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Abstract

This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In 
contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and 
robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. 
The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of 
root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the 
specific primary root from which the laterals emerge. The performance of this approach was evaluated through com-
parisons with other automated and semi-automated software solutions as well as against results based on manual 
measurements. The comparisons and subsequent application of the algorithm to an array of experimental data dem-
onstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process 
root images under high-throughput conditions.

Key words:  2D, fully automated, graphic optimization, high throughput, image analysis, root network analysis, root phenotyping, 
wheat and barley.

Introduction

Plant root development, root systems and their 3D archi-
tecture (RSA) have been subjects of  extensive study for 
many decades (Gregory et al., 1987). This interest derives 
from the fact that roots are critical for plant stabilization 
and are the principal organs responsible for the uptake 
of  water and nutrients from the soil. It is well known that 
RSA is under genetic control but can be significantly influ-
enced by environmental factors [the genotype -by- envi-
ronment (G×E) interaction] (Fitter, 2002; Masle, 2002); 
the phenotype corresponding to a specific genotype is 
environmentally dependent (Crossa, 2012; El-Soda et  al., 

2014). Specific studies have documented the effects of  abi-
otic stress on plant growth and adaptation and identified 
quantitative trait loci (QTLs) associated with important 
root traits (Kamoshita et al., 2008). With this achieved, the 
screening of  large mapping populations then calls for high-
throughput analysis methods to deal with the large number 
of  samples possible through root plasticity (Ardiel et  al., 
2002; Kamoshita et al., 2008). Specifically, an important, if  
not indispensable, component in any high-throughput phe-
notyping pipeline is a robust, accurate and fully automated 
image analysis tool.
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Despite the importance to plant phenotyping (Gerlai, 
2002; Niklas and Enquist, 2002; Furbank, 2009; Harris et al., 
2010), the development of automated and high-throughput 
analysis tools is in its adolescence, while root-based analysis 
specifically is in its infancy. In the past, root phenotypes were 
largely determined by means of expert human observations 
on detached roots. Biologists relied on visual inspection to 
draw comparisons between different root systems and relied 
on linear rulers to measure the lengths of plant primary roots 
(Kramer and Boyer, 1995; Sabatini et al., 2003). However, to 
gain a full understanding of the G×E interaction and par-
ticularly the plant response to abiotic stresses, more detailed 
and more complete quantitative analyses are required.

Non-destructive, image-based techniques and image anal-
ysis algorithms have been developed to reconstruct in real 
time, the root system architecture of plants grown in gel-
based platforms (French et al., 2009; Clark et al., 2011; Lobet 
et al., 2011; Diener et al., 2013; Kumar et al., 2013). However, 
an inherent disadvantage of these systems is their limited rep-
resentation of actual root development of plants grown in 
soils; the physical and chemical differences between soils and 
gel-based media result in distinctively different plant growth 
behaviour. In order to observe plant roots grown in soils, 
X-ray micro-tomography has been adopted for root pheno-
typing (Gregory et al., 2003). As with its counterpart in the 
area of medical imaging, this level of technology although 
desirable, is costly to establish as well as to use. As a com-
promise measure, plants can be grown in thin rhizotrons—
soil-filled cavities between parallel glass or transparent PVC 
slides (Price et al., 2002; Leitner et al., 2014). This gives rise 
to pseudo 3D systems that allow for root growth and develop-
ment to be observed and imaged, at least as relates to the part 
of the root system that comes into contact with the trans-
parent walls. The analysis of these 2D root images can thus 
provide information about some root traits for these pseudo 
3D, soil-grown plants.

The most common approach to characterize roots grown 
in soils is to measure root traits after root extraction and 
washing (Iyer et al., 2010; Pierret et al., 2013). Although exca-
vation and soil core washing in this approach destroys the 
3D topology of the root system, it has been extensively used 
in phenotypic analyses. Indeed, even without knowledge of 
3D architecture, it provides significant information on root 
numbers, root length, and root volume (Dowdy et al., 1998; 
Pierret et al., 2013; Kumar et al., 2014). Although the prepa-
ration procedure itself  (root extraction, washing, cutting, and 
spreading on a flatbed scanner) is a tedious bottleneck for 
high-throughput phenotyping, the manual task of analysing 
scans is an additional bottleneck. Moreover, manual analysis 
is the component that is most prone to subjective errors.

Image analysis techniques have been widely adopted for 
fast and reliable root phenotyping and made available through 
commercial software solutions such as WinRHIZOTM and 
open source software such as EZ-Rhizo (Armengaud et al., 
2009), IJ_Rhizo (Pierret et  al., 2013), SmartRoot (Lobet 
et al., 2011), RootTrace (Clark et al., 2013), RootNav (Pound 
et al., 2013), and Root System Analyzer (Leitner et al., 2014). 
With the assistance of image analysis it becomes possible to 

determine quantitative features such as root numbers, root 
diameters, root lengths as well as diameter and length distri-
butions. These semi and fully automated software solutions 
were designed to analyse roots of seedlings displayed in high 
quality 2D scans. For adult plants, root systems can be exten-
sive and very complex, which also exacerbates the difficulty 
of physically removing soil from roots. Adult root systems 
are thus particularly challenging to analyse, and even more 
so when a significant level of noise is present in root scans 
due to remnant soil particulates attached to root hairs. For 
these basic reasons, existing tools such as WinRHIZOTM and 
EZ-Rhizo, may not generate accurate root properties, such as 
root-tip counts (Kumar et al., 2014). To accurately determine 
root number and root length, etc. it is necessary for any image 
analysis method to be robust to noise.

As another consideration, the identification of primary 
roots and lateral roots as distinct objects is also important 
to quantify tissue- as well as organ-specific responses to abi-
otic and nutrient deficiency stresses. For instance, a localized 
supply of nitrate, phosphate, or ammonium stimulates lat-
eral root development in barley, while the primary roots are 
unresponsive (Drew et al., 1973; Drew, 1975). For overall root 
phenotyping purposes, it is essential to quantify the devel-
opment of primary roots and lateral roots over time as well 
as the relationship between lateral roots and primary roots. 
Currently, several software tools such as SmartRoot (Lobet 
et al., 2011), ARIA (Pace et al., 2014), RootNav (Pound et al., 
2013), and Root System Analyzer (Leitner et al., 2014), and 
the authors’ recent software (Kumar et al., 2014), referred to 
hereafter as RTipC, can separate primary roots from lateral 
roots. However, apart from RTipC, these tools are only semi-
automated and so are not optimal for use in a high-through-
put root phenotyping pipeline.

For the specific purpose of 2D root image analysis, one 
can consider the most common methods available, which are 
listed in Table 1 along with summaries of their capabilities. It 
is clear that a number of these can provide estimates of use-
ful root characteristics from images in a semi-automatic way. 
However, there appears to be no tool that can also separate 
information about primary roots from that of lateral roots 
in a fully automatic way. Only a few of the available tools 
are designed to estimate the root (tip) number per primary 
root or per plant, which is one of the most important traits 
for root phenotyping (Armengaud et  al., 2009). Of these, 
ARIA (Pace et al., 2014) requires the least user involvement. 
Furthermore, most use a skeletonization method to gener-
ate root representation and to count root tips by counting 
endpoints of the root skeleton. Regrettably, the traditional 
skeletonization method is sensitive to noise, thus these meth-
ods are not optimized for applications to soil-grown plants, 
whose scanned images may contain a significant number of 
soil particles contributing to noise. In summary, there is scope 
for further improvement. Indeed, from the user perspective 
there is a need for an analysis method that can automatically 
extract quantitative information about a root system and spe-
cifically distinguish between information related to primary 
roots from information on lateral roots, and do so from root 
images containing a relatively high level of noise.



RootGraph: for automated root image analysis  |  6553

In this paper, a robust approach to fully automated root 
analysis is provided using a combination of image processing 
and graphics optimization techniques. The approach, which 
is penned RootGraph, is robust to noise caused by soil par-
ticles or sand attached to roots hairs. As a result, it is able 
to accurately estimate the number, length, and diameter of 
roots. Moreover, the method is designed to automatically 
separate primary roots from lateral roots. Consequently, it 
can quantify traits for each primary root as well as each pri-
mary root’s associated lateral roots, as does SmartRoot, but 
can do so under high-throughput conditions. The accuracy of 
the algorithm is demonstrated through a performance com-
parison with alternate methods applied to cereal plant roots. 
The results confirm the robust and accurate performance of 
the method and demonstrate its capability for high-through-
put root trait analyses. Although high performance is dem-
onstrated through application to wheat and barley images, 
both monocots, the method is equally applicable to scanned 
images of dicots.

As a brief, non-technical description, the essence of the pre-
sented approach is based on a four stage program involving 
four layers of data structure. These layers comprise: segmented 

images, Distance Transform images, root skeleton images, 
and computer graphs. Case examples of each are shown in 
Fig.  1. Image segmentation distinguishes background from 
the plant root foreground. The Distance Transform allows 
adjustment of image resolution for subsequent process-
ing, while root skeleton images allows the automatic crea-
tion of graphs to represent roots. The reference to the name 
RootGraph is in recognition of the use of graphs and of a 
graph optimization algorithm to automatically separate lat-
eral roots from primary roots, as demonstrated by Fig. 2, and 
to analyse root traits accordingly. A  few other approaches 
such as RootNav (Pound et al., 2013) and ARIA (Pace et al., 
2014) also use graphs to represent roots and specifically also 
use the A* algorithm to find shortest paths. However, such 
direct minimization procedures may not lead to correct root 
characterization when root overlap is common. Root overlap 
is a recognized problem introduced during the preparation 
of scanned images of complex root systems. The problem 
is solved manually by RootSystemAnalyzer (Leitner et  al., 
2014). In the method presented here, graph structure is used 
to represent the underlying root system, but a score or weight 
is assigned to each root segment to help distinguish primary 

Table 1.  Summary of currently available root image analysis tools and their respective basic capabilities

Software Automation Topology Root 
identification

Root count Root diameter Time series RSML support 
Lobet et al. (2015)

Reference

ARIA Automated Yes Yesa No No Yes No Pace et al., 2014
EZ-RHIZO Automated Yes Yesb No No No No Armengaud et al. (2009)
RootNav Semi-Auto Yes Yesc Yesd No No Yes Pound et al. (2013)
RootReader2D Automated Yes Yese No No No No Clark et al. (2013)
RootSystemAnalyzer Automated Yes Yesf No Yes Yes Yes Leitner et al. (2014)
RootTrace Automated Yes Yesc No No Yes No French et al. (2009)
SmartRoot Semi-Auto Yes Yesc Yesc Yes Yes Yes Lobet et al. (2011)
RTipC Automated No Yesg Yes No No No Kumar et al. (2014)
WinRHIZO Automated Yes Yesh Yes Yes No No
RootGraph Automated Noi Yes Yes Yes No No This work

a Requires manual selection of source points.
b Requires manual confirmation but users cannot correct errors.
c Requires manual labelling of root types.
d Detects only few root tips.
e Labels roots by GUI in an interactive way.
f Primary roots need manual initialization.
g Distinguishes primary roots from lateral roots but does not separate the whole root system.
h Based on a manual threshold of root diameter.
i This is possible (as with RootNav) but not a current feature of this work.

Fig. 1.  Illustrative examples of the four-layer data structure utilized in the new method: (A) the segmented image; (B) the Distance Transform of (A); (C) 
the skeleton of (A); and (D) the generated graph from the skeleton.
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from lateral roots. The optimization procedure is then applied 
to identify primary roots by maximizing the overall score. It 
is believed that RootGraph is the first method to employ a 
weighted graph-based optimization step to produce a fully 
automated, primary root identification procedure.

The method is elaborated on in the next section, with fur-
ther information in the Appendix. Also in the next section, 
details of the experimental systems to which the RootGraph 
algorithm has been applied are provided.

Materials and methods

Plant material
Seeds of Australian barley (Hordeum vulgare) and wheat (Triticum 
aestivum) cultivars Kukri and Gladius were germinated in pots 
(17.5 × 8.5 × 8.5 cm) filled with a potting mix of 50:50 Waikerie sand: 
coco-peat prepared with lime, gypsum, superphosphate, iron sul-
phate, iron chelate, potash (K2SO4), micromax (Osmocote) and pH 
adjusted to pH 6. Urea (56 mg N/ kg soil) was added to the soil used 
to grow all barley plants as well as the wheat plants grown in the 
normal nitrogen (NN) treatment. The wheat plants grown in low 
nitrogen treatment (LN) were not supplied with urea but the soil 
contained residual nitrogen (15 mg N/ kg soil).

Plants were grown in a controlled-environment growth room with 12 h 
light/12 h night cycle at 300 μmol m−2 s−1 photon flux intensity at the 
plant level, and temperature of 15 °C day /10 °C night for 14 d (barley) or 
6, 9, 13 (Kukri wheat cultivar), and 17 d (Gladius wheat cultivar). Roots 
were washed free of soil particles and debris, cut from the root-shoot 
junction, and kept in an 30% ethanol solution until scanning. Before 
scanning, roots were spread out in a root positioning tray (20 × 30 cm) to 
minimize overlap and scanned with a flatbed scanner (EPSON, EU-88, 
Japan). Greyscale images obtained in the tiff format were analysed with 
WinRHIZOTM (Pro Version 2005a; Regent Instruments Inc., Canada). 
The settings used were as follows: image resolution, 600 dpi; calibration, 
intrinsic for the scanner; manual - dark root on white background; archi-
tecture by fractals: maximal pixel size (2.0 mm) and filters, a length:width 
ratio smaller than 2.00. Root diameter (> 0.338 mm) was set for primary 
roots and ≤ 0.338 mm for lateral roots.

Roots were placed in a 20 × 30 cm tray with 1 cm of water and 
scanned on a flatbed scanner (dimensions) at 800 or 600 dpi.

RootGraph: root image analysis with graph optimization
Segmentation  As a working principle, software tools should be 
designed with the ability to analyse root images obtained using 

different imaging tools such as flatbed scanners, and with these pos-
sibly set at different resolutions. Optimally, software solutions should 
thus be able to automatically adapt to variations in root images. 
The method employed here for segmenting plant root images has 
been described in detailed by Cai and Miklavcic (2013). The aim 
of segmentation is to separate foreground (plant roots) from back-
ground in such a way that the boundary between background and 
foreground can be determined easily by an edge detection method. 
Alternately, the edge detection method can be used to detect the 
boundary between foreground and background as well as to clas-
sify background points and foreground points. However, while all 
boundary points are edge points not all edge points are boundary 
points. To resolve the ensuing problem, surface fitting is used with the 
RANSAC algorithm to produce an accurate estimate of surfaces and 
thus segment plant roots from background. The major advantage of 
this approach is that the background of a plant root image does not 
have to be homogeneous and no manual threshold is needed.

Initial estimation of root diameter  In this case, the algorithm is 
required to estimate accurately root thickness or diameter at any 
point along the root as well as the average thickness of primary 
roots and of lateral roots. The Distance Transform was used to cal-
culate the perpendicular distance from boundaries, as detected in 
Section B.1, to medial axis points along the root. With the Distance 
Transform, the root thickness at every medial axis point can be esti-
mated. However, it is difficult to estimate the average thickness of 
lateral roots and primary roots without first establishing to which 
class a given root belongs. Here, the Gaussian mixture models 
(GMMs) and the histogram of root thicknesses was used, as shown 
in Fig. 3, to estimate the average thickness of lateral roots and pri-
mary roots. Let H(χ) be the histogram value of root thickness, χ, and 
let P(χ) be the density function defined as follows

	
P W Nk k kk

K
χ χ µ σ( ) = ( )=∑ ,

1
	 (1)

where μk, σk, and Wk are the mean, standard deviation, and weight-
ing, respectively, for the kth distribution in the above sum; K is the 
total number of distributions in the mixture, and
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is the single state Gaussian distribution. The parameters μk, σk, and 
Wk can be estimated using the Expectation–Maximization algo-
rithm (Dempster et al., 1977) to minimize the mean squared error 
of H N Pm( ) / ( )χ χ− , where Nm is the number of medial axis points. 
In this application, two types of roots are dealt with, therefore K=2. 

Fig. 2.  Illustrative example of the result of application of RootGraph to a flatbed scanned image of roots. The algorithm specifically identifies and 
separates primary from lateral roots. Left: original segmented root image; Right: extracted primary root image.
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In this way, the average thickness of primary roots and lateral roots 
can be estimated.

Root thinning  The traditional thinning algorithm aimed at reducing 
an image feature to a skeleton was first described by Zhang and Suen 
(1984) and has since been adopted in a wide variety of applications. In 
the application considered here, image scans of roots harvested from 
soil can contain significant levels of noise, as exemplified in Fig. 4A. 
The noise level is dependent on many factors such as soil type, abun-
dance of root hairs, and the degree of care exercised in root washing 
and brushing. In such cases, the traditional thinning algorithm can 
artificially induce false branches at noise points along the bounda-
ries of roots. As a consequence, significant errors could be incurred in 
the estimation of root number, an important trait used to phenotype 
plant roots (Kumar et al., 2014). Although there exist enhanced algo-
rithms (Cai, 2012) using oriented filters to calculate oriented energy 
for thinning, where oriented energy is robust to noise, such improved 
algorithms cannot guarantee root connectivity and will also result in 
an overestimation of root numbers. In the approach presented here, a 
criterion is introduced to determine whether a boundary point should 
be removed or retained in order to satisfy the condition of connectiv-
ity (see Supplementary Fig. S1 at JXB online). With this additional 
constraint it is can confirmed that the proposed program is able to 
maintain root connectivity while remaining robust to noise.

Automatic determination of primary roots using graphics optimiza-
tion  Accurate analysis of the physical characteristics of primary 

and lateral roots, respectively, is important for a detailed characteri-
zation of a plant’s response to stress and nutrient availability (Drew, 
1975). Consequently, a phenotyping characterization tool would 
need to have the capability of distinguishing primary roots from lat-
eral roots, which, as stated earlier, is one of the innovative features 
of this procedure. In addition, the RootGraph algorithm is also able 
to quantify the properties of lateral roots that are specifically associ-
ated with or connected to a given primary root. In this way, one can 
make a more accurate assessment of the ratio of lateral root proper-
ties to primary root properties as well as possibly ascribe differences 
in functionality to specific primary roots. In this section, the novel 
graphics optimization algorithm employed to distinguish primary 
roots from lateral roots is described. This ability, incidentally, is par-
ticularly useful in the analysis of outcomes of a split-root design 
experiment (wherein a plant root system is allowed to develop and 
grow in a container having a vertical, impermeable divider separat-
ing different soil treatments (Ruffel et al., 2011; Song et al., 2013).

The generation of undirected graph  The first step is to create an 
undirected graph from the root skeleton obtained using the thinning 
algorithm. The undirected graph is defined as

	 G V E= ( ), 	 (3)

where V is a set of vertices or nodes and E is a set of edges or curves. 
Vertices were used to represent the points of juncture in the root 
skeleton. A vertex is called an end vertex if  it links to one edge only. 
Edges were used to represent root skeleton curves between vertices 
with each edge having whole attributes such as length, li , and spe-
cific score, αi, as well as local attributes such as thickness as a func-
tion of contour length along the edge. The specific score of an edge, 
αi, is defined through the formula

	
α θi i t iT l= −( ) 	

(4)

where i is the index of the edge, Ti  is the average thickness of the 
edge, θt  is a threshold constant, θ σt = 2 1 , and σ1 is the thickness 
variance of lateral roots. Note that specific score is crucial to the 
automated identification of primary roots by using optimization 
algorithms.

The reduction of graph complexity  With the graph created in the pre-
vious step, the problem of identifying a primary root is equivalent to 
the problem of finding the optimal path of edges with the maximum 
of accumulated specific score, αi∑ , between any two given vertices. 
Note that with knowledge of the two terminating points (vertices) of 

Fig. 3.  A typical root length vs root diameter histogram derived from a 
single root scan. Note the two distribution peaks attributed to primary and 
lateral roots. A colour version of this figure is available at JXB online.

Fig. 4.  Segmented images of scanned roots demonstrating different levels of noise associated with the presence of remnant soil particles. (A) noisy 
roots; and (B) relatively clean roots. Note in (B), however, the occurrence of root overlap (left centre edge and bottom right corner), which requires the 
operation of a particular step in the graph analysis procedure to avoid incorrect root length estimation.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv359/-/DC1
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a primary root, the complete contour can be identified using the A* 
search algorithm (Zeng and Church, 2009) directly to find the short-
est path between the two vertices, without reference to any specific 
path scores, as is done in the case of RootNav (Pound et al., 2013). 
In such an event, if  the graph possessed a tree-like structure, the 
complexity of finding the primary root from one vertex to the other 
is of the order of Nν

2 , where Nν  is the total number of vertices. In 
the case of a fully automated primary root identification procedure, 
i.e. one without user identification of end vertices, a primary root’s 
vertices are unknown and the procedure must determine the optimal 
path based on specific scores between all possible vertex pairs. In 
this case, the complexity of automatically finding a primary root is 
of the order ofNν

4 .
When in situ, a plant’s RSA is a 3D tree-structure, but when laid 

out on a 2D flatbed scanner as shown in Fig. 4B, the system is more 
complex from a computational point of view. The ensuing graph 
can be very complex and each vertex can be associated with mul-
tiple edges including loops and forks, etc. In the general case, the 
complexity of finding the optimal path between two given vertices 
increases exponentially with number of vertices. Clearly, the auto-
matic identification of primary roots is not viable given the com-
putational cost and memory requirements since a root graph can 
have more than 100 vertices. Therefore, it is necessary to reduce the 
complexity to a more manageable level.

To reduce the number of vertices and edges of the graph, the 
simplest of cases is first considered. Firstly, all loop edges can be 
removed as they are caused by root hairs and soil. Secondly, a set 
of rules can be established adherence to which will simplify the 
problem.

•	 [Rule 1] All edges that both possess negative specific scores and are 
linked to end vertices can be removed as they represent lateral roots.

•	 [Rule 2] Given any two neighbouring vertices, remove all edges bar 
the one having maximum specific score.

Usually, the diameters of lateral roots are smaller than those of 
primary roots for the same plant. However, the diameters of some 
short lateral roots near the ends of primary roots are similar in size, 
as shown in Fig. 4B. Their specific scores are therefore positive. An 
effective way to prune away lateral root edges linked to an end vertex 
is to compare their specific scores with those of neighbour edges.

•	 [Rule 3] If  a root’s specific score is the smallest among neighbour 
edges, that end vertex is discarded along with the edge linking it to 
the vertex in question.

•	 [Rule 4] After pruning, remove the remaining vertices having only 
two linked edges. The above process is repeated until no further 
pruning can be performed. At this stage, the number of vertices is 
usually <10 allowing the A* search algorithm to cope with a more 
manageable complexity of O(104). Should there be >10 vertices 
in a graph, root diameters are used to further prune edges and 
vertices.

•	 [Rule 5] Analogous to the method employed by SmartRoot (Lobet 
et al., 2011), the edge with the smallest specific score from a vertex 
linked to multiple edges (due to root overlap) can be pruned away, 
under the reasonable assumption that the diameter of a lateral 
root is smaller than that of the primary root at their junction. This 
assumption is always upheld in theory, but not always in prac-
tice for root images containing two or more overlapping lateral 
roots, as is visible on the left hand side and bottom right corner of 
Fig. 4B. Therefore, this pruning rule could potentially break one 
primary root into two or more pieces and result in an erroneous 
count of primary roots. Nevertheless, the advantage of this rule 
is that the A* algorithm can always complete its path search in a 
reasonable period of time.

Root identification and root phenotyping  After pruning, one can 
comfortably apply the A* algorithm to find the optimal paths 
between terminating vertices, i.e. those that correspond to primary 
roots. Following the identification of all primary roots, one can refer 
back to the original graph to easily calculate the geometric proper-
ties of primary roots such as length, local diameter, surface area, 
and volume. One can then determine the lateral root count for each 
primary root by counting the number of non-primary root vertices. 
From the graph, lateral roots can thus be grouped based on their 
linkage to the primary roots (Fig.  5). The major advantage over 
SmartRoot and RootNav is that this approach is fully automated 
and is thus suitable for high-throughput, root analysis.

Results and discussion

In a recent publication (Kumar et al., 2014) a technique was 
presented that identified root tips from a large set of corner 
features (plant related or unrelated) and gave their geometric 
location in an image. Not only was the number of roots con-
tained in an image of a plant root system quantified, but root 
tips belonging to primary roots were distinguished from those 
belonging to lateral roots. As a precursor to a full spatial 
reconstruction (in either 2D or 3D), the methodology gave 
an estimate of the number of primary roots and the num-
ber of lateral roots contained in that image. The success of 
the method was measured against manually determined root 
numbers and the performance was quantitatively compared 
with those of popular programs EZ-Rhizo (Armengaud 
et al., 2009) and WinRHIZOTM. For the images considered, 
the method, now referred to as RTipC (for Root Tip Counter), 
achieved high statistical accuracy compared with a manual 
count and outperformed both WinRHIZO and EZ-Rhizo.

Fig. 5.  The process of reducing the complexity of root structure for root identification: (A) a segmented root image; (B) the skeleton of (A); (C) the root 
during the process; and (D) the final root structure for primary root identification.
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The RootGraph method described in this paper, quantifies 
a larger span of root traits than RTipC including total root 
length, surface area, root volume, average root diameter for 
primary vs lateral roots, as well as the total number of primary 
vs lateral roots. Many of these features are also estimated by 
the WinRHIZO program. However, it has been previously 
shown that WinRHIZO gives a poor account of lateral and 
primary root number (Kumar et al., 2014). The new method 
also has the innovative feature, not previously considered, of 
being able to identify these same characteristics specifically of 
the lateral roots emerging from any given primary root. Thus, 
the method can give a ‘primary root by primary root’ analysis 
of lateral root features, such as lateral root number per cen-
timetre of primary root. Given the overlap in quantities cap-
tured by WinRHIZO and RTipC, this naturally leads one to 
compare the performances of these methods to RootGraph, 
as well as evaluate the accuracy of RootGraph against manu-
ally determined properties. It is noted that quantitative com-
parisons with other software alternatives were presented in 
Kumar et al. (2014) as were discussions of qualitative differ-
ences. For reasons of space, the remarks and conclusions are 
not repeated here.

Two systems have been chosen for method evaluation. 
The systems offer the opportunity to test performance 
when applied to roots of  varying complexity. The first sys-
tem comprised roots of  14-d-old plants from 10 double 
haploid lines of  barley; all plants were subject to the same 
growth treatment. Twenty flatbed scanned images were 
used in this analysis. The second system comprised flat-
bed scanned images of  6, 9, 13, and 17-d-old roots of  the 
Australian wheat cultivars, Kukri and Gladius. Two treat-
ments were considered, NN and LN treatment as outlined 
in Methods. Twenty-two images in all were analysed, cover-
ing both treatments.

For validation (i.e. assessment of accuracy) only the fol-
lowing traits were considered: total primary root number, 
total lateral root number, lateral root count per primary root, 
total length of primary root, and total length of lateral root. 
Only a sample subset of all available images were used in this 
validation exercise. For reasons of difficulty, there was no 
manual determination of geometric properties such as root 
surface area or root volume.

Root count

The process begins with the simplest of root traits—primary 
and lateral root count—traits that can be estimated by all 
three programs: RTipC, WinRHIZO, and RootGraph. In 
Table 2, the total root count of primary and secondary roots 
across the subset of 20 barley images and 18 wheat images are 
summarized.

As discussed in previous work (Kumar et  al., 2014), 
WinRHIZO does not automatically distinguish between 
primary and lateral roots as is possible using RTipC and 
RootGraph. Instead, a user-defined value of root thickness 
(based on an analysis of root histograms of root length to 
root thickness to determine the average root thickness, an 
example of which appears in Fig. 3) as a means of differenti-
ating primary roots from lateral roots. The thickness thresh-
old chosen in this study was 0.338 mm.

It is acknowledged that the manually determined values, 
especially the lateral tip numbers, may have some intrinsic 
error associated with them, which have not been quanti-
fied. Nevertheless, both RootGraph and RTipC estimate the 
primary root count with 100% accuracy for each image of 
barley and 99% accuracy for each wheat image. In the case 
of WinRHIZO, the threshold thickness setting of 0.338 mm 
ensured the least error in the estimation of primary roots. 
Despite the overall acceptable total error of +2%, there were 
both undetected and falsely detected primary roots across 
the set of images, as indicated by the inequality range quoted 
in Table 2. This variation led to an overall compensation of 
errors at the level of total root count.

Determination of lateral roots is the more significant dis-
criminator of accuracy and relative performance. Based 
strictly on the first row results in Table 2, the method intro-
duced here clearly outperforms the other two methods, with an 
overall error rate of 3% and with an image-to-image variation 
of error ranging from −7% (undetected roots) to 14% (false 
detections). This performance is closely followed by RTipC, 
which demonstrates a similar behaviour to RootGraph in 
that it failed to identify some actual roots in some images 
(max error of −22%) and falsely detected roots in other 
images (max error of 20%) to result in an overall accuracy 
of 95%. WinRHIZO performs well in terms of primary root 
counting. However, as demonstrated in Kumar et al. (2014), 

Table 2.  Comparison of results of application of (a) RootGraph, (b) RTipC, and (c) WinRHIZO software, and manual labelling of primary 
and lateral root numbers extracted from subsets of images of barley (n=20) and wheat cultivar Kukri (n=18)

The columns show primary (Prim), lateral (Lat), and total (Tot) root counts accumulated over all manually labelled images. The inequalities 
beneath the barley data (only) refer to the relative error in lateral root count for the given method as experienced across the range of images. 
Negative values refer to underestimated root counts. As WinRHIZO does not explicitly differentiate between primary and secondary roots, a 
diameter threshold of 0.338 mm subjectively applied to differentiate between primary and lateral roots. As WinRHIZO grossly overestimates root 
numbers generally, no effort was made to categorize the counts in primary and lateral roots.

Manual RootGraph RTipC WinRHIZO

Prim Lat Tot Prim Lat Tot Prim Lat Tot Prim Lat Tot

 Barley 120 1836 1956 120 1888 2018 120 1745 1865 123 4379 4502

−7%<Δε(lat)<14% −22.3%<Δε(lat)<20% 63%<Δε(lat)<211%
 Wheat 90 2097 2187 91 2321 2412 54 5450 5504 10493
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WinRHIZO does not perform well in the quantification of 
total lateral root number and total root count overall. In 
this case, the difficulty lies in WinRHIZO’s inability to cope 
with gradients in the background: the non-negligible noise 
gradients are registered by WinRHIZO and, as they are well 
below the thickness threshold, are classified as lateral roots. 
Conventional thinning algorithms such as the Zhang–Suen 
method (Zhang and Suen, 1984)—on which WinRHIZO is 
based—are sensitive to small levels of noise (Liu et al., 2003; 
Kumar et al., 2014).

With regard to the results for wheat, RootGraph achieved 
the best performance. This is partially due to the smoothing 
effect of the thinning algorithm in this approach and partially 
due to the initial estimate of root parameters, which allows 
this approach to automatically adopt different image reso-
lutions and to reject some falsely detected root tips. It was 
noticed, however, that in the case of wheat roots some errors 
were encountered in the process of separating primary roots 
from lateral roots. This is due to two contributions. The first 
contributing factor is broken primary roots, while the second 
is the violation of [Rule 5] (see Materials and Methods), when 
the roots are very complex. The second issue can be resolved 
with the use of a computer with larger memory.

With regard to the poorer performance of RTipC in analys-
ing wheat roots, RTipC is a machine learning-based method 
for which training was here based on barley root images. It is 
well known that machine learning approaches can be affected 
by mismatches between actual data and training data (Jones, 
2005). Contributions to mismatching can arise, for example, 
from different image preparations or different image resolu-
tions (as is likely the case of the present wheat scans). Better 
accuracy can be achieved by RTipC if  root scans are pre-
pared similarly with similar resolution to the images used as 
training data.

Automated root analysis programs such as WinRHIZO 
and RTipC cannot assign lateral root characteristics to 

individual primary roots. However, this is now possible with 
the RootGraph algorithm. In Fig. 6A, a scatter plot is shown 
of the lateral root count associated with identified primary 
roots for the barley plant series. The least squares fitting func-
tion, y x= 1 0175. , has a slightly higher slope than the ideal 
case of y = x, where x is the manual count of lateral root tips 
per primary root. This difference means the RootGraph algo-
rithm overestimates slightly the lateral root tip count. The R2 
value of 0.9269 indicates a strong correlation between the two 
data sets, while still highlighting the high degree of variation 
in lateral tip count, which is not captured by this simple lin-
ear model. Fig. 6B shows the results of RootGraph, RTipC, 
and WinRHIZO on the lateral root tip count for individual 
plants. In terms of this phenotypic trait, RootGraph returns 
the highest R2 value and smallest (positive) bias; RTipC also 
shows a high R2 value but tendency to underestimate lateral 
root counts. WinRHIZO has significantly overestimated the 
lateral root count, although it returns a surprisingly high R2 
value, indicating a consistent behaviour.

Geometric characteristics

Both root length and root surface area are physiologically rel-
evant to root function, in particular to the uptake of water 
and nutrients. The amount of material (water and nutrients) 
taken up per unit time is proportional to root surface area 
and root length (Laperche et al., 2006). This functionality is 
particularly pertinent to lateral roots. Root volume is a third 
geometric feature. This is proportional to root biomass, which 
also has physiological relevance. For example, living cells in 
root tissues such as the cortex have the capacity to load toxic 
Na+ ions in their vacuoles as a means of defence against salt 
stress (Apse and Blumwald, 2007). Root volume is thence a 
measure of the product of cell volume and cell number within 
a given tissue region. Of these three geometric quantities, 
only root length has been determined manually. For this aim 

Fig. 6.  Scatter plots of software determined lateral root counts of barley vs manually determined root counts. (A) RootGraph estimates of lateral roots 
counts per identified primary root compared with manual benchmarks; and (B) Comparison among RootGraph, RTipC, and WinRHIZO estimates of 
lateral roots counts per barley plant versus manual data.
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ImageJ (Schindelin et al., 2012) was used to manually place 
marker points along a root and to link these to create a curve 
with which to estimate the length of the root. This process is 
repeated for all roots to be measured.

To assess the accuracy of both RootGraph and WinRHIZO 
for the calculation of total (accumulated) root length, a 
selected number of images were assessed manually. Figure 7 
gives a comparison of the two techniques against manual 
measurements of barley (Fig. 7A) and wheat data (Fig. 7B). 
In Fig. 7A results of RootNav applied to the barley images 
are considered to provide a third, independent estimate of 
root length. This figure shows that all methods perform quite 
well. RootGraph and RootNav have a negative bias com-
pared with that of WinRHIZO in that both of the former 
methods underestimate root length. However, RootNav has 
a relatively lower R2 value highlighting an inconsistency due 
to errors in finding the shortest paths. It is somewhat surpris-
ing that WinRHIZO has almost the same the R2 value as 
that of RootGraph, 0.99, despite it overestimating root tip 
number. On the other hand, it should be remembered that, in 
contrast to RootGraph, WinRHIZO does not automatically 
separate primary roots from lateral roots. Moreover, in this 
comparison, the WinRHIZO threshold was set a priori to 
advantageously give the least error in WinRHIZO’s primary 
root count. Without prior knowledge of manually deter-
mined root number, it would not be possible to separate this 
information. It is nevertheless encouraging that WinRHIZO 
and RootGraph agree on primary and lateral root lengths. 
Figure 7B also demonstrates that RootGraph performs well 
when applied to very complex root systems, as in the case of 
wheat roots grown in nitrogen deficient soil where the total 
root length is greater than 600 cm. It is clear from Fig. 7A, 
B that root length estimations by all three methods are gen-
erally consistent. Nevertheless, RootGraph performs mar-
ginally better overall than WinRHIZO. As a final comment, 
information that is not available but would be of interest to 
have, is the degree to which the under- and overestimation 

of individual root lengths, cancel to give the overall marginal 
error in WinRHIZO’s results.

With regard to individual root lengths, Fig.  8A, B dem-
onstrate the capability of RootGraph to quantify the lengths 
of each individual primary root identified in a given scanned 
image. More significantly. Fig. 8B demonstrates the software’s 
innovative ability to quantify lateral root features associated 
with a given primary root. This particular figure features total 
lateral root length per length of primary root to which the lat-
erals emerge. The quantity shown is effectively an average lin-
ear lateral root density, a phenotypic trait that is relevant to a 
plant’s water and nutrient uptake ability. Although not shown 
for reasons of space, WinRHIZO performs comparably well 
with RootGraph in this capability, as already suggested by the 
results shown in Fig. 7A, B. This is somewhat surprising, given 
that it vastly overestimates lateral root number (Table 2). The 
contradiction can be resolved by understanding that the noise 
features that WinRHIZO attributes to lateral roots have little 
impact on geometric results. Nevertheless, WinRHIZO’s out-
puts should be considered cautiously owing to its tendency to 
falsely classify lateral roots.

Given the inherent difficulty involved, manual measure-
ments of other geometric features such as surface area and 
volume were not undertaken. Consequently, and in the inter-
est of conserving space, any area or volume analysis using 
RootGraph has not been presented, even though the program 
does produce these outputs as a matter of course. However, 
to summarize, both surface area and volume calculations 
using RootGraph are based on the assumption that the root 
adopts the shape of a cylinder locally, with diameter equal 
to the perpendicular width at that point. If  δl(s) is the incre-
ment in length at a distance s from the root tip and w(s) is 
the diameter at s measured perpendicular to the root centre-
line vector, then the increment in surface area and volume 
are πw(s)δl(s) and π δw s l s( ) ( ) /2 4, respectively. Total surface 
area and total root volume (primary and lateral roots taken 
separately) are then an accumulation of these increments. 

Fig. 7.  Comparisons between estimates of total root lengths as determined by manual means, RootGraph, WinRHIZO, and RootNav software. (A) 
Scatter plots of root length calculations using the analysis tools applied to images of barley roots compared with manual measurements. (B) Bar graph 
comparison between results of RootGraph and WinRHIZO and manual measurements across four selected images of the wheat cultivar Gladius under 
LN (first two sets of columns) and NN conditions (second set of columns).
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Given the higher order nature of the calculations involved 
in these quantities, one would anticipate greater error than 
that shown by the individual quantities. For WinRHIZO, it 
was found that the setting of the segmentation threshold can 
significantly change the total surface area and volume. This 
is expected as the width of roots is just a few pixels and sur-
face area and volume can vary significantly if  the threshold 
changes the root width by even one pixel.

Summary remarks

A fully automated algorithmic tool for the complete quan-
titative characterization of  root systems that have been 
cut, spread, and flatbed scanned is presented here. This 
work builds upon a number of  generations of  numerical 
approaches aimed at providing quantitative information 

on root system features of  biological relevance. Although 
it may not be suitable for all types of  images, the method 
presented here improves upon earlier proposals in a num-
ber of  ways. Generally, the method is fully automated and 
robust and therefore completely up to the task of  high-
throughput applications. Secondly, the method represents a 
major advance by quantifying properties of  both embryonic 
(primary) roots and post-embryonic (lateral) roots, includ-
ing the possibility of  characterizing second, third, and 
fourth order lateral roots. In this way, associations between 
properties of  lateral roots (such as lateral root density) to 
their connected primary root may be deduced. This greatly 
improves upon the value of  current coarser-grained rela-
tionships established through comparisons of  root-system-
averaged lateral root properties with root-system-averaged 
primary root properties.

Fig. 8.  Root lengths from the barley root image series as determined by RootGraph. (A) Length of each identified primary root in a given image in the 
series. (B) Total length of lateral roots relative to the length of the primary root bearing it, again in the series of 25 barley root images.
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In this work the important advance, first presented in a pre-
vious paper (Kumar et al., 2014), of distinguishing between 
primary and lateral roots is maintained. The approach advo-
cated here is more robust in that it utilizes image adaptation 
and graph optimization and does not rely on any statistical 
learning. The utility of the method has been demonstrated 
through an analysis of the complex roots of barley and 
wheat, with the latter grown under LN and NN conditions. 
Generally, the method is applicable to analysing roots of 
dicot or monocot plants grown in soil environments in order 
to quantify plant responses to nutrient and water stresses. 
Results have shown that any noise caused by soil particulates 
accompanying the root extraction process, but remaining 
after cleansing of roots, can be removed using RootGraph.

Finally, the methodology espoused here can be further 
developed to assess camera images of fully visible three 
dimensional root system architecture as opposed to 2D root 
scans. This will provide a future opportunity to quantify root 
length, surface area, volume, and other important traits such 
as 3D root system architecture. A  copy of the program is 
available for download at https://onedrive.live.com/redir?res
id=D417979EECAC63C4!2537&authkey=!AHu7kQAVkcwf
f2c&ithint=folder%2czip and www.plant-image-analysis.org/
software/RootGraph.

Supplementary material

A detailed description of the thinning algorithm is available 
as Supplementary material at JXB online.

Fig. S1. Algorithm schematics.
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