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Plants establish highly and systemically organized stress
defense mechanisms against unfavorable living conditions.
To interpret these environmental stimuli, plants possess
communication tools, referred as secondary messengers, such
as Ca2C signature and reactive oxygen species (ROS) wave.
Maintenance of ROS is an important event for whole lifespan
of plants, however, in special cases, toxic ROS molecules are
largely accumulated under excess stresses and diverse
enzymes played as ROS scavengers. Arabidopsis and rice
contain 3 NADPH-dependent thioredoxin reductases (NTRs)
which transfer reducing power to Thioredoxin/Peroxiredoxin
(Trx/Prx) system for scavenging ROS. However, due to
functional redundancy between cytosolic and mitochondrial
NTRs (NTRA and NTRB, respectively), their functional
involvements under stress conditions have not been well
characterized. Recently, we reported that cytosolic NTRA
confers the stress tolerance against oxidative and drought
stresses via regulation of ROS amounts using NTRA-
overexpressing plants. With these findings, mitochondrial
NTRB needs to be further elucidated.

Plants are systemically established both in normal growth con-
dition and in cases wherein plants need to enhance tolerance
against various stress conditions caused by increase of second
messengers, such as Ca2C and ROS. Changes in intracellular
Ca2C concentration defined as a Ca2C signature are sensed by
environmental stimuli, decoded and transmitted to downstream
genes by a complex of diverse Ca2C-related proteins such as calm-
odulins (CaMs), calcium-dependent protein kinases (CDPKs)
and their interacting kinases (CIPKs).1 Like this, ROS is also
maintained in plant cells with various enzymes to produce and
scavenge. However, large inductions of ROS due to extreme

environmental stresses work as toxic molecules, resulting in the
oxidative stress in cells and ultimately trigger the cell death.2,3

These ROS are mainly produced by apoplast-localized NADPH
oxidases (respiratory burst oxidase homologs, RBOHs). More-
over, detoxifying systems operate to scavenge ROS followed by
several antioxidant enzymes such as superoxide dismutase
(SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione
peroxidase (GPX) and peroxiredoxin (Prx).4-6 Prxs are a family
of cysteine-dependent peroxidases, and the activity is coupled to
oxidation of NADPH via thioredoxin reductase (TrxR) and thio-
redoxin (Trx) to reduce Prx.7,8

In Arabidopsis and rice, 3 NADPH-dependent TrxRs (NTRs)
with disulfide reductase activity, namely NTRA, NTRB and
NTRC have been reported existing in different subcellular local-
izations such as cytosol, mitochondria and chloroplast, respec-
tively (Fig. 1).9,10 NTRs transfer electrons from NADPH to the
active-site disulfide bridge (WCG/PPC) of oxidized Trx via FAD
and a redox-active disulfide.8,11 Consistent with this, diverse
Trxs (Trx f, h, m, o, x, and y) also exist in distinct subcellular
compartments to couple thiol/disulfide exchange reactions of
NTR/Trx systems.8 All NTRs possess a redox active CXXC
dithiol motif.11 While Arabidopsis NTRA and NTRB share
82% sequence similarity, chloroplast localized NTRC is atypical
due to additional Trx domain in C-terminus of NTRC which is
absent in NTRA and NTRB.12 Compared to typical NTRA and
NTRB, NTRC has been largely identified from biochemical
reactions to physiological functions in Arabidopsis.13

Loss-of function NTRC mutant in Arabidopsis showed obvi-
ous pale-green leaves and dwarf phenotypes due to defects of
chloroplast biogenesis and auxin levels, respectively.14 The ntrc
mutant plants were also sensitive to oxidative, salt, drought and
heat stresses.9,15 NTRC protein harboring this fusion of TrxR
and Trx domain directly reduces chloroplast-localized 2Cys-per-
oxiredoxin (2Cys Prx). Furthermore, electrons from NADPH
produced in chloroplast transfer to 2Cys Prx via redox-active cys-
teins in TrxR and Trx domain in NTRC.13,16,17 However, cyto-
solic NTRA and mitochondrial NTRB are acquired to cooperate
with their relevant Trx counterparts. NTRA and NTRB also
share redundant function in cytosol and mitochondria both in
vitro and in vivo.10,18,19 The single loss-of function mutants of
NTRA and NTRB plants showed no phenotypic perturbations
with wild-type Arabidopsis plant, however, ntra ntrb double
mutant exhibited minor differences such as wrinkled seeds, slow
plant growth and reduced fitness of pollen. It indicates that
NTRA and NTRB are not essential for plant development.19
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However, it has been reported that ntra ntrb double mutant plant
exhibits UV-C tolerance due to high accumulation of anthocya-
nin.20 Recently, nuclear Trx genes (NRX1 and NRX2) have been
identified in Arabidopsis, emphasizing that NRX1 was reduced
by NTRA but not NRX2. Interestingly, NRX1 and NRX2 are
localized in both nucleus and cytosol, while cytosolic NTRA is
partially localized in the nucleus.21 Even this finding suggests
that Trx system also existed in nucleus, it is still difficult to con-
clude whether NTRA/NRX1 system is working in the nucleus or
cytosol. Thus, due to this functional redundancy between NTRA
and NTRB, their physiological functions under environmental
stresses are not clearly classified and remain elusive to date.

Due to difficulties of research using single loss-of function
NTRA mutant (ntra-ko), NTRA-overexpressing plants (NTRA-
OX) in Arabidopsis were generated and functional roles of

NTRA under various stress responses were investigated. As
already known, cytosolic NTRA protein reduces cytosolic Trx-h
proteins.22 And Trx-h proteins are positively involved in stress
responses such as pathogen and heat stress via redox regulation
and chaperone function in cells.23,24 Under oxidative stress, toxic
ROS are largely accumulated in plant cells and cause damage of
DNA, RNA, protein and lipid.2,3 We have found that NTRA
transcripts were dramatically enhanced by methyl viologen treat-
ments which are well known to induce large accumulations of
ROS and cause oxidative damage in plant cells.25 Moreover,
NTRA-OX plants showed high survival rates and retarded ROS
inductions under oxidative stress whereas wild-type and ntra-ko
plants were almost dead with high ROS contents. The phenome-
non of stress tolerance and low ROS levels were consistent when
plants exposed to drought stress.25 Interestingly, transcriptional
levels of drought-responsive genes (RD29A and DREB2A) were
higher in NTRA-OX compared to wild-type and ntra-ko plants,
and moreover, overexpression of NTRA caused induction of
CuZnSOD and APX1 transcripts.25 It suggests that NTRA regu-
lates cellular ROS levels via activated Trx systems in plant cells
and protects the plants against stress.

Functional roles of mitochondrial TrxRs are well character-
ized under oxidative stress in yeast and human.26,27 However,
mitochondrial NTRB has been known only disulfide reductase
activity for Trx proteins,10 but its roles are still largely unknown
in stress responses due to same reason such as NTRA. Thus, over-
expression or dominant mutant analysis needs to be followed.
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