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Abstract

Objectives—The treatment goal in congenital adrenal hyperplasia (CAH) is to replace 

glucocorticoids while avoiding androgen excess and iatrogenic Cushing’s syndrome. However, 

there is no consensus on how to monitor disease control. Our main objectives were to evaluate 

hormonal circadian rhythms and use these profiles to identify optimal monitoring times and novel 

disease biomarkers in CAH adults on intermediate- and long-acting glucocorticoids.

Design—This was an observational, cross-sectional study at the National Institutes of Health 

Clinical Center in 16 patients with classic CAH.

Methods—Twenty-four hour serum sampling for corticotropin (ACTH), 17-

hydroxyprogesterone (17OHP), androstenedione (A4), androsterone, dehydroepiandrosterone 

(DHEA), testosterone, progesterone and 24-hour urinary pdiol and 5β-pdiol was carried out. 

Bayesian spectral analysis and cosinor analysis were performed to detect circadian rhythmicity. 

The number of hours to minimal (TminAC) and maximal (TmaxAC) adrenocortical hormone levels 

after dose administration were calculated.

Results—A significant rhythm was confirmed for ACTH (r2 0.95;P<0.001), 17OHP (r2 0.70; 

P=0.003), androstenedione (r2 0.47;P=0.043), androsterone (r2 0.80;P<0.001), testosterone (r2 

0.47;P=0.042) and progesterone (r2 0.64;P=0.006). The mean (SD) TminAC and TmaxAC for 

17OHP and A4 were: morning prednisone [4.3(2.3) and 9.7(3.5) hours], evening prednisone 
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[4.5(2.0) and 10.3(2.4) hours], and daily dexamethasone [9.2(3.5) and 16.4(7.2) hours]. AUC0-24hr 

progesterone, androsterone and 24-hour urine pdiol were significantly related to 17OHP.

Conclusion—In CAH patients adrenal androgens exhibit circadian rhythms influenced by 

glucocorticoid replacement. Measurement of adrenocortical hormones and interpretation of results 

should take into account the type of glucocorticoid and time of dose administration. Progesterone 

and backdoor metabolites may provide alternative disease biomarkers.

Keywords

circadian rhythms; CAH; 17-hydroxyprogesterone; androstenedione; corticotropin; progesterone; 
androsterone

Introduction

Congenital adrenal hyperplasia is an autosomal recessive condition which in 95% of patients 

is caused by 21-hydroxylase deficiency, an enzyme of the cytochrome P450 family essential 

for cortisol and aldosterone biosynthesis 1. This enzyme defect results in cortisol deficiency, 

which by impaired negative feedback on the hypothalamic-pituitary-adrenal axis, stimulates 

ACTH synthesis. ACTH secretion is regulated by circadian input from the central clock in 

the suprachiasmatic nucleus and follows a circadian pattern with an early morning rise, 

reaching a peak in the morning on waking, and slowly declining towards an evening nadir 2. 

In untreated or most treated CAH patients this rhythm is maintained and adrenal androgens, 

which are also under the influence of ACTH, are released in a circadian pattern resulting in 

hyperandrogenism and its clinical consequences 3–5.

Patients with CAH suffer from multiple morbidities related to excess androgens or 

glucocorticoid over-replacement. Thus, the challenge for the endocrinologist is to achieve a 

balance between these two undesirable states. Endocrine Society guidelines have 

recommended the use of hydrocortisone in children whereas up to two-thirds of adults are 

commonly receiving intermediate and long-acting glucocorticoids 1, 6. A number of 

strategies have been suggested to help guide dose titration, such as measuring 17-

hydroxyprogesterone (17OHP) and androstenedione before the early morning 

hydrocortisone dose in an attempt to measure peak hormone levels 7, 8. No definite criteria 

exist as to what time in relation to dose administration this should be performed in patients 

on intermediate- and long-acting glucocorticoids. Synthetic glucocorticoids have diverse 

pharmacokinetic characteristics with wide inter-individual variability and unpredictable 

effects on rhythm parameters and hormone concentrations 9, 10, making it problematic for 

physicians to decide on dose changes when measuring random hormone levels.

We measured hormonal circadian rhythms of CAH patients on intermediate- and long-acting 

glucocorticoids. In addition to routinely measured hormones we analyzed profiles of 

progesterone, dehydroepiandrosterone (DHEA), the precursor to pregnanetriol, 5β-

pregnane-3α, 17α-diol-20-one (5β-pdiol), and the backdoor pathway metabolites 

androsterone (also a classic pathway product) and 5α-pregnane-3α, 17α-diol-20-one 

(pdiol) 11 (Figure 1). The use of multiple hormone levels at different time points provided us 

with a robust measurement of 24-hour hormone exposure as opposed to a single random 
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hormone concentration as usually performed in clinical care. Our goal was to evaluate 

hormonal diurnal rhythms in patients with CAH, which then allowed us to determine 

optimal monitoring time ranges for identifying hormonal suppression and escape from 

hormonal control, and explore novel disease biomarkers.

Patients and Methods

Study Patients

An observational, cross sectional study was carried out at the National Institutes of Health 

Clinical Center, Bethesda, MD. Sixteen patients with classic 21-hydroxylase deficiency (5 

simple virilizing; 11 salt wasting) participated. This 24-hour serial sampling study was 

performed as part of the baseline visit of two clinical trials investigating the use of circadian 

hydrocortisone replacement (www.clinicaltrials.gov identifier no. NCT01735617 and 

NCT01859312) and patients were receiving their usual at home medication regimen. The 

diagnosis of CAH was ascertained using medical records and hormonal tests and confirmed 

by genotype 12. Five patients were on a daily dexamethasone dose (dose range: 0.25mg – 

0.5mg, in hydrocortisone equivalent (x 80)7 9.6 – 21.3mg/m2/day). Four of these patients 

were taking dexamethasone in the evening whereas one patient was taking dexamethasone 

in the morning. Eleven patients were on twice daily prednisone (dose range: 2mg to 7.5mg 

(am), 2mg to 5mg (pm) in hydrocortisone equivalent (x 5)7: 12.0mg/m2/day – 33.7mg/m2/

day. All patients were on a stable glucocorticoid regimen for a three month minimum. Other 

inclusion criteria included age 18 years and over, plasma renin activity less than 1.5 times 

the upper normal range and a negative pregnancy test. Patients who were taking medications 

that induce hepatic enzymes or interfere with glucocorticoid metabolism, spironolactone, 

inhaled, oral or nasal glucocorticoids apart from treatment for CAH, or had taken estrogen-

containing oral contraceptive pill within 6 weeks of recruitment were excluded. Patients 

with clinical or biochemical evidence of hepatic, renal or psychiatric disease, were also 

excluded. The study was approved by the Eunice Kennedy Shriver National Institutes of 

Child Health and Development (NICHD) Institutional Review Board and all patients gave 

their written informed consent.

Study Design

All participants were admitted overnight and blood was sampled from an intravenous 

cannula every two hours (23:00h until 23:00h). Patients continued to take their usual 

medications during sampling. The following hormones were measured: ACTH, 

androstenedione, 17OHP, androsterone, DHEA, testosterone and progesterone. 

Glucocorticoid levels (dexamethasone, prednisolone) were also measured. In addition, a 24-

hour urine sample, timed from 23:00h on Day 1 to 23:00h on Day 2, was collected to 

measure the backdoor metabolite pdiol and the precursor to pregnanetriol, 5β-pdiol (Figure 

1).

Assays

Hormones were analyzed at the NIH Clinical Center (Bethesda, MD, USA) unless otherwise 

noted. Androstenedione, 17OHP, androsterone, DHEA, testosterone and progesterone were 

measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) 13, 14. Within-
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day CVs ranged from 2.4–9.5% and between-day CVs from 3.0–9.9%. An Agilent 6490 

triple-quadrupole mass spectrometer coupled with an Atmospheric Pressure Photoionization 

(APPI) source and Agilent 1200 Infinity series HPLC were used employing isotope dilution 

with deuterium labeled internal standard for each analyte. Instrument parameters were as 

follows: gas temperature 325°C, vaporizer 400°C, gas flow of 11 L/min, nebulizer 60psi, 

and capillary 4000V.

Urinary pdiol and 5β-pdiol were determined by LC-ESI-MS/MS (NICHD Biomedical Mass 

Spectrometry Facility, Bethesda, MD). Briefly, 1 mL aliquots of urine were treated with β-

glucuronidase (Type VII-A, Sigma), followed by addition of an internal standard (13C(3) 17-

hydroxyprogesterone). Steroids were then isolated by solid-phase weak anion exchange 

using DPX-WAX tips (DPX-Labs), eluted with isopropanol/5% ammonium hydroxide, and 

dried by vacuum centrifugation. The dried samples were dissolved in 0.2 mL 

isopropanol:water (1:1) (v/v) and analyzed by LC/MS/MS, using an Agilent 6460 QQQ 

mass spectrometer. Steroids were separated by reversed phase chromatography using an 

Acquity UPLC BEH C18 (2.1 I.D. × 150 mm) column, and eluted with a linear gradient 

from 100% A (water/0.1% formic acid) to 30% B (isopropanol/0.1% formic acid). Pdiol and 

5β-pdiol concentrations were determined by an MRM assay. The precursor ion [MH – 

2(H2O)]+ (m/z 299) was selected and product ions 161, 147, 135 were followed. 

Concentrations were determined from peak ratios of the pdiol or 5β-pdiol to the internal 

standard and standard curves generated by the addition of steroid standards to a stripped 

urine matrix. A linear response was obtained for levels up to 1500 pmol/mL (correlation 

coefficient > 0.997). Sensitivity was approximately 1 pmol/mL for either pdiol or 5β-pdiol 

and between-day CVs were from 4–12%. The minimum concentration of pdiol and 5β–pdiol 

for CAH pati ents was 3 and 20 pmol/mL respectively (median pdiol = 230 pmol/mL and 

5β–pdiol = 1,600 pmol/mL). Total urinary excretion of pdiol and 5β-pdiol per 24 hr was 

calculated from steroid concentration and the 24 hr urine volume for each patient.

Plasma ACTH was measured using a chemiluminescence immunoassay on Siemens 

Immulite 2000 XPi analyzer (NIH Clinical Center) with sensitivity of 1.1 pmol/L, and intra- 

and inter-assay CVs 2.5% and 3.6% respectively. Dexamethasone and prednisolone were 

analyzed by LC-MS/MS (Mayo Medical Laboratories, Rochester, MN) with a sensitivity of 

2.5nmol/L and 2.8nmol/L, respectively. For prednisolone and dexamethasone intra-assay 

CV were 4.9% and 6.1% at 33 and 31nmol/l, respectively whereas inter-assay CV were 

8.6% and 9.3% at 324nmol/l and 8nmol/l. The following conversion values for normal 

ranges were used: ACTH (1.1 – 10.1pmol/L; pg/mL *0.22); 17OHP (0.4 – 5.3nmol/L; ng/

dL*0.0303 ); Androstenedione (0.6 – 6.1nmol/L; ng/dL*0.0349); Androsterone (0.7 – 

2.8nmol/L; ng/dL*0.0349); DHEA (0.8 – 20.8nmol/L; ng/dL*0.0347); Testosterone male 

(3.5 – 25.7nmol/L; ng/dL*0.0347); Testosterone female (0.3 – 2.5nmol/L; ng/dL*0.0347 ); 

Progesterone male (0.03 – 0.2nmol/L; ng/mL*3.18 ); Progesterone female (0.03 – 

64nmol/L; ng/mL*3.18).

Statistical Analyses

Descriptive analyses were performed using SPSS Version 19 (Chicago, IL) and Microsoft 

Excel 2010 (Redmond, WA). Baseline variables are presented as median and interquartile 
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(IQR) ranges as in the majority a normal distribution was not present. Correlation analysis 

was carried out using Spearman’s rho and differences between groups were assessed using 

the non-parametric Mann Whitney test. Linear regression analysis was performed to assess 

the relationship between classic and backdoor pathway metabolites.

Hormonal profiles were analyzed to detect the presence of circadian rhythms using Matlab 

Version 8.2 (Mathworks, Natick, MA). We initially took an exploratory approach, using 

Bayesian spectral analysis 15, 16 and, by assuming a harmonic relationship between 

frequency components, examined the data for evidence of a circadian fundamental 

frequency and the presence of individual components; this allowed us to detect a circadian 

rhythm, and estimate the period and number of harmonics. Hormonal data was log-

transformed due to the lack of normality. A cosine curve (cosinor model), a mathematical-

statistical regression technique used in chronobiological analyses of circadian rhythms 17, 

was then fitted to the averaged log-converted (ln) 24-hour data for each hormone found to 

have a circadian rhythm. By fitting in a cosinor model we were able to both confirm 

statistical significance of the rhythm and derive r2, the percentage of the variance that can be 

explained by the model17, 18. By using a p-value of statistical significance one rejects or 

accepts the hypothesis that the amplitude is zero and a significant p-value ascertains a 

significant rhythm is present.

To demonstrate circadian changes we also designed concentration-time profiles for each 

hormone for patients on either dexamethasone or prednisone using geometric mean (SEM) 

at each time point. We then measured 8-hour and 24-hour hormonal exposure which we 

defined by a PK approach ( WinNonlin Professional V5.2.1 software Certara, Princeton, NJ, 

USA). The parameters included geometric mean (10th – 90th percentiles) 8-hourly/24-hourly 

AUC (23:00h – 07:00h; 07:00h – 15:00h; 15:00h – 23:00h, 23:00h – 23:00h). To reduce 

heterogeneity, one patient receiving morning dexamethasone was evaluated separately. 

Two-tailed tests were performed and P-value < 0.05 was considered statistically significant.

Defining hormonal monitoring times

Circadian hormonal profiles provided robust measurements to help define optimal 

monitoring time ranges dependent on type and time of glucocorticoid administration. Two 

time parameters were used: 1) TminAC, the number of hours from dose administration to the 

lowest adrenocortical (AC) hormone level; 2) TmaxAC, the number of hours from dose 

administration to the maximal AC hormone level reached after the hormone escaped control. 

In some patients in whom hormone levels were above target ranges prior to dose 

administration and remained above these defined ranges after dosing, that is control was not 

achieved, TmaxAC was taken as the maximal concentration subsequent to a drop in hormone 

levels post dose administration. For individual variables, hormonal control was defined as: 

ACTH 1.1–15.2pmol/L(1.5 the upper limit of normal range), 17OHP 1.5–36nmol/L 7, 19 and 

normal range for androstenedione 0.6–6.1nmol/L, androsterone 0.7–2.8nmol/L, DHEA 0.8–

20.8nmol/L, testosterone (males 3.5–25.7nmol/L, females 0.3–2.5nmol/L) and progesterone 

(males 0.03–0.2nmol/L, females 0.03–64nmol/L). Overall disease control was based on 

androstenedione being within the normal range. Hormonal concentrations for routinely 

measured hormones at TminAC and TmaxAC were recorded.
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Results

Sixteen adult patients (6 women) with classic CAH participated, with median (IQR) age 23 

(20 – 42) years, weight 70.9 (57.5 – 95.4) kg and BMI 25.9 (22.5 – 32.5) kg/m2. Based on 

early morning 07:00h androstenedione, 8 (50%) patients were in poor disease control 29 

(SD 28)nmol/L. In males n=3, the androstenedione concentration was 42 (SD 37)nmol/L 

whilst in females n=5, this was 21 (SD 21)nmol/L. Eight patients had acceptable adrenal 

hormone levels 4 (SD 2)nmol/LIn males n=7, the androstenedione concentration was 4 (SD 

2)nmol/L whilst in females n=1, this was 4nmol/L. Based on 17:00h levels 10 (62.5%) 

patients had elevated androstenedione [17 (SD 12)nmol/L; males n=4, 19 (SD 9)nmol/L; 

females n=6, 16 (SD 14)nmol/L] (Supplementary Table 1). Eleven patients were on 

prednisone twice daily at median (10th – 90th percentiles) 08:00h (07:00h – 10:00h) and 

21:00h (19:00h – 23:00h) whereas four patients were taking dexamethasone in the evening 

at a median (10th – 90th percentiles) time of 22:00h (21:18h – 22:42h). One patient taking 

dexamethasone 0.375mg in the morning at 08:00h had normal hormonal control throughout 

most of the 24 hours.

Circadian rhythm analysis

All hormones except DHEA displayed evidence of circadian rhythm with remarkable 

consistency given the small sample size and inter-individual variation (Supplementary Table 

1). A cosinor model, fitted to the averaged 24-hour data of all patients, resulted in a 

significant sinusoidal curve for ACTH (r2 0.95; P<0.001) (2 harmonics) and 17OHP (r2 

0.70; P=0.003), androstenedione (r2 0.47; P=0.043), androsterone (r2 0.80; P<0.001), 

testosterone (r2 0.47; P=0.042) and progesterone (r2 0.64; P=0.006) (all one harmonic). The 

presence of a rhythm was not related to gender or type of glucocorticoid. To support these 

findings 8-hourly hormonal AUCs indicate higher hormonal exposure in the morning and 

early afternoon with decreasing levels thereafter (Table 1). Androsterone showed higher 

17:00h than 07:00h levels (IQR) (Supplementary Table 1) suggesting an inverted rhythm but 

this was not confirmed when estimating 8 hourly AUCs (Table 1). Concentration-time 

profiles for all hormones revealed variable hormonal responses to drug levels (Figure 2).

Establishing hormonal monitoring times

For patients on prednisone, the time to the lowest and peak hormone concentrations 

following morning and evening doses were remarkably similar across the majority of 

adrenocortical hormones (Table 2). Maximal levels occurred approximately 10 hours 

following dose, while the lowest values occurred approximately 4 to 5 hours following dose. 

Time for measurement of peak 17OHP and androstenedione, the typical biomarkers of 

disease control, best corresponded to [mean (SD) TmaxAC 9.7 (3.5) hours] after the morning 

dose and [mean (SD) TmaxAC 10.3 (2.4) hours] for the evening dose, whereas monitoring 

for hormonal suppression corresponded to [mean (SD) TminAC 4.3 (2.3) hours] for the 

morning dose and [mean (SD) TminAC 4.5 (2.0) hours] for the evening dose. In support of 

these findings, these time-points correlated (P<0.001) with pre and post 8-hourly AUCs 

(data not shown). In a sub-analysis exploring whether TmaxAC and TminAC in patients on 

prednisone varied in the different sexes these were in general similar with no significant 

differences (Supplementary Table 2).
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The time to lowest hormone concentrations and time to peak levels varied across the 

different adrenocortical hormones with once daily dexamethasone (Table 3). Time for 

measurement of 17OHP and androstenedione best corresponded to [mean (SD) TminAC 9.2 

(3.5) hours] and [mean (SD) TmaxAC 16.4 (7.2) hours] for dexamethasone.

Hormonal concentrations at these time points (TminAC vs TmaxAC) show significant 

differences for 17OHP (median 6.4 vs 67.6nmol/L; P=0.005), and androstenedione (median 

4.6 vs 9.5nmol/L; P=0.046) and no difference for testosterone (males median 9.3 vs 

11.8nmol/L; P=0.31; females median 1.3 vs 1.8nmol/L; P=0.15).

Exploring hormonal inter-relationships to identify novel disease biomarkers

One of the hormones that was analyzed in our study and is not routinely measured was 

progesterone. AUC(0-24hr) Progesterone significantly correlated with ACTH and 17OHP in 

both males and females, whereas in males these relationships were stronger and 

progesterone was also associated with androstenedione (Table 4, Supplementary Figure 1). 

Progesterone AUC0-24hr significantly correlated with backdoor metabolites (pdiol: females, 

rho=0.83, P=0.042; males, rho=0.87, P=0.002; serum androsterone AUC0-24hr: females, 

rho=1.0, P=0.01; males, rho=0.714, P=0.047). DHEA showed no relationship with ACTH, 

17OHP, androstenedione or any of the measured backdoor metabolites. 47% of patients had 

undetectable DHEA levels throughout the 24 hours.

Twenty-four hour urine pdiol, a backdoor pathway metabolite, serum androsterone, a 

product of both classic and backdoor pathways, and 5β-pdiol, a precursor of pregnanetriol, 

were significantly correlated with ACTH, 17OHP and androstenedione (Figure 3a, Table 4). 

Twenty-four hour urine pdiol (Median: 1848 vs 150nmol /24 hrs; P=0.004), 5β-pdiol 

(Median: 20481 vs 2643nmol /24hrs; P=0.011) and androsterone AUC0-24hr (Median: 229 

vs 75nmol/L; P=0.039) were significantly higher in patients with poor disease control 

(Figure 3b). Pdiol positively predicted androstenedione (unstandardized coefficient B=0.45 

95%CI 0.22 – 0.68; P=0.001) and 17OHP (unstandardized coefficient B=0.89 95%CI 0.63 – 

1.15; P<0.001) by linear regression.

Discussion

Our comprehensive hormonal analysis of adult patients with CAH reveals intact diurnal 

rhythms of multiple hormones and fluctuating androgen excess throughout the day that may 

not be detected with routine random single hormonal measurements. The androgen excess 

commonly experienced by patients with CAH resulted from both the classic and backdoor 

pathways to androgen production, albeit driven by the circadian secretion of ACTH. 

Twenty-four hour serial sampling allowed us to estimate when escape from hormonal 

suppression most commonly occurred and to evaluate this in relation to glucocorticoid 

administration. To our knowledge this is the most detailed study to date evaluating optimal 

monitoring times in patients on intermediate and long-acting glucocorticoids and the only 

study to also include backdoor pathway steroid metabolites.

In our study, detailed pharmacokinetic (PK) modelling revealed that maximal hormone 

levels in patients on morning and evening prednisone occur 10 hours after dose 
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administration and 16 hours following dexamethasone. In addition, lowest levels 

corresponding to maximal suppression occurs around 4 to 5 hours after prednisone and 9 

hours after a daily dexamethasone dose. Significant differences were observed between 

these highest and lowest levels of 17OHP and androstenedione, highlighting the importance 

of the timing of hormonal evaluation. Furthermore, we found that serum progesterone and 

androsterone and 24-hour urinary pdiol and 5β-pdiol correlated well with routinely 

monitored hormones and could be alternative markers of disease control. These findings 

provide insight into the importance of taking into consideration the type of glucocorticoid 

and the time of dose administration when monitoring hormone levels and also suggest that 

in poorly controlled CAH patients, both the classic and backdoor pathways are similarly 

activated.

The management of CAH changes throughout life. Although, the majority of children with 

CAH are treated with short-acting hydrocortisone 1, a significant number of CAH adults are 

treated with longer-acting glucocorticoids such as prednisone, prednisolone or 

dexamethasone 19, 20. These medications are often used for convenience because they can be 

dosed once or twice daily or to optimise compliance. Long- and intermediate-acting 

glucocorticoids have shown better adrenocortical suppression compared to 

hydrocortisone 21, 22, although they may increase risk of metabolic complications such as 

insulin resistance 19 and osteoporosis 23. Our data reveal that androgen suppression may be 

transient even for long- and intermediate-acting glucocorticoids with wide inter-individual 

variability. Prednisone is an inactive synthetic analogue of cortisone, and post-absorption is 

rapidly converted to biologically active prednisolone by hepatic 11-beta hydroxysteroid 

dehydrogenase Type 1. Although it is recognised that the biological half-life of prednisolone 

is approximately 18 – 36 hours 24, and the serum half-life is around 3 to 4 hours 25, 26, the 

biological half-life for corticosterone suppression has been shown to be 6.2 hours 27; 

Similarly, dexamethasone has a biological half-life of 36 – 54 hours 24, a serum half-life of 

around 4 to 5 hours and a biological half-life for corticosterone suppression of 7 hours 27. 

The corticosterone suppression data from Meikle et al 27 could explain why many of our 

patients on prednisone experienced maximal 17OHP and androstenedione within 10 hours 

following dose administration and patients on dexamethasone within 16 hours. 

Dexamethasone concentrations were detected in the circulation for around 10 hours. Our 

data also suggest that some patients receiving once daily dexamethasone could potentially 

benefit from twice daily dexamethasone though this might increase the risk for adverse 

metabolic effects. Other studies investigating monitoring times for hydrocortisone have 

shown a rapid fall in 17OHP levels after the morning hydrocortisone dose and early morning 

laboratory evaluation is generally suggested for patients receiving hydrocortisone 22, 28.

In most untreated patients, 17OHP and sex steroids maintain their circadian rhythms 3 and 

the circadian rhythm of 17OHP has been shown to develop as early as 3 months of age 29. 

Our analysis of 24-hour concentration-time profiles for androstenedione and 17OHP 

indicate that patients on long-acting glucocorticoids maintain hormonal rhythms and exhibit 

wide hormonal fluctuations. Interestingly, irrespective of a low glucocorticoid state, in some 

instances there was a decrease in 17OHP and androgen levels in the evening during the 

quiescent phase; an effect most likely related to circadian regulation of the endogenous 
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timing system by the central clock in the suprachiasmatic nucleus. Thus, hormonal 

disturbances may only be appreciated when measuring multiple hormone samples during the 

day. Unfortunately this type of research based analysis may be too intensive, laborious and 

costly to be carried out as part of daily clinical management. To circumvent this problem we 

attempted to define the most suitable time to measure hormone levels related to poor disease 

control, this dependent on time of dose and glucocorticoid formulation. This may be an 

alternative strategy especially as some clinicians do measure adrenal androgens during other 

times of the day such as late in the afternoon 30. Our opinion is that aiming to measure 

maximal hormone levels is most useful in clinical management, corresponding to evaluation 

in the early morning for night time prednisone, or late afternoon for morning prednisone or 

night time dexamethasone. We also emphasize that hormone levels taken at recommended 

time points should not preclude a full clinical assessment of the patient. Management 

decisions should take all clinical features and biochemical data into consideration.

Comprehensive steroid panels were evaluated. DHEA was mostly suppressed or within 

normal range even when disease was uncontrolled, confirming that DHEA is not a useful 

biomarker in CAH. In addition, DHEA levels did not correlate with any of the other 

measured hormones. Low DHEA has previously been described in patients with classic 

CAH 31, 32. Our data support the notion that DHEA is not solely regulated by ACTH in 

CAH patients, but low levels may be due to abnormal adrenal gland development as patients 

with 21-hydroxylase deficiency have been shown to have lack of zonation with extensive 

intermingling of adrenocortical and adrenomedullary cells 7, 33. Low intra-adrenal cortisol in 

CAH patients also may result in low DHEA production 31, 34.

Conversely progesterone may be useful in the management of CAH. In CAH, an increase in 

ACTH stimulation presumably drives the production of progesterone; this is supported by 

the significant correlation between progesterone and ACTH in our study. Much is unknown 

about progesterone in CAH. However, high progesterone levels could contribute to female 

infertility 35. In a case-control study of 16 women with classic CAH, those patients with a 

low LH pulse amplitude and frequency had higher progesterone levels and worse hormonal 

control than those with LH pulsatility similar to normal controls 36. Further studies 

investigating the relevance of high progesterone in CAH and its impact on fertility are 

needed.

An intriguing alternative pathway to androgen production is the backdoor pathway, which 

produces the most potent androgen, dihydrotestosterone (DHT), without the intermediary 

androstenedione or testosterone. 11, 37. Kamrath et al 11 found that androgen biosynthesis via 

the backdoor pathway is active throughout postnatal life, with possibly less backdoor 

pathway contribution to androgenic steroid production post adrenarche 38. Prior studies 

suggest that backdoor pathway androgen production increases in adults with CAH as control 

of androgen excess deteriorates 39. We mostly found a proportional increase in classic and 

backdoor pathway metabolites in adults as disease control deteriorates, albeit in a small 

sample size. The relationship between clinical features and backdoor pathway metabolites, 

together with the use of these hormones as markers of disease status, requires further 

investigation.
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Limiting factors in our study include the use of different doses of glucocorticoids that were 

administered at different times. Furthermore, a small number of patients were on 

dexamethasone. With regards to identifying minimal hormone levels or more specifically 

the maximal suppression following medication (TminAC), we did not account for the clock-

induced physiological drop in hormones, and this should be considered. In addition TminAC 

after evening prednisone suggests monitoring during very early morning which would be 

impractical in clinical practice though possibly useful to investigators in the research setting.

Our study is unique in that we obtained detailed 24-hour circadian profiles of common and 

uncommon biomarkers of androgen excess in patients with classic CAH allowing us to 

approximate ideal monitoring times post dose administration. Achieving optimal metabolic 

control is difficult in CAH and we found that laboratory evaluation is best performed in 

relation to medication timing. Backdoor pathway metabolites and progesterone are 

alternative biomarkers of disease control and may be useful in the management of CAH 

patients. Future studies should investigate the association between these steroids and clinical 

features of hyperandrogenism. Our findings provide useful information regarding the 

management of the adult patient with CAH and thus may help guide future clinical practice.

Supplementary Material
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Figure 1. Pathway of adrenal steroidogenesis
Normally, the principal route for adrenocortical androgen production is via the classic 

pathway (solid line arrows). In 21-hydroxylase deficiency, large amounts of 17OHP are 

converted to androstenedione via this classic pathway and these are the common biomarkers 

used in CAH to estimate disease control. Accumulating 17OHP can also be converted to 

pdione via an alternative route termed the backdoor pathway (dotted arrows). Androsterone 

is produced by both the classic and backdoor pathways. The end product for both pathways 

is ultimately dihydrotestosterone (DHT), the most potent androgen receptor agonist.
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Figure 2. Serum Hormonal profiles for exogenous glucocorticoids and CAH-related hormones
A) Eleven patients (six males; five females) receiving twice daily prednisone experienced 

hormonal escape mainly in the early morning for ACTH, androstenedione, androsterone and 

progesterone (males). 17OHP levels were higher in the morning but mainly remained within 

the desired range. In some patients a spontaneous reduction in hormone levels occurs before 

the evening dose.

B) Four patients (3 males; one female) receiving nocturnal dexamethasone had escape of 

most hormones including ACTH, 17OHP, androstenedione, androsterone and progesterone 

in the afternoon. Dotted segment of dexamethasone concentration-time profile (between 

13:00h and 21:00h) represents undetectable levels

Geometric mean (SEM) is shown for prednisolone and dexamethasone and all other 

hormones. Horizontal dotted lines indicate normal ranges or optimal hormonal control. Only 

one female was taking dexamethasone.
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Figure 3. 
Figure 3A. Hormonal Inter-Relationships for pdiol, 5β-pdiol and androsterone

Correlations between backdoor pathway 24 hour urine pdiol (i – iii), 5β-pdiol (iv – vi) and 

AUC(0-24hr) androsterone (vii-ix) with major serum biomarkers

Figure 3B. Pdiol, 5β-pdiol and androsterone levels in CAH

Box and whisker plots demonstrate higher concentrations of pdiol, 5β-pdiol and 

androsterone in patients with classic CAH. Significantly higher levels are evident in patients 

with poor control. Poor control defined as 07:00h androstenedione level >6.0nmol/L.
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Table 1

24-Hour and 8-Hourly Hormonal Exposure in patients with Classic CAH on treatment

Geometric mean (10th to 90th 

percentiles)
AUC (24 hours) [23:00 

– 23:00]
AUC (23:00 – 07:00) AUC (07:00 – 15:00) AUC (15:00 – 23:00)

ACTH (pmol/L.hr) 257 (38 – 1227) 45 (8 – 383) 106 (11 – 631) 82 (15 – 417)

17OHP (nmol/L.hr) 633 (19 – 7113) 122 (5 – 2066) 265 (8 – 3784) 199 (5 – 1700)

Androstenedione (nmol/L.hr) 179 (30 – 1081) 51 (11 – 325) 65 (10 – 453) 59 (9 – 303)

Androsterone (nmol/L.hr) 121 (44 – 478) 33 (11 – 130) 43 (13 – 192) 42 (14 – 157)

DHEA (nmol/L.hr) 42 (10 – 730) 13 (3 – 115) 16 (3 – 344) 12 (3 – 301)

Testosterone (males) (nmol/L.hr) 321 (127 – 2037) 109 (23 – 1536) 105 (52 – 248) 90 (36 – 252)

Testosterone (females) (nmol/L.hr) 40 (22 – 131) 12 (6 – 41) 14 (7 – 42) 14 (8 – 47)

Progesterone (males) (nmol/L.hr) 17.0 (1.2 – 543.8) 4.4 (0.3 – 197.2) 6.5 (0.2 – 286.2) 4.3 (0.2 – 184.1)

Progesterone (females) (nmol/L.hr) 58.8 (13.4 – 1329.2) 6.6 (0.2 – 321.2) 23.2 (2.3 – 537.4) 22.2 (6.4 – 470.6)

AUC, area under the curve
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Table 2

Target Monitoring Times Following Twice Daily Prednisone in 11 Patients with Classic CAH

Morning Dose Evening Dose

TminAC (h)1 TmaxAC (h)1 TminAC (h)1 TmaxAC (h)1

ACTH 4.5 (1.3) 11.0 (2.5) 3.2 (1.5) 10.9 (2.0)

17OHP 4.7 (2.4) 9.7 (3.5) 4.9 (1.8) 10.7 (2.0)

Androstenedione 3.8 (2.2) 9.6 (3.6) 4.1 (2.1) 10.0 (2.8)

Androsterone 7.4 (3.1) 10.2 (3.2) 4.2 (2.6) 8.2 (3.5)

DHEA 3.4 (4.1) 12.7 (1.6) 2.5 (3.8) 10.1 (2.2)

Testosterone 6.0 (4.4) 11.5 (2.7) 3.8 (1.3) 11.0 (1.5)

Progesterone 4.0 (1.9) 10.2 (3.3) 4.0 (2.5) 11.2 (2.0)

Prednisone (Dose Range – HC equiv: 12mg/m2/day – 33.7mg/m2/day)

1
Mean (SD)

TminAC, the number of hours from dose administration to minimal adrenocortical (AC) hormone level; TmaxAC, the number of hours from dose 

administration to the maximal AC hormone level
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Table 3

Target Monitoring Times Following Once Daily Dexamethasone in 5 patients with Classic CAH

Once Daily Dose

TminAC (h)1 TmaxAC (h)1

ACTH 5.8 (1.9) 20.2 (4.4)

17OHP 9.4 (1.8) 17.4 (6.5)

Androstenedione 9.0 (4.8) 15.4 (8.4)

Androsterone 6.2 (2.2) 17.4 (8.7)

DHEA 3.4 (2.9) 21.4 (3.6)

Testosterone 3.8 (2.4) 20.6 (7.6)

Progesterone 6.2 (1.9) 11.8 (7.6)

Dexamethasone (Dose Range - HC equiv: 9.6 – 21.3mg/m2/day)

1
Mean (SD)

TminAC, the number of hours from dose administration to minimal adrenocortical (AC) hormone level; TmaxAC, the number of hours from dose 

administration to the maximal AC hormone level
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Table 4

Correlation between routinely measured biomarkers and other classic and backdoor pathway metabolites

Biomarkers ACTH Co-efficient (P-value) 1 17OHP Co-efficient (P-value) 1 Androstenedione Co-efficient (P-value) 1

Serum Steroids

Androsterone2 0.63 (0.02) 0.75 (≤0.01) 0.79 (<0.001)

DHEA −0.09 0.31 0.17

Testosterone – Male −0.60 −0.53 −0.42

Testosterone – Female 0.83 (0.04) 0.71 0.77

Progesterone – Male 0.73 (0.03) 0.98 (<0.001) 0.70 (0.04)

Progesterone – Female 0.89 (0.02) 0.83 (0.04) 0.71

Urinary Steroids

Pdiol 0.62 (≤0.01) 0.85 (<0.001) 0.84 (<0.001)

5β-pdiol 0.68 (≤0.01) 0.88 (<0.001) 0.77 (<0.001)

Correlations based on AUC0-24hr (serum) or 24-hour urine collection.

1
P-values > 0.05 not shown.

2
Androsterone produced by both classic and backdoor pathways
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