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Production and secretion of acid phosphatases (APases) is a hallmark adaptive response of plants to phosphate (Pi)
deprivation. Researchers have long hypothesized that Pi starvation-induced APases are involved in internal Pi recycling
and remobilization as well as in external Pi utilization. Two phosphatase under-producer (pup) mutants, pup1 and pup3,
were previously isolated in Arabidopsis. Characterization of these 2 pup mutants provided the first genetic evidence for
the above hypothesis. To date, however, the molecular lesions in these 2 pup mutants remain unknown. In this work,
we demonstrate that pup1 and pup3 contain point mutations in the Arabidopsis purple acid phosphatase gene AtPAP10
and AtPAP26, respectively. Our results answer a long-standing question about the molecular identity of the PUP1 and
PUP3 genes and corroborate the conclusions from previous studies regarding the function of AtPAP10 and AtPAP26 in
plant acclimation to Pi deprivation.

Phosphorus (P) is an essential macronutrient required for
plant growth and development. Inorganic phosphate (Pi) is the
major form of P that plants uptake from soil. In most soils, how-
ever, the majority of P exists in organic form,1 and the deficiency
of Pi in soil has become an important limiting factor for agricul-
ture production.

When grown under Pi deficiency, plants produce and secret
acid phosphatases (APases).1 These enzymes catalyze the hydroly-
sis of Pi from various Pi monoesters and anhydrides in the acidic
pH range. Researchers have long proposed that the intracellular
APases are involved in the recycling and remobilization of inter-
nal Pi, while external or secreted APases play a dominant role in
the utilization of organic P from the rhizosphere. The genetic evi-
dence supporting this hypothesis, however, came only after the
isolation of 2 Arabidopsis (Arabidopsis thaliana) phosphatase
under-producer (pup) mutants, pup1 and pup3.2,3 These 2
mutants have reduced APase activity on their root surface as
revealed by histochemical staining. In addition, pup1 and pup3
lack or have reduced production of certain APase isoforms.
When grown in soil in which organic P is the major source of P,
both pup1 and pup3 accumulate less Pi in their shoots and roots
than the wild type (WT).3 Although 10 y have past since these 2
mutants were genetically and physiologically characterized, the
molecular lesions in pup1 and pup3 remain unidentified.

Arabidopsis contains 29 purple acid phosphatase (AtPAP)
genes.4 In this AtPAP gene family, AtPAP10, AtPAP12, and
AtPAP26 form a subgroup based on their protein sequences.
AtPAP12 and AtPAP26 are major intracellular and secreted

APases in Arabidopsis5-7 while AtPAP10 is a major secreted APase
and is predominantly associated with the root surface.8 The tran-
scription of AtPAP10 and AtPAP12 genes is Pi starvation-induc-
ible whereas the transcription of AtPAP26 is not Pi-dependent.8,9

Furthermore, we found that sucrose and ethylene are 2 positive
regulators of root-associated AtPAP10 APase activity.10,11 And
interestingly, the effect of ethylene on the induction of root-asso-
ciated AtPAP10 activity depends on sucrose, but that the effect
of sucrose does not depend on ethylene.12 Knockout of AtPAP10,
AtPAP12, or AtPA26 reduces plant growth when the major
source of P in the growth medium is in organic form.8,9,13,14 In
contrast, overexpression of either of these 3 APase genes causes
plants to grow better in the same medium.7,8 Because the pup1
and pup3 mutants display similar phenotypes as atpap10 and
atpap26, we speculated that these 2 pup mutants might have
mutations in the AtPAP10 and AtPAP26 genes.

To identify the molecular lesions in pup1 and pup3, we
obtained the pup1 and pup3 mutants that were originally
described by Trull & Deikman2 and Tomscha et al.3 from the
Arabidopsis Biological Resource Center. Root surface-associated
APase activity can be detected by applying a substrate of APase,
BCIP (5-bromo-4-chloro-3-indolyl-phosphate), to the root sur-
face. The cleavage of BCIP by APases produces a blue precipitate.
The root surface of pup1 mutant (in the Wassilewskija (WS) eco-
type background) completely lacked BCIP staining (Fig. 1A).
This was similar to that of the Arabidopsis nop1 mutant (in the
Columbia (Col) ecotype background) that contains a mutation
in the AtPAP10 gene.8 Under our experimental conditions,
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however, we did not observe the absence of an APase isoform in
the in-gel assay as reported by Trull & Deikman.2 Instead, we
observed a reduction in the intensity of the top band in the dena-
tured in-gel assay (Fig. 1B). This result was consistent with our
observations of the nop1 mutant.7 In our previous studies, we

showed that this top band contained a mixture of AtPAP10 and
AtPAP12 proteins.7 The remaining activity in this top band in
pup1 probably represented the activity of AtPAP12. To deter-
mine whether the reduction of the activity in the top band was
due to the defect in AtPAP10 production, we transferred the pro-
teins displayed in the in-gel assay to a PVDF membrane and per-
formed a Western blot using a monoclonal anti-AtPAP10

Figure 1. Characterization of pup1. (A) Histochemical staining of root-
surface APase activity of 8-day-old Arabidopsis seedlings using BCIP as
the APase substrate; (B) Analysis of APase profiles of 8-day-old Arabidop-
sis seedlings using an SDS-denatured in-gel assay; (C) Western blot of
the proteins displayed in (B) using anti-AtPAP10 antibodies; In (A), (B),
and (C), PC: Pi sufficiency, P-: Pi deficiency; in (B) and (C), molecular
weight (MW) is indicated on the left. (D) A diagram showing the position
of the point mutation in the AtPAP10 gene. Boxes: exons; the single line
between the boxes: intron; Empty boxes: untranslated regions; Black
boxes: coding sequences; ATG: start codon; TGA: stop codon. The AGI
code of the APAP10 gene is shown in parenthesis.

Figure 2. Characterization of pup3. (A) Histochemical staining of root-
surface APase activity of 8-day-old Arabidopsis seedlings using BCIP as
the APase substrate; (B) Analysis of APase profiles of 8-day-old Arabidop-
sis seedlings using a non-denatured in-gel assay; (C) Western blot of the
proteins displayed in (B) using anti-AtPAP26 antibodies. In (A), (B), and
(C), PC: Pi sufficiency, P-: Pi deficiency. (D) A diagram showing the posi-
tion of the point mutation in the AtPAP26 gene. Boxes: exons; the single
line between the boxes: intron; Empty boxes: untranslated regions; Black
boxes: coding sequences; ATG: start codon; TGA: stop codon. The AGI
code of the APAP26 gene is shown in parenthesis.
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antibody. For the WT plant with the WS ecotype background,
there was a basal level accumulation of AtPAP10 proteins at the
position corresponding to the top band shown in the in-gel assay
(Fig. 1C). When grown under Pi deficiency, the level of
AtPAP10 in the WT was increased whereas the AtPAP10 protein
in pup1 was not detectable under both Pi-sufficiency and -
deficiency conditions. In pup1, the level of AtPAP10 mRNA was
also decreased to the half of that of the WT under P- condition
(Fig. S1A). Finally, we sequenced the AtPAP10 gene in pup1 and
found a point mutation in its sixth exon. This C to G mutation
led to a conversion of a glutamine to a glutamate at amino acid
position 294 (Fig. 1D). The above results indicated that this
mutation might decreases the stability of both AtPAP10 mRNA
and protein. It was interesting that such a small change in the
structure of an amino acid completely eliminated the accumula-
tion of AtPAP10 proteins. This is probably due to a change of
charge in an amino acid which affects the protein stability.

Under our experimental conditions, the pup3 mutant did not
exhibit an obviously reduced BCIP staining on its root surface as
reported by Tomscha et al.3 (Fig. 2A); but we did observed that
2 APase isoforms were less abundant in the pup3 mutant than in
the WT in a non-denatured in-gel assay (Fig. 2B), which was
consistent with that reported by Tomscha et al.3. In the atpap26
T-DNA knockout mutant (SALK_152821), these 2 isoforms
were not detected, indicating that the 2 reduced isoforms corre-
sponded to AtPAP26. The molecular identity of these 2 isoforms
was confirmed by Western blot using anti-AtPAP26 antibodies
(Fig. 2C). Tomscha et al.3 also found that these 2 reduced APase
isoforms could react with anti-AtPAP12 antibodies. This was not
surprising because, as previously demonstrated, the anti-
AtPAP12 antibodies that they used cross-reacted with
AtPAP26.6,9 In pup3, the expression level of AtPAP26 mRNA
was similar to that of the WT (Fig. S1B). Finally, we sequenced
the AtPAP26 gene in pup3 and found a point mutation in the
second exon immediately after the start codon (Fig. 2D). This G
to A mutation caused a conversion of a glycine to a glutamate at

the amino acid position 20. The above results indicated that this
point mutation did not affect the stability of AtPAP26 mRNA
but reduced the accumulation of AtPAP26 proteins.

Conclusions

In summary, we demonstrated that the previously reported
Arabidopsis phosphatase under-producer mutants pup1 and pup3
contain mutations in the AtPAP10 and AtPAP26 genes, respec-
tively. These results answer long-standing questions about the
identity of the PUP1 and PUP3 genes and add to the genetic evi-
dence that these 2 APases function in plant adaptation to Pi
deprivation.
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