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Arbuscular mycorrhiza (AM) is estab-
lished by the entry of AM fungi into

the host plant roots and the formation of
symbiotic structures called arbuscules.
The host plant supplies photosynthetic
products to the AM fungi, which in
return provide phosphate and other min-
erals to the host through the arbuscules.
Both partners gain great advantages from
this symbiotic interaction, and both reg-
ulate AM development. Our recent work
revealed that gibberellic acids (GAs) are
required for AM development in the
legume Lotus japonicus. GA signaling
interact with symbiosis signaling path-
ways, directing AM fungal colonization
in host roots. Expression analysis showed
that genes for GA biosynthesis and
metabolism were induced in host roots
around AM fungal hyphae, suggesting
that the GA signaling changes with both
location and time during AM develop-
ment. The fluctuating GA concentrations
sometimes positively and sometimes neg-
atively affect the expression of AM-
induced genes that regulate AM fungal
infection and colonization.

Gibberellin distribution in the host
root during AM development

Gibberellins are homeostatically con-
trolled in plants, and excess up- or down-
regulation of their biosynthesis or
signaling causes abnormal physiological
responses: for example, enhanced GA sig-
naling causes shoot elongation, whereas
inhibition induces dwarf phenotypes.1,2

Excess amounts of GAs or overloading of
GA signaling inhibits AM fungal coloniza-
tion in the host root, indicating that
GA functions as a negative regulator in
AM.3 Conversely, suppression of GA

biosynthesis or signaling during AM
development causes abnormal morphol-
ogy of AM colonization in roots of L.
japonicus.4 These results indicate that
proper regulation of GA signaling is essen-
tial for AM development.

Active and inactive forms of GA accu-
mulate in roots of L. japonicus infected with
the AM fungus Rhizophagus irregularis.4

Although we could not measure actual GA
amounts in tissues or cells, histochemical
analyses using fusions of b-glucuronidase
(GUS) with promoters of genes for GA bio-
synthesis (GA20ox1, GA20ox2) and metab-
olism (GA2ox1) indicates that GA
biosynthesis/metabolism is upregulated
around AM hyphae in the host root.4 Dur-
ing the early stage of infection, when AM
hyphae of R. irregularis attached to or
entered the host root, GUS staining was
detected in epidermal and cortical cells near
the sites of fungal attachment or entrance.
Following hyphal elongation, it extended
to the cortical cells, and strong staining in
the arbuscule-containing cells indicated
active controls of GA concentrations in
these cells. This histochemical expression
analysis indicates that GA levels change
during AM development, causing different
effects on the symbiotic responses and AM
fungal colonization.

Hyphal branching in host tissues
and pre-penetration apparatus

The regulation of AM fungal coloniza-
tion by GA signaling is associated with
interaction with the symbiosis signaling
pathway and AM-induced gene expression
(Fig. 1).4 We think that the negative
effects of GA on hyphal entry into the
host root are caused by interference with
AM-induced genes such as RAM1 and
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RAM2, whereas the positive effect of GA
on hyphal branching is closely related to
the expression of AM-induced genes such
as SbtM1 and the formation of the pre-
penetration apparatus (PPA).5 Transgenic
roots carrying gain-of-function calcium/
calmodulin-dependent protein kinase
(CCaMK) showed the induction of
SbtM1 expression without AM fungal
infection and the formation of PPA-like
structures was observed in cortical cells in
which SbtM1 expression was highly
induced.6 The expression of SbtM1
induced by gain-of-function CCaMK was
clearly reduced in the presence of a GA
biosynthesis inhibitor, which decreased
the cells containing a PPA-like structure.4

The decrease in the formation of PPA-like
structures would be directly linked to the
reduction in hyphal branching under low-
GA conditions. The branched hyphae of
R. irregularis elongate mainly between the
cells, or sometimes penetrate the cells
accompanied by PPA formation in
L. japonicus.6 Therefore, the decrease in
the formation of PPA-like structures
induced by gain-of-function CCaMK
under low-GA conditions is directly
linked to the reduction in hyphal branch-
ing in the host root.

Intercellular hyphal branching between
the cells should also be inhibited in

low-GA conditions.4 The mechanism of
hyphal elongation in the intercellular
spaces is largely unknown. However, a
recent genomic sequence analysis of
R. irregularis revealed that the fungus lacks
cell-wall–degrading enzymes, which are
required for invasion into the host plant
and are usually abundant in pathogenic
and ectomycorrhizal fungi.7 This fact sug-
gests that the host plant should support
hyphal elongation by loosening the inter-
cellular spaces. Putative cell-wall–degrad-
ing enzymes, such as pectinesterases,
galactosidases, xyloglucan endoglucanases,
and proteases, were upregulated during
AM formation in the host plant.4,8 GAs
induce cell extension in company with
reconstruction of cell walls by inducing
cell-wall–degrading enzymes.9 The accu-
mulation of GAs during AM formation
might induce such enzymes, reducing cell
wall stiffness around inner AM hyphae. In
addition, SbtM1, whose induction is also
promoted by GA signaling, is a serine pro-
tease with a secretion signal peptide and
digests apoplastic proteins during AM
fungal infection.10 Although substrates of
SbtM1 have not been isolated, SbtM1 or
other AM-induced proteases might digest
structural proteins of the cell wall, facili-
tating the intercellular hyphal elongation
of AM fungi.

Does only the host plant make and
respond to GA?

In our study, we assumed that only the
host plant produces GA, and considered
the effects only on the host plant. How-
ever, strigolactones influence AM hyphal
development inside and outside the host
roots,11 indicating that plant hormones
can act as symbiosis signaling factors also
for the microbial symbiont. Moreover,
mycorrhizal fungi produce molecules with
GA-like activity.12,13 The pathogenic fun-
gus Gibberella fujikuroi secretes a GA
which reduces host resistance and enhan-
ces colonization of the host plant.14 Thus,
it might be important to consider GA bio-
synthesis and signaling in both the host
plant and AM fungi to fully understand
the interrelationship between GA signal-
ing and AM development.
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