Thus, we sought to characterize how perturbing
stimulus correlations altered interneuronal correlations. Specifi-
cally, we analyzed both signal correlation, which reflects similar-
ities in evoked responses, and noise correlation, which captures
the dependencies between neurons that are not locked to the
external stimulus (Cohen and Kohn, 2011).

In response to unperturbed natural movies, neurons were on
average positively signal correlated (mean = SEM, 0.116 % 0.003;
650 neurons; Fig. 7A), but only weakly noise correlated (0.031 =
0.005; Fig. 7C), comparable to previous reports using similar
preparations (Hofer et al., 2011; Cossell et al., 2015). Presenting
decorrelated movies strongly decreased signal correlation and
increased noise correlation (SC, p = 2.34 X 10 "% NC, p = 3.45 X
10>, Bonferroni-corrected rank-sum test relative to original;
Fig. 7A,C). In contrast, neurons maintained the same levels of
signal and noise correlations in response to strongly correlated
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Spatial organization of interneuronal correlations closely tracks stimulus correlations. 4, Top, Example RF locations of a population of 50 neurons. Note, the RF centers are not drawn to

scale. Bottom, SCs between neurons in this example population decay with increasing distance between neurons (left) and increasing separation between RFs (Euclidean distance between centers,
right). B, Comparison between signal correlation decay (black lines) and stimulus ACF (red lines) for all spectral conditions. The shaded area denotes the 95% Cl of the median computed from 16 mice.
In most conditions, the decay of signal correlations (except KO movies) between neurons closely tracks the stimulus ACF. C, Explained variance of the fit between the stimulus ACF and the signal
correlation decay function. The ACF is able to explain up to 80% of the decay in signal correlations and 60% of the decay in noise correlations. Data are presented as median == 95% Cl. D, E, Signal
correlation (D) and noise correlation (E) as a function of distance between neurons for all spectral conditions. The inset shows the average decay constants estimated from single exponential fit. Data
in the inset are shown as mean = SEM. The shaded area in D indicates the 95% Cl of the median of the original movie. All data in B~E are from 16 mice. *p << 0.05; **p << 10 >,

movies. Thus, removing spatial correlations from natural scenes
not only increased trial-to-trial variability, but also increased cor-
related variability between neurons. These data also imply that
perturbing spatial correlations in natural scenes is sufficient to
drive the network into a weakly responsive and noisy coding
regime (Churchland et al., 2010).

To better quantify how correlations changed between neu-
rons, we computed, for each cell pair, a bootstrapped estimate of
the percentage change in correlation relative to the original movie
(Fig. 7B). We partitioned our data into pairs that were either
located <50 wm (“neighboring pairs”) or >50 um apart (“dis-
tant pairs”) to reflect the fact that neurons separated by <50 um
tend to have higher connectivity (Ko et al., 2011). Removing
spatial correlations led to a significant reduction in signal corre-
lations in both neighboring and distant pairs of neurons (p <
10 7%, Friedman test with Dunn’s test; 16 mice; Fig. 7D). In par-
ticular, KO movies most strongly decorrelated neighboring neu-
rons (30 vs 12% reduction). In contrast, noise correlation
increased for only KO and K1 movies in neighboring pairs, but
remained stimulus invariant in distant pairs (Fig. 7C).

Next, we investigated how the spatial organization of in-
terneuronal correlations changed for the different stimuli. In par-
ticular, we were interested in understanding the relationship
between interneuronal correlations and stimulus correlations.
To this end, we first used a sparse noise stimulus to map RF
centers of neurons to compute a CMF (for details, see Materials
and Methods). In the example population shown in Figure 84, 1
deg” of visual space corresponded to 0.992 X 10 > mm? of cor-
tical space (CMF in the rostrocaudal axis, 32.3 X 10 ~> mm/deg;

CMF in the mediolateral axis, 30.7 X 10 > mm/ deg), which is
consistent with previous studies of mouse visual cortex (Garrett
et al., 2014). Importantly, within this example population, cells
with neighboring RFs were more strongly signal correlated when
stimulated with a natural movie than cells with distant RFs (Fig.
8A, bottom). This is primarily because neurons with neighboring
RFs sample similar parts of the visual scene (Bonin et al., 2011;
Cossell et al., 2015). As a consequence, signal correlations in all
populations (Fig. 8B; 16 mice) decayed as the separation between
neurons increased.

We then used the CMF to topographically map visual space
into cortical distance. This permitted us to directly compare both
signal correlations and the spatial ACF of the different movies on
the same scale (Fig. 8B). For all imaged populations, the spatial
decay of signal correlations closely matched the spatial ACF. In
particular, the change in pixel correlations was able to explain
>80% of the variance in the spatial organization of signal corre-
lations for all spectral conditions, with the exception of KO mov-
ies (Fig. 8C; 16 mice). Therefore, the spatial ACF provides a good
model for signal correlations between V1 neurons, implying that
correlations between neurons fall off as expected from the visual
stimulus.

To further explore this notion, we quantified the spatial decay
constant by fitting single exponentials to the signal correlation
decay functions. Expectedly, this analysis revealed that signal cor-
relations decayed the fastest between neurons in for both K0 and
K1 movies (K0, p = 1.86 X 10 % K1,p=3.81X10 ~2 rank-sum
test relative to original; 16 mice; Fig. 8D), which was commensu-
rate with the fact that pixel correlations also decayed quickly with
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distance in these stimuli (Fig. 1E). In stark contrast, these corre-
lations persisted over alonger range when K2 movies (p = 6.27 X
10 ~?) were displayed. In particular, coupling between neurons
remained strong even among neurons located >200 um apart.
Interestingly, comparing Figures 8D (inset) and 1E, we noticed that
neurons were less correlated than expected when stimulated with K2
movies, as the signal correlation decay constant appeared to as-
ymptote at ~120 wm. This could be due to either decorrelation
occurring earlier in the visual pathway or the limited spatial scale
of our imaging method. Despite this, our results demonstrate
that strongly correlated movies couple neurons located far apart
in the cortex, without changing the coupling magnitude.

In contrast to signal correlations, noise correlations decayed
exponentially between neurons (average R* of exponential fit,
87 * 1.6%; 16 mice), with a decay constant of close to 50 um,
regardless of the stimulus condition (p = 0.67, Cochran—Armitage
test for trend; Fig. 8E). As a consequence, the spatial ACF poorly
predicted the decay in noise correlations (Fig. 8C). Thus, unlike
the magnitude (Fig. 7C), the spatial structure of noise correla-
tions is not significantly altered when stimulus correlations are
removed. Taken together, these results indicate that perturbing
spatial correlations bidirectionally alters both the spatial struc-
ture and magnitude of neuronal coactivation. Specifically, neigh-
boring neurons that are located within 50 um of each other
become less signal correlated and more noise correlated when
presented with weakly correlated stimuli.

Clustering analysis reveals ensembles of neurons that share
similar functional properties

These findings raise an important question: how do changes in
interneuronal correlations influence reliability? Previous studies
have shown that neurons with similar orientation tuning or re-
ceptive fields are recurrently interconnected (Ko etal., 2011; Cos-
sell et al., 2015). As a consequence, distinct neural ensembles are
recruited by different visual stimuli (Harris and Mrsic-Flogel,
2013; Miller et al., 2014). However, it remains unclear how the
activation of these ensembles improves coding reliability. Thus,
we sought to elucidate the relationship between response reliabil-
ity and interneuronal correlations. Specifically, we hypothesized
that an increase in signal correlations should help to reduce re-
sponse variability and increase reliability.

To test this hypothesis, we used an agglomerative hierarchical
clustering technique to group neurons according to similarities
in their correlation coefficients (Fig. 94; for details, see Materials
and Methods). This method allowed us to identify neurons that
were either strongly or weakly correlated with their neighbors.
We found that clusters within the same neural population reor-
ganized depending on the level of spatial correlations in the stim-
ulus (Fig. 9B). Neurons within each cluster responded with
similar temporal dynamics, implying that all clustered neurons
were simultaneously coactivated by the stimulus. Specifically,
strongly correlated neurons in the original movie (Fig. 9Bi) be-
came decorrelated when presented with a KO movie (Fig. 9Bii). In
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and movie. The solid black lines denote trends computed via LOESS regression. The box—whisker plots quantify reliability in each cluster. Colors are labeled in Figure 9. Bi, Bii, Cluster maps derived
from interneuronal correlations on each trial. Representative examples are shown for three trials (1, 3, and 6) for both the original movie (Bi) and kK2 movie (Bii). Neurons colored in red are strongly
correlated with each other on each repetition of the stimulus. Almost the same clusters are reactivated on each trial for both stimuli (examples are indicated by black arrows). €, Quantification of
median reliability within the high-correlation cluster. We computed trial-to-trial reliability using the averaged firing rate of all the neurons in the high-SC cluster (see Materials and Methods). This
gives a measure of the reliability of activation of the entire cluster. For comparison, we plotted the individual neuron reliability on the left (same data as in Fig. 3B). For all stimulus conditions, pooling
responses from neuronsin a cluster improves reliability (p << 10 ~°, Kruskal-Wallis ANOVA between individual neuron and high-correlation cluster reliability). D, Percentage change in high- (dark
red) and low-correlation (dark blue) cluster reliability plotted against spectral slope difference relative to the original movie. Data are presented as the median == 95% Cl from 16 mice. *p << 0.05;
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response to K2 movies, however, highly correlated neurons were
more dispersed throughout the imaged population (Fig. 9Biii),
consistent with the result shown in Figure 8D. This example also
demonstrates that even though K2 movies evoke the same abso-
lute level of intraneuronal correlations as original movies, they
recruit distinct ensembles of neurons.

The strongly correlated movies recruited a larger fraction of
neurons in the high-correlation cluster (38% K2 vs 27% KO0 mov-
ies; 16 mice; Fig. 9C). Surprisingly, the original movie recruited
almost the same number of neurons in both high- and low-
correlation clusters, suggesting that a sparse subset of neurons
(36%) is active for natural movies. Additionally, K2 movies had
fewer neurons in the low-correlation cluster compared to the
original movie (p = 1.03 X 10 * Kruskal-Wallis one-way
ANOVA; 16 mice). This result confirmed that increasing spatial
correlations in natural movies increased the proportion of
active neurons. This also highlights the different coding strat-
egy used by the visual cortex to process movies with different
spectral properties.

Weakly correlated ensembles did not show a strong stimulus
dependence in signal correlations (low-correlation cluster, p =
0.43, Kruskal-Wallis one-way ANOVA; 16 mice; Fig. 9D), as they
were poorly driven by the different movies (Fig. 9Bi—Biii). We
were surprised to find that decorrelated movies elicited stronger
noise correlations than the original movie, even within the cluster
of strongly responding cells (p = 1.24 X 10—, Kruskal-Wallis
one-way ANOVA with Bonferroni correction; 16 mice; Fig. 9E).
Thus, movies that are unreliably processed are dominated by
higher noise correlations.

Correlated ensembles of neurons reliably represent

visual stimuli

Next, we analyzed how response reliability differed between the
clusters of either strongly or weakly correlated neurons (Fig.

10A). In almost all recorded populations, the high-correlation
cluster contained a larger fraction of reliable responders than the
low-correlation cluster (mean * SD, 29.8 = 1.1% vs 14.6 *
1.5%; p < 10—, Wilcoxon two-tailed rank-sum test; 650 neu-
rons). Consistent with this, strongly correlated neurons had more
reliable responses than weakly correlated neurons for original,
K1.5, and K2 movies, but not for the decorrelated movies (p <
10 ~?, Kruskal-Wallis one-way ANOVA with Bonferroni correc-
tion; 16 mice; Fig. 10A). Specifically, all clusters from the KO
movie condition were weakly reliable.

Are these clusters reliably activated from one trial to the next?
To answer this question, we repeated this clustering analysis on
responses obtained from individual trials. “Snapshots” of the
same neural population taken during the first, third, and sixth
stimulus repetitions (Fig. 10B) showed that for both the unper-
turbed and the K2 movie, neurons in the high-correlation cluster
were reliably activated during each stimulus repetition. In partic-
ular, neurons that were strongly correlated on the first trial re-
mained strongly correlated during even the sixth stimulus
repetition. Examples of these neurons are indicated by black
arrows in Figure 10B. Consistent with the idea that population
coding decreases variability (Shadlen and Newsome, 1994),
the high-correlation cluster was always more reliably activated
than the individual neurons themselves (p < 107'°,
Bonferroni-corrected rank-sum test between individual neu-
rons and high-correlation cluster; Fig. 10C). However, this
population coding strategy did not improve the reliability for
either KO or K1 movies. In stark contrast, the low-correlation
cluster was unreliably activated by all spectral conditions (Fig.
10D). Taken together, our clustering analysis revealed the fol-
lowing: (1) neuronal ensembles dynamically reorganize de-
pending on the spatial properties of the stimulus; (2) coding
within these ensembles is highly reliable; (3) these ensembles
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Ensembles of correlated neurons efficiently encode natural scenes. 4, lllustration of the decoding method. A single-trial response was classified into one of two movies (repeated for

all possible pairs of movies) on the basis of its Euclidean distance to a population template (see Materials and Methods). B, Plot illustrating that decoding accuracy (percentage of correctly classified
trials) increases as the number of neurons contributing to the single-trial response increases. Data in this plot are from a single population of neurons (46 neurons). €, Percentage changes in mutual
information for both individual neurons (diamonds) and whole populations (circles). Data are presented as median = 95% Cl. The p values were computed using a post hoc Bonferroni-corrected
rank-sum test relative to the original movie. Green asterisks, p values for individual neurons; red asterisks, p values for the population. D, Average discriminability for the individual neurons (left) and
whole population (right) decomposed according to correlation cluster. The p values were computed using a one-tailed rank-sum test relative to the original movie. E, Comparison of mutual
information for high- and low-correlation clusters relative to randomly sampled subpopulations of the same size. Data in C~E are from 16 mice. Error bars denote SEM. *p << 0.05; ***p < 10 —*,

are also reliably and stably activated over multiple stimulus
repetitions.

Reliability enables accurate discrimination of strongly
correlated stimuli

In principle, the highly reliable responses of correlated neurons
should efficiently represent visual information by ensuring
greater discriminability between the different movies. To further
explore this idea, we performed linear decoding analysis on neu-
ral responses to assess the ability of neurons to discriminate dif-
ferent movies in each spectral condition. Specifically, we used a
nearest means classifier (Fig. 11A; described in Materials and
Methods) to predict from single-trial responses which movie had
been presented (Goard and Dan, 2009; Kampa et al., 2011).

We measured discrimination accuracy by computing the frac-
tion of correct classifications made by the classifier. Figure 11B
exemplifies the decoding performance of a single population of
neurons (46 neurons). In this population, discrimination accu-
racy improved as the number of neurons in the template in-
creased. Interestingly, the classifier’s performance saturated at
~12 neurons, suggesting that all neuron groups larger than 12
provided the same information about the stimulus. We found a
similar trend in all imaged populations (16 mice): increasing the
number of neurons in the template, up to a limit, improved dis-
crimination accuracy for correlated movies (original, 59.8 =
0.05% vs 71.6 = 0.11%; K2, 60.7 = 0.06% vs 74.1 £ 0.11%; both
p < 0.05, permutation test; data not shown). In contrast, pooling
from a larger group of neurons failed to improve the decoding
accuracy of decorrelated movies (individual vs population, KO,
56.4 = 0.04% vs 58.1 = 0.09%; p = 0.58).

To better characterize decoding accuracy, we computed MI,
which is a measure of the reduction in uncertainty about the
presented movie by knowledge of a single-trial response (see Ma-
terials and Methods). At the level of both individual neurons and
the entire population, we found a significant reduction in MI as
spatial correlations were removed from the stimulus (p < 10~°,
Friedman test with Bonferroni correction; 16 mice; Fig. 11C).
These results suggest that population coding does not improve
the representation of decorrelated movies and is consistent with
the result that these movies evoke decorrelated responses. Thus,
regardless of their phase information, neurons are not able to
discriminate between movies with either K0 or K1 spectra.

Does pooling over specific ensembles improve decoding accu-
racy? We restricted our analysis to correlated stimuli because
decorrelated stimuli failed to reliably recruit neural ensembles
(Fig. 10C). Strongly correlated neurons outperformed neurons
that were either weakly correlated or randomly sampled from the
population (original, p = 4.2 X 10 "% K1.5, p = 3.6 X 10 "% K2,
p = 4.1 X 107 rank-sum test relative to all neurons; 16 mice;
Fig. 11D, left). Additionally, pooling responses within the highly
correlated ensembles resulted in a remarkably similar perfor-
mance to the entire population. In contrast, decoding from just
the weakly correlated clusters led to a significantly lower MI (p =
4.32 X 1072 rank-sum test relative to all neurons; Fig. 11D,
right). Thus, despite containing fewer neurons, the high-correlation
clusters were as good as the entire population at discriminating be-
tween the different stimuli.

Was this improved performance due to the fact that the en-
sembles for K1.5 and K2 movies contained a larger fraction of
neurons? To answer this, we compared the MI obtained from
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randomly sampling subpopulations of the same size as either the
high- or low-correlation cluster (Fig. 11E). For all stimuli, high-
correlation clusters outperformed randomly sampled subpopu-
lations. Thus, these results, together with our clustering analysis,
indicate that visual information is encoded with high fidelity
within ensembles of strongly correlated neurons.

An ensemble-specific normalization model explains
responses to noise movies

Finally, we sought a simple model that could explain responses to
noise movies by taking into account the unique pattern of ensem-
ble activation. To this end, we further extended the model intro-
duced in Figure 5Ci. First, we obtained best-fit RF estimates by
fitting LN models to the original movie response of each neuron
(Fig. 12A). Since we did not know the spatial locations or struc-
tures of RFs a priori, we had to estimate RFs by determining the
least-squares best-fit model from a bank of linear filters, which
were analogous to mouse V1 RFs (Ringach et al., 2002; Bonin et
al., 2011; Fig. 12A). To prevent overfitting, we fit the model on
50% of the trials and used it to predict the remaining trials. On
average, the best-fit RF model was able to explain up to 85.0 =
13.9% of the variance in the response to original movies (for an
example fit, see Fig. 12A). We restricted our subsequent analysis
to only those neurons that could be well explained by this model
(239 of 650 neurons).

Next, we used these RF models to predict responses to the
various noise-masked movies. Specifically, we considered two
alternative explanations. In the first, termed the independent
model, we assumed that neurons acted independently, without
interacting with other cells (Fig. 12B). In the second, termed the
normalization model, we applied the divisive normalization rule
(Carandini and Heeger, 2012) to pool activity from either the
highly or weakly correlated clusters (Fig. 12D). Specifically, with
the second model, we tested the hypothesis that the highly corre-
lated cluster of neurons formed a normalization pool.

The independent model, which ignored population coding,
poorly predicted noise movie responses (Fig. 12B): this model
could explain only 1.3-3.4% of the variance of the KO and 16.5—
21.8% of the variance of K2 movie responses (p < 10 ~*, Fried-
man test with Bonferroni correction; 239 neurons; Fig. 12C). This
result also affirmed our finding that SF tuning (or RF properties)
alone are not able to predict responses to the noise movies (Fig.
5). In contrast, the normalization model outperformed the inde-
pendent model in predicting noise movie responses (Fig. 12D).
Considering only neurons in the high-correlation cluster as the
normalization pool, the model allowed us to explain up to 55.7%
of the variance of the K2 responses (Fig. 12E). In comparison,
only 39.7% of the variance of the K2 responses could be explained
by normalizing over neurons in the low-correlation cluster (p =
0.045, rank-sum test between high- and low-correlation clusters;
239 neurons). The normalization model demonstrated substan-
tially higher prediction accuracy of K1.5 and K2 movies when
responses were normalized over neurons in the high-correlation
cluster (Fig. 12F), compared to the independent model. Hence, a
parsimonious explanation for the decreased reliability for either KO
or K1 movies is a failure of these stimuli to activate a significant
ensemble of correlated neurons. However, we cannot exclude the
possibility that stimuli with different spatial correlations change the
spatiotemporal structure of RFs (Fournier et al., 2011).

In summary, our results support the idea that pooling re-
sponses from correlated ensembles of neurons decreases inter-
trial variability. Notably, our work demonstrates that V1 has two
distinct, stimulus-dependent coding regimes: a low noise regime,
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which is activated by movies that have strong spatial correlations
and intact low SF information, and a high noise regime, which is
activated by movies that lack these spatial correlations (Fig. 12G).
In the low noise regime, interneuronal correlations reorganize to
recruit more neurons, which in turn improves coding reliability
and selectivity. In contrast, KO and K1 movies, which lack the
appropriate spectral content, fail to recruit these ensembles, re-
sulting in a noisier code. Thus, the coding regime used by the
visual cortex depends critically on the spectral statistics of the
stimulus.

Discussion

The natural environment contains a vast amount of visual infor-
mation, but not all of it is important to the behavior of an animal.
As such, the visual system faces the challenging task of generating
robust neural codes that parsimoniously convey this informa-
tion. However, the mechanism by which this is achieved remains
unknown. In this study, we used in vivo two-photon calcium
imaging and a novel stimulus set to determine the statistical
properties of natural scenes that ensure reliable coding. By per-
turbing the power spectrum in natural movies, we discovered
that attenuating low SF information, which removed long-range
correlations between pixels, resulted in an unreliable and unse-
lective code. Surprisingly, the spatial structure of interneuronal
correlations closely tracked stimulus correlations, leading to the
activation of specific neural ensembles. Our study further re-
vealed that only ensembles of correlated neurons reliably en-
coded the different movies. Taken together, we demonstrate that
the unique spectral structure of natural scenes helps to improve
coding fidelity by dynamically modulating interneuronal corre-
lations in the visual cortex.

Power spectrum and image discrimination

Natural scenes are widely used to probe coding in V1. However,
unlike simple stimuli such as sinusoidal gratings, natural scenes
are statistically more complex and are harder to parameterize
(Olshausen and Field, 2005). Without parameterization, it is dif-
ficult to relate neural response properties, such as reliability, to a
single stimulus attribute. Phase randomization is commonly
used to relate the statistics of natural images to coding. For ex-
ample, two previous studies showed that randomizing the phase
of natural scenes decreased selectivity and reliability of V1 neu-
rons without altering the overall firing rate (Froudarakis et al.,
2014; Pecka et al., 2014). Phase randomization destroys the edge
structure of images but keeps spatial correlations intact. How-
ever, because these stimuli are nonparametric, these studies were
not able to attribute changes in reliability to specific aspects of the
phase spectrum.

Although the power spectrum contains relatively low-level
features, such as spatial correlations, it is believed to play an im-
portant role in rapid image discrimination and classification
(Bar, 2004; McCotter et al., 2005; Oliva and Torralba, 2007).
Specifically, it provides diagnostic information about the spatial
organization of objects within the scene, which is used to learn
the gist of an image (Oliva and Torralba, 2006). To date, very little
information exists on how the power spectrum influences coding
in V1. In this study, we reasoned that an image that is easily
discriminated should be coded more efficiently. Thus, we hy-
pothesized that the power spectrum could modulate neural reli-
ability, which in turn would increase the fidelity of information
processing and facilitate image discrimination.

Our novel noise-masking technique allowed us to test this
hypothesis and revealed that the mouse visual system is highly
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Figure 12.  Linear—nonlinear cascade model with normalization explains responses to correlated stimuli. 4, Schematic of the model used to determine the best receptive field estimate from
responses to an original movie. B, Left, Schematic describing independent model. This model assumes no interactions between neurons. Right, Representative examples showing the predicted
output of this model (green) relative to the real data (black) from two cells. EV, Explained variance. €, Percentage variance explained by the independent model. D, Left, Schematic describing
normalization model. This model assumes interactions between neurons via the divisive normalization rule. Right, Responses of the same cells as B, but predicted with the normalization model
instead. E, Percentage variance explained by the normalization model for all stimulus conditions. Here, the high- (dark red) or low-correlation (dark blue) clusters were separately considered as
normalization pools. Red stars indicate comparisons performed for data in the high-correlation cluster (relative to the K2 movie). Black stars indicate comparisons between high- and low-correlation
clusters. Data in Cand E are presented as the median == 95% Cl from 239 neurons. F, Scatter plot comparing performance, in terms of explained variance of the normalization model relative to the
independent model for both high-SCand low-SC clusters. The EV of the independent model was computed from neurons in each cluster, whereas the EV of the normalization model was computed
by applying the divisive normalization rule to all neurons in each cluster. G, Schematic summarizing the main findings of this study. In the low noise regime, strong stimulus spatial correlations
dynamically alter interneuronal correlations to change the normalization pool, ensuring reliable processing. In the high noise regime, weak stimulus correlations fail to activate ensembles, resulting
in unreliable processing. *p << 0.05; ***p < 10 ~*,

sensitive to perturbations in the power spectrum. Importantly,
our parametric approach permitted us to relate changes in neural
coding to changes in the spectral slope. Subtle changes in the
spectral slope strongly modulated the firing rates of V1 neurons
in both anesthetized (Fig. 2) and awake mice (Fig. 4). These re-

sults are consistent with previous studies, which found no differ-
ence in rates when only the structure of spatial correlations was
left intact (Kayser et al., 2003; Froudarakis et al., 2014). Similar
results were also found in the visual cortex of primates (Freeman
etal., 2013). Importantly, we found that the trial-to-trial reliabil-
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ity of responses was also strongly modulated by the low SF con-
tent of the image (Figs. 3, 4). In particular, attenuating the low SF
content (KO or K1 movies) was more detrimental to neural cod-
ing than attenuating the high SF content (K1.5 or K2 movies).

We asked whether these results could be explained just from
the SF tuning properties of V1 neurons. Surprisingly, a simple
linear—nonlinear model based on SF tuning poorly explained our
data (Figs. 5, 6). These results indicate that the observed changes
in firing rate and reliability were not the result of simple spatial
filtering properties of neurons alone. Rather, the nonlinear inter-
action between diversely tuned neurons, via divisive normaliza-
tion, better explained the responses (Fig. 12). Thus, our work
provides evidence that V1 processes broadband stimuli by inte-
grating over multiple SF channels, presumably by altering corre-
lations between channels.

Implications for natural scene processing

We show that neurons in mouse V1 respond more reliably to
movies with strong low SF power. The low SF content in natural
scenes is mainly large, coarse-grained objects, which can be used
for basic scene recognition and motion discrimination (Bar,
2004). Our finding that mice respond similarly to movies that are
much more strongly correlated than the original movie implies
that mice primarily use their vision to extract coarse grained
information from their visual environments, presumably to
guide navigation in low-light conditions or to avoid aerial pred-
ators (Zoccolan, 2015 and references therein).

Interestingly, our results strongly support psychophysical
studies that show that the human visual system also uses infor-
mation in the low SF bands to rapidly and accurately discriminate
natural scenes (McCotter et al., 2005; Gaspar and Rousselet,
2009). We show that attenuating these bands, even to a small
degree (~10 dB in the case of K1 movies), strongly degrades
processing in V1. Additionally, neurons were not able to discrim-
inate movies with decorrelated power spectra, despite large dif-
ferences in their phase information (Fig. 11). Although we cannot
draw easy parallels between the visual systems of mice and hu-
mans, our data, together with the results of Froudarakis et al.
(2014), suggest that mouse V1 might also use spectral informa-
tion in a similar manner. Specifically, stimuli that lack the appro-
priate spectral structure are processed less reliably, making them
harder to discriminate. Further experiments, however, are re-
quired to determine how mice use spatial statistics to discrimi-
nate between different scenes (Vinken et al., 2014).

Effects of stimulus statistics on population coding

Why are movies with strong spatial correlations more reliably
processed in V12 Our analysis revealed that neighboring neurons
were more strongly noise correlated when stimulated with deco-
rrelated movies. This suggests that shared variability between
neurons is detrimental to the representation of weak stimuli, such
as KO movies (Zohary et al., 1994). One possible explanation to
why correlated movies have lower noise correlations is that by
coactivating distant neurons, these movies could increase inhib-
itory surround suppression (Adesnik et al., 2012; Snyder et al.,
2014).

The high spatial resolution provided by two-photon micros-
copy permitted us to investigate the spatial organization of in-
terneuronal correlations. Notably, neuronal coupling patterns
changed with stimulus correlations suggesting that scenes with
different spectral statistics recruit distinct neural ensembles.
These findings add to the growing body of evidence that visual
processing is performed by discrete clusters of functionally cou-
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pled neurons (Kampa et al., 2011; Miller et al., 2014; Okun et al.,
2015). Remarkably, these strongly correlated ensembles were re-
liably and stably activated over multiple stimulus repetitions (Fig.
10). Additionally, although these ensembles comprised ~30% of
the population, they performed as well as the entire population in
encoding various movies, supporting the notion of a sparse pop-
ulation code. Together, these results indicate that reading the
activity of these clustered ensembles of neurons is sufficient to
accurately discriminate different movies.

How these neural ensembles ensure reliable coding remains
unknown. Our model proposes that these correlated ensembles
could function as normalization pools. Divisive normalization is
a canonical cortical computation (Carandini and Heeger, 2012)
that is believed to be crucial for efficient coding (Schwartz and
Simoncelli, 2001). One possibility is that normalization pools
average responses from neurons and in doing so suppress cortical
variability (Shadlen and Newsome, 1994). This has led to the
notion that redundancy, through neuronal coupling, plays an
important role in visual processing (Lin et al., 2015; Okun et al.,
2015). Our work bolsters this idea by demonstrating that normal-
ization pools can be dynamically recruited, in a stimulus-
dependent manner, to ensure reliable and efficient coding.

Thus, our work establishes that stimulus correlations function
in a manner similar to attention or neuromodulation to protect
the neural code from intrinsic variability by increasing coupling
between neurons (Moreno-Bote et al., 2014). In particular, by
rapidly recruiting neural ensembles, scenes with naturalistic spa-
tial correlations switch coding from a “high noise” to a “low
noise” regime, where intrinsic variability is suppressed to permit
reliable coding.

In conclusion, our study provides a novel insight into how the
unique statistical features of the natural environment can mod-
ulate coding in V1. We provide strong evidence that spatial cor-
relations are an important feature of natural scenes because of
their role in shaping interneuronal correlations. Although we
have focused on V1, we believe that similar coding strategies
could also operate in other sensory modalities (Bandyopadhyay
etal.,2010; Hires etal., 2015), consistent with this being a general
principle of cortical computations.
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