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Abstract

Objective—To determine the relationship between left ventricular cardiac output (LVCO), 

superior vena cava (SVC) flow, and brain injury during whole-body therapeutic hypothermia.

Study design—Sixteen newborns with moderate or severe hypoxic-ischemic encephalopathy 

were studied using echocardiography during and immediately after therapeutic hypothermia. 

Measures were also compared with 12 healthy newborns of similar postnatal age. Newborns 

undergoing therapeutic hypothermia also had a cerebral magnetic resonance imaging as part of 

routine clinical care on postnatal day 3–4.

Results—LVCO was markedly reduced (mean+/−SD: 126+/−38 mL/kg/min) during therapeutic 

hypothermia, whereas SVC flow was maintained within expected normal values (88+/− 27 mL/kg/

min) such that it represented 70% of the LVCO. The reduction in LVCO during therapeutic 

hypothermia was mainly accounted by a reduction in heart rate (99 +/− 13 BPM versus 123 +/− 17 

BPM; p<0.001) compared to immediately post-warming, in the context of myocardial dysfunction. 

Neonates with documented brain injury on MRI showed higher SVC flow pre-rewarming, 

compared to newborns without brain injury (p=0.013).

Conclusion—Newborns with perinatal hypoxic-ischemic encephalopathy showed a preferential 

systemic-to cerebral redistribution of cardiac blood flow during whole-body therapeutic 

hypothermia, which may reflect a lack of cerebral vascular adaptation in newborns with more 

severe brain injury.
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INTRODUCTION

Neonatal hypoxic-ischemic encephalopathy (HIE) is an important cause of 

neurodevelopment morbidity and of mortality in term and preterm infants with an estimated 

1.2 million deaths every year worldwide (1–3). Newborns with asphyxia and HIE often 

suffer multiple organ failure as a result of the hypoxic-ischemic insult, including myocardial 

dysfunction (4). In the last years, therapeutic hypothermia (TH) has become standard of care 

for newborns with moderate-to-severe hypoxic-ischemic encephalopathy (HIE), as this 

treatment has been shown to improve survival and long-term neurodevelopment (5, 6). 

Based on animal experimental models, the clinical benefit of TH in HIE presumably occurs 

through a reduction in secondary neuronal damage following reperfusion of the primary 

insulted brain (7). Studies conducted before the use of TH became standard have 

demonstrated that cerebral auto-regulation is impaired in newborns who develop more 

severe brain injury (8). Since the introduction of TH as a treatment, studies have showed a 

reduction in cerebral blood flow in newborns undergoing TH, suggesting that this may play 

an important role in preventing secondary neuronal damage (9). However, the extent of 

systemic-to-cerebral blood flow redistribution that occurs during the period of TH has not 

been documented.

Newborns are generally able to maintain adequate blood pressure at low temperature 

achieved during TH (10, 11). In a recent study examining the cardiac hemodynamic effect of 

whole-body TH in newborns with HIE, using echocardiography, authors concluded that left 

ventricular cardiac output (LVCO) is reduced by about 67% during TH when compared to 

measures obtained after rewarming. This suggests that TH may limit the extent of systemic 

blood flow available to vital organs, including the brain (10). However, a limitation of this 

latter study by Gebauer et al is the absence of measures of cerebral blood flow. As 

commented by the authors, it is unclear what degree of systemic-to-cerebral blood flow 

redistribution occurs in newborns with HIE treated with TH (10). It is also unclear how such 

mechanisms of blood flow redistribution may influence the subsequent risk of cerebral 

injury due to secondary neuronal damage (12). Echocardiography offers a valid, non-

invasive method of measuring superior vena cava (SVC) flow, which is largely a reflection 

of cerebral blood flow in newborns (13). To address changes in the hemodynamic systemic 

and cerebral circulation in newborns with moderate or severe HIE undergoing TH, we 

prospectively determined LVCO and SVC blood flow immediately before and after 

rewarming, and validated our findings using a reference group of healthy newborns.
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METHODS

Study population

Newborns admitted to the Neonatal Intensive Care Unit of the Children’s & Women’s 

Health Centre of British Columbia (Canada) and treated with whole-body TH for moderate 

or severe HIE [based on the Sarnat staging system (14)] were prospectively enrolled 

between January 2009 and June 2010, following parental informed consent. Newborns were 

treated with TH within 6 hours of life according to our institutional standards if they 

presented moderate or severe HIE [based on the Sarnat staging system], were of gestational 

age ≥35 weeks and if they met at least two of the following criteria: Apgar score ≤5 at 10 

minutes, mechanical ventilation or resuscitation at 10 minutes and cord or early arterial/

venous blood gas pH <7.00 or base deficit ≥12 within 60 minutes of birth. TH was 

administered according to the published Infant Cooling Evaluation (ICE) trial method of 

cooling, at ambient environmental temperature, by applying refrigerated gel packs, as 

necessary to reach a target core body temperature of 33 and 34°C measured using a rectal 

temperature probe, for 72 hours (15). In all infants, rewarming was initiated exactly at 72 

hours +/− one hour and proceeded at a rate not exceeding 0.5°C every 2 hours. After 

rewarming, core temperature was strictly maintained between 36.0 and 36.5°C until 96 

hours since the initiation of TH. In comparison, a control group of healthy term-born 

newborns with no clinical evidence of HIE or cardiovascular dysfunction (usually admitted 

for transient feeding difficulties or for investigation of unrelated causes) were also assessed 

using echocardiography. The study was approved by the University of British Columbia 

Clinical Research Ethics Board.

Echocardiography

In newborns undergoing TH (cases), two echocardiography assessments were performed: the 

first study was performed before initiation of rewarming and the second study was 

performed within 6–12 hours after the end of the progressive rewarming process. Healthy 

control newborns were assessed at a similar post-natal age between 72 and 96 hours after 

birth. Echocardiography assessments were performed by two neonatologists (OH or PML) 

experienced in echocardiography, using a 7S-RS phased array transducer on a Vivid i BT09 

Ultra-Portable High-End echocardiography instrument (GE Healthcare, AB Canada). The 

following measures were obtained: LVCO was calculated by multiplying the stroke volume 

(SV) using the aortic valve diameter in a mid-parasternal long-axis 2D view, the velocity 

time interval measured by pulse Doppler in an apical 5-chamber view and the heart rate; 

superior vena cava (SVC) flow was calculated by multiplying the averaged minimal and 

maximal excursion of the SVC diameter in a high parasternal view 2D view, the velocity 

time interval measured by pulse Doppler over at least three representative heart beat in low 

subcostal view, and heart rate. Fractional shortening was calculated from a parasternal long-

axis view using M-mode. All flow measures were indexed on weight. The left ventricular 

myocardial performance (Tei) index was calculated from an M-mode view as described (16, 

17). The patency of, and flow direction across the ductus arteriosus and atrial septum were 

also assessed, as described (18).
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Brain imaging

Newborns undergoing TH also had a cerebral magnetic resonance imaging (MRI) as part of 

clinical care on post-natal day 3 to 4, after rewarming. MRI findings that were considered 

positive for brain injury were restricted water diffusion on diffusion-weighted images, with 

or without accompanying T1-weighted imaging signal intensity changes, in the basal nuclei, 

watershed area or a total pattern of injury (both basal nuclei and watershed area 

involvement), as we previously described (19). All MRI studies were scored by an 

experienced clinical pediatric neuroradiologist.

Statistical analyses

Based on measures obtained in healthy term neonates, we estimated that between 10 and 19 

newborns would provide 80% power (p<0.05) to detect a 15 to 20% difference in SVC or 

LVCO in non-paired analyses (calculated with: http://www.stat.ubc.ca/~rollin/stats/ssize/

n2.html). Differences in echocardiography measurements: LVCO, HR, stroke volume (SV), 

before and after rewarming, or between newborns with or without MRI evidence of brain 

injury were assessed using a Wilcoxon matched-pairs signed ranks test. Differences in 

echocardiography measurements between newborns undergoing TH and healthy control 

newborns were assessed using a student t-test. A p value <0.05 was considered statistically 

significant. Statistical analyses were performed using SPSS Statistics version 20 (IBM, 

Chicago, Illinois).

RESULTS

Newborns treated with TH were comparable with the healthy term-born control newborns 

with regard to their birth weight (mean±SD: 3.49 ± 0.52 versus 3.54 ± 0.43 kg; p=0.78). The 

clinical markers of severity of the HIE in newborns treated with HT are detailed in table 1. 

Moderate (n = 15) or severe HIE (n = 1) was diagnosed in all 16 newborns, of whom 13 had 

seizures. None of the newborns died before the rewarming was completed. The median 

duration of endotracheal ventilator support in newborns with perinatal HIE was 3 days 

(range 0 to 6 days). Nine (56%) of newborns were ventilated at the time of the pre-

rewarming echocardiography assessment and of these, 8 remained ventilated during the 

post-rewarming echocardiography study. Five (31%) of the infants required inotropic 

support during TH which was also continued after rewarming. The doses of dopamine used 

during TH and throughout the rewarming were generally low (<7 μg/kg/min). None of the 

infants required volume expansion during the rewarming phase. One infant received inhaled 

nitric oxide due to pulmonary hypertension, which was also continued throughout the 

rewarming phase. All infants undergoing TH received an infusion of morphine (dose range: 

10 to 30 μg/kg/hour) during the TH, and 13 (81%) continues to receive it in the early period 

post rewarming. Three of the newborns with HIE demonstrated a left-to-right shunting 

across a patent ductus arteriosus (diameter >0.2 cm in two newborns) and 6 demonstrated 

left-to-right atrial shunting. Residual ductus arteriosus and atrial shunts were present during 

the postrewarming echocardiographic assessment in 2 and 5 newborns, respectively. None of 

the healthy comparison newborns had significant patent ductus arteriosus or atrial shunts at 

the time of echocardiographic assessment.
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Echocardiographic measurements

In newborns with HIE, the first and second echocardiography assessments were done at a 

mean±SD of 62 ± 16 hours of post-natal life during TH and at 96 ±8 hours of life post- the 

first study was performed 6–12 hours before initiation of rewarming and the second study 

was performed within 6–12 hours after the end of the progressive rewarming process. In 

comparison, the echocardiography assessments were done at a mean±SD of 90 ± 15 hours of 

life in control newborns.

A comparison of measures for newborns with perinatal HIE before and after rewarming, and 

in healthy newborns is presented in table 2 and figure 1. LVCO was significantly reduced 

during TH in newborns with HIE compared to measures obtained post-rewarming (p<0.001), 

although left ventricular contractility did not change, as assessed by fractional shortening 

(table 2). When compared to control newborns, LVCO during TH was 57% of values 

observed in healthy newborns of the same post-natal age. In contrast, measures of cephalic 

(SVC) blood flow in newborns with HIE remained comparable pre- and post- rewarming, 

and were also comparable to measures obtained in healthy controls (table 2). This reduction 

in LVCO was accounted by a reduction in heart rate as well as a reduction in stroke volume 

(table 2). The left ventricular myocardial performance (Tei) index was significantly 

increased in infants with HIE indicative of myocardial dysfunction (table 2). Because of the 

preserved SVC flow in the context of a reduction in LVCO, 70% of the systemic blood flow 

(LCVO) was distributed cephalically (SVC flow) during TH. This proportion remained 

higher post-rewarming compared to healthy controls (table 2).

Neurological outcomes

Six newborns had brain injury on MRI: 1 basal nuclei, 2 watershed, 2 total, and 1 with 

stroke. A majority of newborns with perinatal HIE showed elevated lactates. The newborns 

with HIE, with or without brain injury did not differ in Apgar scores, peak lactate levels and 

arterial cord gases (table 3). SVC flows were higher in newborns with brain injury on MRI 

in the pre-rewarming phase, compared to newborns without brain injury (mean 105 (range 

68–127 mL/kg/min) versus 75 (range 51–103 mL/kg/min) P value = 0.013) (table 3). Points 

plot of SVC measurements during TH according to MRI findings are shown in Figure 2. 

Other measurements of LVCO, heart rate, stroke volume (SV), as well as of post-rewarming 

SVC flow did not differ between infants with or without brain injury (table 3).

DISCUSSION

Using echocardiography, we document the hemodynamic changes occurring in the systemic 

and cerebral circulation in newborns with HIE undergoing whole-body TH. For comparison, 

we performed the same measures in a reference group of healthy term newborns without 

signs of HIE. Our data indicate a significant reduction in LVCO during TH, to almost 60% 

of values observed in healthy newborns. When comparing measures of systemic (LVCO) 

and cephalic (SVC) blood flow, we observed a preferential 70% redistribution of LVCO to 

the brain. To our knowledge, this is the first study comparing systemic and cephalic blood 

flow in newborns with HIE in the era of clinical TH.
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Our study enhances our understanding of the hemodynamic adaptation occurring during 

whole-body TH. First, it provides an important validation of previous data demonstrating a 

marked reduction in LVCO during TH (10). In our study population, the reduction in LVCO 

during TH was mainly accounted by a reduction in heart rate when compared to measures 

post-rewarming, whereas contractility was decreased to a lesser extent as assessed using 

fractional shortening. However, this reduction in heart rate occurred in the context of an 

important degree of myocardial dysfunction likely due to the asphyxia, as evidenced by the 

persistence of significant dysfunction immediately post-rewarming. One could question 

whether TH was accompanied by a worsening of pulmonary hemodynamics leading to 

decreased left heart filling or perhaps increased left-to-right shunting across the patent 

foramen ovale, although the marginal changes in stroke volume during and after rewarming 

argues against this as a major possibility. In absence of significant cardiac shunts in this 

series of newborns, we can assume that the LVCO is an accurate reflection of pre-ductal 

systemic blood flow. Also, the lower LVCO was also likely not related to changes in 

afterload as blood pressure was maintained in all these infants (data not shown). Bradycardia 

is a well reported consequence of TH (11), due to prolonged QT and PR intervals (20), but 

can also be observed in newborns with more severe myocardial hypoxic-ischemic insult (4).

By combining measures of LVCO and SVC in a group of newborns undergoing whole-body 

TH, we demonstrate a relative increase in systemic-to-cerebral blood flow during TH despite 

a reduction in LVCO. The preferential redistribution of LVCO to the cerebral circulation 

implies more limited systemic blood flow to other vital organs, including the kidneys and 

gastrointestinal system during TH in the context of HIE. Few studies have documented the 

cerebral hemodynamic changes occurring in newborns with HIE in the era of TH. In healthy 

neonates, cerebral blood flow normally accounts for a high proportion of systemic blood 

flow (13). The pattern of brain injury on MRI is recognized as a robust predictor of 

neurodevelopmental outcome in infants with HIE, including those treated with TH (21, 22). 

In our study, newborns with documented brain injury showed higher cerebral blood flow 

compared to newborns without brain injury. Changes in LVCO to the brain may be 

influenced by regional changes in vascular resistance or perfusion pressure related to a 

decreased core temperature.

Although our sample size is small, our data are consistent with two other studies reporting 

an increased cerebral blood flow beyond 24 hours after the initial insult in TH-treated 

newborns with HIE who develop more severe brain injury (23, 24). Two explanations may 

account for this cephalic redistribution of LVCO in TH-treated newborns with brain injury. 

Such process may represent a physiological adaptation, or “sparing effect”. Alternatively, it 

may reflect a greater loss of cerebrovascular auto-regulation in more severe cases (25). In 

experimental models of hypoxic-ischemic injury, a decrease in cerebral oxygenation and/or 

cerebral perfusion alleviates the extent of reperfusion-driven cerebral injury, suggesting that 

the relative increase in cerebral blood flow during TH is maladaptive (26, 27). In clinical 

trials in newborns with HIE, TH resulted in only partial improvements in death and 

neurological outcomes (15, 28, 29). The reasons why some infants appear to not benefit 

from TH remain unclear. In light of our data, the preferential redistribution of LVCO to the 

cerebral circulation may be a useful marker to identify a lack of therapeutic response to TH. 

In order to confirm these findings, a prospective study including a larger number of infants is 
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required, with the collection of detailed clinical and echocardiography hemodynamic 

outcomes.

Our study has limitations. A majority of newborns in our study met criteria for moderate 

HIE, with only one newborn having severe HIE. Therefore, our data more closely reflect the 

majority of infants who may benefit from TH according to clinical trials (15, 28, 29). Future 

studies are required to understand how outcomes can be improved in infants with severe 

HIE. Due to its observational nature, we cannot exclude that at least part of the changes in 

hemodynamic measures observed before and after rewarming may have been influenced by 

other aspects of neonatal intensive care, including a recovery of myocardial function 

following the hypoxic-ischemic insult. It is also possible that these newborns may differ in 

other aspects of their physiology, therefore limiting more detailed comparisons between the 

newborns with HIE and control newborns. However, the relatively short interval between the 

two echocardiography studies suggests that the greater extent of the hemodynamic changes 

observed are due to TH. With respect to changes in the administration of morphine, the 

small dosages used in our study are unlikely to have results in significant hemodynamic 

effects. Altogether, our results mandate a more attentive use of echocardiography in the 

assessment and management of newborns with myocardial failure undergoing TH.

In conclusion, we demonstrate a markedly limited LVCO in newborns with HIE undergoing 

TH, together with a marked systemic-to-cerebral redistribution of blood flow. The increase 

cerebral blood flow in the context of a limited LVCO in newborns with documented brain 

injury on MRI is consistent with an impaired cerebral auto-regulation in a subgroup of TH-

treated newborns. Future studies are required to determine whether a failure of cephalic 

redistribution of systemic blood flow during TH is predictive of a neurological recovery.
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Figure 1. 
Comparisons of echocardiography measurements pre- and post-rewarming in infants with 

HIE (dark circles) and in healthy infants (clear circles). LVCO: left ventricular cardiac 

output; HR: heart rate; LVMPI: Left ventricular myocardial performance index = Tei index; 

SVC: superior vena cava flow.
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Figure 2. 
Points plot of SVC Flow measurements in the newborns with hypoxic ischemic 

encephalopathy during hypothermia according to MRI results. (triangles): Anterior or 

posterior watershed, cortex and white matter pattern of injury; (diamonds): Watershed area 

single focal infarction; (circles): Basal ganglia involvement; (squares): Total injury: basal 

ganglia extensive injury with anterior and posterior watershed and cortical involvement. 

SVC = Superior Vena Cava flow.
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Table 1

Clinical characteristics of newborns with hypoxic ischemic encephalopathy treated with Therapeutic 

Hypothermia

Clinical characteristic N=16 newborns

Birth weight, mean+/−SD (g) 3.49 +/− 0.52

Arterial cord pH<7.0 (%)§ 53

Apgar score 5 min<5 (%) 69

HIE Staging n(%)* Moderate 15(94)

Severe 1 (6)

Organ dysfunction n(%)† 5(31)

Seizure n(%) 13(81)

Use of >1 anticonvulsant n(%) 1(6)

§
Cord gas was missing in one newborn;

†
Either Kidney failure defined as a rise in serum creatinine >90 μM (1 mg/dL), or increase in alanine aminotransferase over twice the upper normal 

limit (40 IU/L);

*
Based on Sarnat staging.
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Table 3

Initial and pre-rewarming characteristics in asphyxiated newborns with and without abnormal MRI findings

Parameter Normal MRI (n=10) Abnormal MRI (n=6) P value

Clinical characteristics

5 minutes Apgar Score, mean±SD 4±1.4 4.2±3.2 0.9

10 minutes Apgar Score, mean±SD 5.6±2 4.8±3 0.67

Cord PH, mean±SD 7±0.18 6.97±0.16 0.96

Peak Lactate level, median (IQ range) mmol/L 5.9 (6.3) 4.7 (9.3) 0.85

Pre-rewarming echocardiographic measures

Heart rate, mean±SD (beats per min.) 100±13.7 98±14 0.81

Systolic blood pressure, mean±SD (mmHg) 64±12.8 58±8.3 0.29

Diastolic blood pressure, mean±SD (mmHg) 39.2±6.1 39.8±7 0.86

Core temperature, mean±SD (°C) 33.4±0.32 33.5±0.5 0.75

LVMPI, mean±SD (circumference/sec) 0.38±0.08 0.4±0.045 0.32

LVCO, mean±SD (mL/kg/min) 130±39 120±37 0.6

SVC, mean±SD (mL/kg/min) 75±27 105±29 0.013*

Ventilated, n (%) 4 (40%) 5 (83%) 0.09

SVC: Superior vena cava blood flow; LVMPI: Left ventricular myocardial performance index; LVCO: left ventricular cardiac output; SD: standard 
deviation

*
p value < 0.05
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