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Abstract

Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) 

studies often report inconsistent findings, probably due to brain properties such as balanced 

excitation and inhibition and functional heterogeneity. These properties indicate that different 

neurons in the same voxels may show variable activities including concurrent activation and 

deactivation, that the relationships between BOLD signal and neural activity (i.e., neurovascular 

coupling) are complex, and that increased BOLD signal may reflect reduced deactivation, 

increased activation, or both. The traditional general-linear-model-based-analysis (GLM-BA) is a 

univariate approach, cannot separate different components of BOLD signal mixtures from the 

same voxels, and may contribute to inconsistent findings of fMRI. Spatial independent component 

analysis (sICA) is a multivariate approach, can separate the BOLD signal mixture from each voxel 

into different source signals and measure each separately, and thus may reconcile previous 

conflicting findings generated by GLM-BA. We propose that methods capable of separating 

mixed signals such as sICA should be regularly used for more accurately and completely 

extracting information embedded in fMRI datasets.
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1. Introduction

Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging 

(fMRI) has been used to investigate human brain functional organization for more than 20 

years. However, findings from different fMRI studies are not always consistent (Mayberg, 

2014; Parens and Johnston, 2014). For example, some studies find that BOLD signals from 

the so-called default mode network (DMN) or task-negative network at the medial portion of 
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the brain negatively correlate with the BOLD signals from the so-called task-positive 

network at the lateral part of the brain (Carbonell et al., 2011; Fox et al., 2005). However, 

some other studies report that such anti-correlations are in part artificially introduced during 

preprocessing of fMRI datasets (Anderson et al., 2011; Chai et al., 2012; Murphy et al., 

2009). Still others find that these anti-correlations are dependent on brain states or task 

conditions (Piccoli et al., 2015; Spreng et al., 2014). In this paper, we propose that some of 

these controversial findings in fMRI are probably due to several closely related brain 

properties, including balanced excitation and inhibition (E/I) and functional heterogeneity 

(Isaacson and Scanziani, 2011; Okun and Lampl, 2008), the limited spatial and temporal 

resolutions of fMRI, and the limited sensitivity and specificity of general-linear-model based 

analysis (GLM-BA) commonly used in fMRI studies.

To our knowledge, several brain properties such as balanced E/I are usually not explicitly 

considered in published fMRI studies. The aims of this paper are to attract the attention of 

fMRI investigators to these fundamental brain properties, initiate a discussion on their 

implications in fMRI, and consider optimal approaches for addressing them during 

analyzing and interpreting BOLD signals in order to improve the sensitivity and specificity 

of fMRI and reduce conflicting findings. We will first briefly introduce three closely related 

brain properties, i.e., balanced E/I, functional heterogeneity, and sparseness of neuronal 

activity, then discuss their potential implications in BOLD signal changes, and finally 

discuss a potential approach for addressing these properties in the analysis and interpretation 

of BOLD data.

2. Three closely related brain properties

2.1. Balanced E/I

Balanced E/I refers to the electrophysiological findings that excitatory and inhibitory 

synaptic activities always associate with each other at the levels of individual neurons and 

microcircuits in the cortex during both the resting condition and task performance (Isaacson 

and Scanziani, 2011; Okun and Lampl, 2008). Within any cortical region, about 20% of all 

neurons are GABAergic inhibitory interneurons and 80% excitatory pyramidal neurons 

(Druga, 2009). The interneurons and pyramidal neurons form feedforward and feedback 

inhibitory circuits, the building blocks of the cortex (Haider et al., 2013; Isaacson and 

Scanziani, 2011). Feedforward inhibition from broadly tuned inhibitory interneurons (e.g., 

driven by the thalamus) restricts receptive fields and enhances representation of contrast in 

pyramidal neurons (Li et al., 2014). Feedback inhibition mediates inhibitory responses 

among adjacent pyramidal neurons (Ren et al., 2007; Silberberg and Markram, 2007). 

Furthermore, the inhibitory interneurons form extensive synapses onto adjacent pyramidal 

neurons, as if to exert a ‘blanket of inhibition’ (Fino et al., 2013; Fino and Yuste, 2011; Inan 

et al., 2013; Karnani et al., 2014; Markram et al., 2004; Packer and Yuste, 2011). Therefore, 

even though inhibitory neurons are fewer than excitatory neurons in the cortex, they are 

powerful minorities that refine the response tuning of excitatory neurons, dominate 

microcircuit activities, and control information processing in the cortex (Haider et al., 2013; 

Li et al., 2014; Mateo et al., 2011; Miller, 2003; Okun and Lampl, 2008; Ren et al., 2007). It 

should be noted that balanced E/I does not mean the cortex maintains a constant E/I ratio; 
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the E/I ratio in fact varies dynamically in different cortical regions and in the same region at 

different times, either during the resting condition or during different tasks (Isaacson and 

Scanziani, 2011).

2.2 Functional heterogeneity

Functional heterogeneity is another cortical property. The property of balanced E/I 

inevitably leads to different functional activities (i.e., activation vs. deactivation) among 

adjacent neurons. However, functionally heterogeneous neurons at adjacent locations may 

not always show mutual inhibition. Therefore, functional heterogeneity and balanced E/I are 

closely related but different properties in the brain. Electrophysiological studies have found 

that intermixed neurons in the same regions, including both the primary sensory and higher 

order association cortex, may have different functional activities (Horton and Adams, 2005; 

Isaacson and Scanziani, 2011; Ohki et al., 2005; Perin et al., 2011; Popivanov et al., 2014; 

Rothschild et al., 2010; Stettler and Axel, 2009; Swindale, 1998; Xu et al., 2013a). For 

example, the primary visual cortex contains a so-called “polymap”, i.e., several overlapping 

maps, each responsive to a unique visual property, such as edge orientation, direction of 

motion, and spatial location and frequency. The primary auditory and olfactory cortices 

show a “salt and pepper” like organization (Bandyopadhyay and Hablitz, 2007; Isaacson and 

Scanziani, 2011; Poo and Isaacson, 2009; Rothschild et al., 2010; Stettler and Axel, 2009). 

In the prefrontal cortex (PFC), neurons responsive to any specific stimulus property 

constitute a minority in any region, with a relatively higher density at some locations, but 

distributed in most or the entire PFC, without any abrupt edges (Fuster, 2009). For example, 

both reward- and working memory-related neurons exist in the dorsolateral PFC, medial 

orbitofrontal cortex (OFC), and other PFC regions, although they are not evenly distributed 

in these regions. More reward-related neurons concentrate in the OFC, while more working 

memory-related neurons reside in the lateral PFC (Ichihara-Takeda and Funahashi, 2007, 

2008; Wallis and Miller, 2003). Therefore, intermixed neurons with heterogeneous 

functional activities exist in each PFC region, while different neuron types may be 

concentrated in different regions (Chafee and Goldman-Rakic, 1998; Donovan et al., 2013; 

Funahashi, 2013; Verduzco-Flores et al., 2009). Thus, different PFC regions show more or 

less common functional activities, i.e., overlap of functional networks, but each region may 

show a greater activity related to some central processes relative to others (Fuster, 2009).

2.3. Sparseness of neuronal activity

Sparseness of neuronal activity is another cortical property related to balanced E/I (Barth 

and Poulet, 2012; Wolfe et al., 2010). Electrophysiological studies find that any cortical 

neuron is only responsive to a few stimuli among all inputs from the environment (i.e., 

lifetime sparseness) (Tolhurst et al., 2009), and that only a small portion of the whole 

neuronal population in any cortical region exhibits activity at any instant (i.e., population 

sparseness), while most neurons remain silent, regardless of resting condition or task 

performance (Histed et al., 2009). This sparseness of neural activities is probably mediated 

by the inhibitory interneurons in the cortex. It has been found that the inhibitory 

interneurons contribute to the so-called “iceberg effect”, i.e., pyramidal neurons having 

narrower spiking receptive fields than subthreshold receptive fields (Isaacson and Scanziani, 

2011; Priebe and Ferster, 2008). For example, in the primary somatosensory barrel cortex of 
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behaving mice, all recorded layer 2/3 pyramidal neurons show rapid depolarization in 

response to whisker stimulation, but only 10% of them show spikes (Crochet et al., 2011). In 

the primary auditory cortex of awake rats, acoustic stimuli typically elicit increased firing 

rates in less than 5% of all neurons at any instant (Hromadka et al., 2008).

3. Potential implications of these brain properties for fMRI

3.1. Heterogeneous neural activity in each voxel

A typical voxel in the cortex extending 3-5 mm in each dimension contains hundreds of 

thousands of neurons (Druga, 2009; Logothetis, 2008; Roth and Dicke, 2012). The three 

cortical properties discussed above indicate that neural activities in the same voxels or brain 

regions are highly heterogeneous, as suggested by findings from numerous studies (Chafee 

and Goldman-Rakic, 1998; Donovan et al., 2013; Funahashi, 2013; Fuster, 2009; Verduzco-

Flores et al., 2009). For example, Bell et al. assessed the relationships between neural 

activity and BOLD signal in the inferior temporal cortex in two monkeys. They first used 

fMRI to delineate brain regions showing significant BOLD responses to different categories 

of visual stimulus including face, body parts, objects, and environment scenes, then used 

microelectrodes to record single unit activity in each of these regions (Bell et al., 2011). 

They found that neurons activated and deactivated by each stimulus category were 

distributed throughout the entire recorded inferior temporal region, instead of being 

restricted within a specific area. However, within a region defined by fMRI with a specific 

category of visual stimulus, more neurons were activated then deactivated by stimuli in the 

same category, whereas more neurons were deactivated than activated by stimuli in other 

categories. For example, in the fMRI face region, more neurons were activated than 

deactivated by face, whereas fewer neurons were activated than deactivated by objects, other 

body parts, and scenes. Another study recorded single units from the posterior cingulate 

cortex (CGp) and lateral intraparietal area (LIP) in two monkeys during two attention-

demanding tasks (Hayden et al., 2009). The CGp and LIP are among regions of the DMN 

and task-positive network, respectively. They often show reduced and increased, 

respectively, BOLD signal during attention-demanding tasks. Microelectrode recordings 

found that 35% of recorded neurons in the CGp were deactivated but only 9.4% activated 

during attention-demanding tasks. On the other hand, 20% of LIP neurons were activated 

and 7.4% deactivated. Therefore, both CGp and LIP showed heterogeneous task-related 

neuronal activities. Furthermore, more than 50% of recorded neurons in the CGp and LIP 

did not show significant changes in activity, consistent with the cortical property of 

sparseness of neural activity.

The three brain properties allow us to make five conclusions regarding neural activities in 

each voxel: 1) Some neurons may increase firing while others decrease firing 

simultaneously (i.e., balanced E/I) in each voxel at any instant of a resting condition or task 

performance. 2) Intermixed neurons in each voxel may show different timecourses of firing 

(i.e., functional heterogeneity). 3) Most neurons in each voxel do not increase firing at any 

instant (i.e., sparseness of neuronal activity). 4) Different voxels may show different ratios 

of activated (i.e., increased firing) and deactivated (i.e., reduced firing) neurons, because of 

variable E/I ratios in different voxels. 5) The ratio of activated and deactivated neurons (i.e., 
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E/I ratio) in the same voxel may change dynamically during resting or different task 

conditions. These balanced and heterogeneous features of neural activities in each voxel, as 

determined by the three brain properties, have significant implications in relationships 

between neural activity and BOLD signal (i.e., neurovascular coupling) and hemodynamic 

response function (HRF).

3.2. Neurovascular coupling and HRF

Neurovascular coupling is one of the most important issues for properly interpreting fMRI 

data (Logothetis, 2008). It refers to the relationship between BOLD signal and neuronal 

activity, including both spiking and synaptic activity. For assessing neurovascular coupling, 

investigators have performed electrophysiological recording and fMRI of animal brains 

simultaneously, and then analyzed correlations between changes in BOLD signal and single 

and/or multi-unit firing rates and local field potentials (LFPs) (Hillman, 2014; Logothetis et 

al., 2001). Multiple studies found that neuronal activation and deactivation increased and 

decreased BOLD signal, respectively (Devor et al., 2007; Ekstrom, 2010; Goense et al., 

2012; Logothetis, 2008; Shmuel et al., 2006), although non-neural factors such as astrocytes 

and local vascular features might also affect BOLD signal (Ekstrom, 2010; Hillman, 2014; 

Howarth, 2014). However, findings on the exact relationships between BOLD signal and 

other measures of neural activity were not fully consistent among different studies (Boynton, 

2011; Nir et al., 2008; Renvall et al., 2014). Some studies found that neuron firing rates 

correlated with BOLD signal (Boynton, 2011; Nir et al., 2008), while others found that LFP 

but not firing rates correlated with BOLD signal and therefore proposed that BOLD signal 

reflected synaptic activities instead of neuron spiking (Logothetis, 2002; Logothetis et al., 

2001; Viswanathan and Freeman, 2007).

There are 25,000 to 30,000 neurons/mm3 in the cortex (Roth and Dicke, 2012), and each 

voxel may have more than ten thousand neurons, even for high-resolution fMRI of an 

animal brain (e.g., ∼500 μm in each dimension). The three above-mentioned brain 

properties allow us to make two predictions regarding neurovascular coupling, if, as 

reported in multiple studies (Devor et al., 2007; Ekstrom, 2010; Goense et al., 2012; 

Logothetis, 2008; Shmuel et al., 2006), neuronal activation and deactivation indeed cause 

increases and decreases, respectively, in BOLD signal. First, different neurons in the same 

voxel will show different correlations between their firing rates and BOLD signal and thus 

different neurovascular coupling, e.g., some may show positive while others show negative 

correlations due to balanced E/I and functional heterogeneity. Second, neurovascular 

coupling may vary across voxels due to different E/I ratios in different voxels, and in the 

same voxels at different instants due to different E/I ratios during different tasks. These two 

predictions are supported by findings of variable neurovascular coupling from several 

animal studies (Amit and Romani, 2007; Bartolo et al., 2011; Boorman et al., 2010; 

Boynton, 2011; Ekstrom, 2010; Maier et al., 2008).

In one study, awake monkeys showed consistent changes in BOLD signal and neural 

activity (e.g., increases in both) in the V1 cortex during regular visual stimulation, but 

different changes in the two measures (i.e., reduced BOLD signal but not neural firing) 

during perception suppression (Maier et al., 2008). In another study, relative to visual single-
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grating stimulation, plaid pattern stimulation increased BOLD signal and the firing rates of 

some V1 neurons in awake monkeys but simultaneously decreased firing of other neurons, 

probably due to visual cross-orientation inhibition (Bartolo et al., 2011). In a third study, 

Boorman et al (2010) recorded neuron and BOLD responses in the rat barrel cortex to 

electrical stimulation of the contralateral whisker pad. Their findings indicate that more 

neurons are activated than deactivated in regions showing increases in BOLD signal and 

more neurons deactivated than activated in regions showing decreases in BOLD signal 

(Boorman et al., 2010). Therefore, balanced E/I and functional heterogeneity in the brain 

probably contribute to the different findings in neurovascular coupling from different 

studies. Based on these two brain properties, we propose that it is probably not a valid 

approach to assess neurovascular coupling by correlating changes in BOLD signal and 

single or multi-unit firing rates from the same voxel without considering the E/I ratio across 

the entire neuron population in the voxel, and that the previous conclusion that spiking does 

not contribute to BOLD signal is probably not valid (Logothetis, 2002; Logothetis et al., 

2001), because these studies have not assessed the E/I ratio among different neurons.

Since the delay, shape, and amplitude of the HRF are dependent on neurovascular coupling, 

the above-discussed location and task dependent neurovascular coupling predicts that the 

HRF is probably variable among different voxels and in the same voxel during different 

tasks. This variability has been reported and discussed by several studies (Buxton, 2012; 

Handwerker et al., 2012; Handwerker et al., 2004). Therefore, we propose that balanced E/I 

and functional heterogeneity in the brain contribute to the location and task dependent 

variability of the HRF, in addition to other factors, such as local vascular features, discussed 

in previous studies (Handwerker et al., 2012). The variable neurovascular coupling and the 

HRF complicate the interpretation of BOLD signal changes.

3.3. Task-related changes in BOLD signal

As discussed above, both activation and deactivation are highly likely to exist concurrently 

in each voxel during either resting or task conditions, and this concurrent co-localized 

activation and deactivation (CCAD) complicates neurovascular coupling and the HRF. 

BOLD signals related to opposite changes in neural activities in the same voxel may cancel 

each other, and therefore BOLD signal changes from each voxel probably reflect changes in 

difference (or ratio) between CCAD, not in activation or deactivation alone (Fig. 1). A voxel 

may not show any BOLD signal change if its difference in CCAD does not change, even 

though individual neurons may change activity significantly. It may express a greater BOLD 

signal if its neuron population reduces total deactivation without an increase in total 

activation. Fig. 1 shows predicted potential relationships between BOLD signal and CCAD 

from a voxel in four (i.e., S1-4) of many possible scenarios. To support our point, we 

purposely selected scenarios of smaller activation and deactivation in task condition B (i.e., 

TB) relative to A (i.e., TA). However, TB may exhibit a smaller, greater, or equal positive 

BOLD signal as depicted in S1, S2, and S3, respectively, and a smaller negative BOLD 

signal in S4, relative to TA. Fig. 1 clearly demonstrates that BOLD signal changes depend 

not only on activation but also on deactivation, and that a greater BOLD signal is not always 

due to a greater activation, but may be due to a smaller deactivation (e.g., Fig.1 S2). 

Therefore, increases or decreases in BOLD signal at one task condition relative to another 
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condition do not reliably indicate a greater activation or smaller deactivation at either task 

condition.

4. An approach for addressing these brain properties

4.1. General-linear-model-based-analysis (GLM-BA)

FMRI studies traditionally employ a univariate analysis, i.e., general-linear-model-based-

analysis (GLM-BA). It treats the BOLD signal mixture related to different neuronal 

activities (e.g., CCAD) from each voxel as an independent measure, and does not separate 

this BOLD signal mixture into different components (Logothetis, 2008; Serences and 

Saproo, 2012; Xu et al., 2013a). Therefore, GLM-BA is blind to balanced E/I and functional 

heterogeneity within a voxel. It may incorrectly report a greater brain activation in TB 

relative to TA of Fig. 1, when it detects a greater BOLD signal in TB, even though TB may 

actually have a smaller activation and deactivation, as depicted in Fig.1 S2. Therefore, 

GLM-BA has a limited specificity, which may lead to misinterpretation of reduced 

deactivation as increased activation. Furthermore, GLM-BA may show no difference in 

BOLD signal changes between TA and TB even though TB may actually have a smaller 

activation and deactivation than TA, as depicted in Fig. 1 S3. Therefore, GLM-BA has a 

limited sensitivity in detecting task-related changes in neuronal activity, and fMRI studies 

using GLM-BA may underestimate task-related changes in neural activity between task 

conditions and generate false negative results (Logothetis, 2008; Serences and Saproo, 2012; 

Xu et al., 2013a). The limited specificity and sensitivity of GLM-BA may contribute to the 

inconsistent data mentioned earlier. Therefore, analytical methods capable of separating a 

BOLD signal mixture related to CCAD in a voxel are desirable because they may have a 

greater sensitivity and specificity than GLM-BA in analyzing a BOLD time series. In this 

regard, several recent studies used at least three different methods for assessing concurrent 

co-localized BOLD signals during either a resting condition or task performance (Braga et 

al., 2013; Xu et al., 2013b; Yan et al., 2011; Yeo et al., 2013). One study used Connected 

Iterative Scan (CIS), a graph-theoretic clustering algorithm originally developed for 

analyzing community overlaps in inter-personal social networks, and reported an overlap of 

DMN and task-positive network during a resting condition (Yan et al., 2011). Another study 

used Latent Dirichlet Allocation (LDA), originally developed for text mining, and reported 

overlaps of multiple functional networks (FNs) during a resting condition (Yeo et al., 2013). 

Several other studies used a method called spatial independent component analysis (sICA). 

We will focus on sICA in the following text, because it is a more popular approach for 

assessing brain FNs in fMRI studies relative to the first two methods, and multiple recent 

fMRI studies have used sICA to separate BOLD signal mixtures from the same voxels and 

consistently reported extensive overlaps of FNs.

4.2. Spatial independent component analysis (sICA)

Independent component analysis (ICA) was originally developed for extracting hidden, 

unknown source signals from observed signal mixtures using higher-order statistics 

(Beckmann, 2012; Calhoun and Adali, 2012; Calhoun et al., 2009; Comon, 1994; McKeown 

et al., 1998b). In fMRI, sICA assumes that the BOLD signal from each voxel represents a 

linear mixture of source signals and separates it into spatially independent components (ICs) 
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(Calhoun and Adali, 2012; Calhoun et al., 2002; Calhoun et al., 2009; McKeown et al., 

1998a; McKeown et al., 1998b; McKeown and Sejnowski, 1998). In one of its earliest 

applications in fMRI, sICA separated the BOLD signal from one voxel into as many as six 

ICs (McKeown et al., 1998b). This unique capacity has been used to separate artifacts from 

signals in order to de-noise fMRI data (Aron and Poldrack, 2006; Beckmann, 2012; Brooks 

et al., 2013; Griffanti et al., 2014; Tohka et al., 2008; Yakunina et al., 2013). Over the last 

15 years, sICA has arguably become one of the two most popular methods (along with seed-

based approaches) for studying FNs, because it groups all voxels with synchronized source 

signals into one FN (Beckmann, 2012; Calhoun and Adali, 2012; Calhoun et al., 2009; 

Comon, 1994; McKeown et al., 1998b). Some studies describe spatial overlap of two or 

more FNs, indicating that sICA splits the BOLD signal from each voxel within overlapping 

regions into two or more FNs (Calhoun et al., 2008; Domagalik et al., 2012; Kim et al., 

2009a; Kim et al., 2009b; Menz et al., 2009; St Jacques et al., 2011; van Wageningen et al., 

2009; Wu et al., 2009; Zhang and Li, 2012). Very recently, we and three other groups have 

used sICA to systematically assess FN overlaps (Beldzik et al., 2013; Braga et al., 2013; 

Geranmayeh et al., 2014; Leech et al., 2012; Xu et al., 2014a; Xu et al., 2013a; Xu et al., 

2013b; Yeo et al., 2013), and have consistently demonstrated: 1) that FNs often overlap with 

each other extensively, 2) that overlapping FNs may show concurrent but opposite task-

related modulation (e.g., activation vs. deactivation), and 3) that the overlapping opposite 

modulations revealed by sICA may cancel each other and not show any modulation in 

GLM-BA. We have proposed that overlapping FNs with opposite time courses probably 

reflect CCAD existing in each voxel as stipulated by balanced E/I and functional 

heterogeneity in the brain.

4.3. Novel features of brain functional organization revealed by sICA

SICA may have a better specificity and sensitivity than GLM-BA and show novel feature of 

brain functional organization not revealed by GLM-BA such as extensive overlaps of FNs 

with opposite timecourses of task-related activities (Beldzik et al., 2013; Costumero et al., 

2014; Domagalik et al., 2012; Xu et al., 2014b; Xu et al., 2015), due to its unique capacity of 

separating intermixed signals. In one of our recent studies, a GLM-BA revealed task-related 

increases, decreases, and no-changes in BOLD signal in separate brain regions. These 

findings are consistent with data from most fMRI studies that used GLM-BA of separated 

brain regions showing task-positive, negative, or absence of changes in activity. However, 

sICA revealed extensive overlaps of FNs showing task-related increases (i.e., task-positive 

FNs), decreases (i.e., task-negative FNs), and absence of changes (i.e., task-neutral FNs) in 

activity. Although the task-positive FNs covered most or all brain regions during highly 

demanding or complex cognitive tasks, so did the task-negative FNs and task-neutral FNs 

(Xu et al., 2015). Therefore, these FNs showed different task-related concurrent 

modulations, overlapped with each other, and covered almost the same brain regions, instead 

of being segregated among brain regions as revealed by the GLM-BA. These findings of 

sICA are consistent with the evidence that neurons showing task-related activation, 

deactivation, or no change in activation are intermixed with each other in the same brain 

regions (Bell et al., 2011; Borra et al., 2010; Fuster, 2009). They are also consistent with the 

three brain properties discussed above: balanced E/I, functional heterogeneity, and 

sparseness of neuronal activity. Therefore, findings from sICA and GLM-BA present a 

Xu Page 8

Neurosci Biobehav Rev. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different framework of brain functional organization, i.e., overlapped and extensively 

distributed vs. segregated and restricted functional activities with different timecourses. The 

novel framework revealed by sICA should be further investigated.

The potentially greater sensitivity and specificity of sICA relative to GLM-BA may provide 

a novel opportunity for reconciliation of inconsistent findings of previous fMRI studies 

using GLM-BA, including the example presented at the beginning of this review. The 

property of balanced E/I in the brain predicts that anti-correlated FNs should always exist in 

the same and/or different brain regions. This notion is supported by the sICA finding of 

overlapping FNs with opposite timecourses. However, BOLD signals from different voxels 

do not have to show anti-correlations because they represent mixtures of different source 

signals including anti-correlated signals. Therefore some studies using GLM-BA may show 

anti-correlations between BOLD signals while some other studies may not. The novel 

findings from sICA along with the balanced E/I in the brain indicate to us that the opposite 

modulations of task-related timecourses of FNs in the same and/or different brain regions 

(e.g., the medial vs. lateral prefrontal cortex) may reflect balanced E/I among different FNs 

as discussed in a recent publication (Leech et al., 2014). Therefore, balanced E/I exists not 

only at the level of neurons and microcircuits, as revealed by electrophysiological studies, 

but also at the level of large-scale networks of the whole brain.

Conclusion

Balanced E/I, functional heterogeneity, and sparseness of neuronal activity are basic brain 

properties. They complicate neurovascular coupling and the HRF and the interpretation of 

task-related changes in BOLD signal. Thus, they probably contribute to inconsistent findings 

in fMRI studies using GLM-BA. Therefore, to understand brain functional organization, it is 

probably not adequate to use GLM-BA alone in fMRI studies. SICA has been used in fMRI 

studies for more than 15 years mainly due to its data-driven and model-free features. These 

studies usually do not describe FN overlaps and do not explicitly assess concurrent co-

localized source signals from the same voxels. The recent sICA findings of overlapping FNs 

with different timecourses demonstrated the potential capacity of sICA for separating mixed 

signals in the same voxels, for reconciling extant conflicting fMRI findings, and for 

revealing novel features of brain functional organization. We strongly recommend that sICA 

or any other methods capable of separating signal mixtures should be regularly employed in 

addition to GLM-BA for more completely extracting information embedded in fMRI data.
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Highlights

1. The cortex is heterogeneous in function and maintains a balance of excitation 

and inhibition.

2. These properties indicate concurrent neuron activation and deactivation in the 

same voxels.

3. Either increased neuron activation or reduced deactivation may increase BOLD 

signal.

4. Traditional fMRI analysis may misinterpret reduced deactivation as increased 

activation.

5. Independent component analysis may reconcile conflicting findings of 

traditional analysis.
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Fig. 1. 
Potential relationships between BOLD signal and neuronal activity in a voxel. Solid and 

dashed columns represent total activation (A) and deactivation (D), respectively, in a voxel 

in task condition A (TA, black) and B (TB, gray), in arbitrary units. BOLD signal sizes 

depend on differences between A and D, not A or D alone. S1-4 shows four possible 

scenarios. While TB shows a smaller activation and deactivation than TA in each scenario, it 

does not always show a smaller BOLD signal.
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