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Abstract

Purpose of Review—In 2005, the International Society for Heart and Lung Transplantation 

published a standardized definition of primary graft dysfunction (PGD), facilitating new 

knowledge on this form of acute lung injury that occurs within 72 hours of lung transplantation. 

PGD continues to be associated with significant morbidity and mortality. This review will 

summarize the current literature on the epidemiology of PGD, pathogenesis, risk factors, and 

preventative and treatment strategies.

Recent findings—Since 2011, a number of manuscripts have been published that provide 

insight into the clinical risk factors and pathogenesis of PGD. In addition, several transplant 

centers have explored preventative and treatment strategies for PGD, including use of 

extracorporeal strategies. More recently, results from several trials assessing the role of 

extracorporeal lung perfusion may allow for much-needed expansion of the donor pool, without 

raising PGD rates.

Summary—This review will highlight the current state of the science regarding PGD, focusing 

on recent advances, and set a framework for future preventative and treatment strategies.
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Introduction

Primary graft dysfunction (PGD) after lung transplantation is a significant source of early 

morbidity and mortality.(1-7) We will review recently published literature on the 

epidemiology, pathogenesis, risk factors, prevention, and treatment of PGD.
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Definition

PGD, a form of acute lung injury occurring within 72 hours of lung transplantation, is 

characterized by hypoxemia and alveolar infiltrates in the allograft.(2) Early case reports of 

post-operative allograft dysfunction used different criteria to define the syndrome and 

referred to it by various names.(4, 8-12) In 2005, the International Society for Heart and 

Lung Transplantation (ISHLT) standardized the definition of PGD, permitting consistent 

classification of this clinical syndrome.(2) PGD is now graded based on PaO2/FiO2 (P/F) 

and the presence of bilateral radiographic infiltrates consistent with non-cardiogenic 

pulmonary edema. The definition also requires exclusion of contributing factors, including 

hyperacute rejection, pulmonary venous anastomotic obstruction, cardiogenic edema, and 

pneumonia.(2) The severity of PGD is re-assessed daily up to 72 hours after reperfusion 

(Table 1). Grade 3 PGD (PGD3) corresponds to a P/F of less than 200 with allograft 

infiltrates, on ECMO or ventilated with FiO2 above 0.5 and on iNO. (2)

PGD3 occurring at any time point after reperfusion is associated with greater alteration in 

plasma markers of lung injury and higher 30-day mortality compared to those with lower 

grades.(1) However, even among patients with PGD3, there is variability in the duration of 

pulmonary edema and patient mortality,(13) leading to a belief that separate endotypes may 

be indicative of differences in injury response. In 2015, the ISHLT began a second 

consensus effort to update and refine the PGD definition; therefore, updated criteria should 

be forthcoming addressing issues including timing of PGD onset and resolution, precision of 

the P/F at different levels of FiO2, single versus bilateral transplants, and differences in 

grading fibrotic lung disease patients.

Epidemiology and Outcomes

Since 2005, the incidence of PGD3 at a single time point has been reported to be 7.9% and 

25%, whereas the incidence of PGD3 at any time point during the first three days is 

approximately 30%.(1, 5, 7, 14-17) The variability is likely attributable to differences in 

institutional practices and risk factor distributions.

PGD is associated with significant early and late post-transplant morbidity. Regardless of 

the time point of grading, PGD3 has been associated with significantly longer hospital 

length of stay, duration of mechanical ventilation, and 90-day mortality than those with 

lower grades of PGD.(1, 4, 5, 14, 16, 17) PGD3 present at 48 or 72 hours after 

transplantation was associated with an 18% increased absolute risk of 90-day mortality(14), 

with increased mortality persisting at 1, 5, and 10 years after transplantation.(5, 7, 14-17) In 

addition, all PGD is associated with elevated risk of bronchiolitis obliterans syndrome 

(BOS), a form of chronic allograft dysfunction.(5, 7, 15, 16) Future mechanistic trials are 

needed to understand the relationship between PGD and the development of BOS.

Pathogenesis

PGD represents the end result of multiple deleterious mechanisms provoked by donor brain 

death, mechanical ventilation, procurement, storage, and ischemia reperfusion injury (IRI). 

IRI refers to sterile inflammation that occurs after substrate supply is restored following a 
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period of absent blood flow.(18) While many mechanisms are at play, recent studies 

highlight the importance of the interplay between innate immune activation, epithelial cell 

injury, endothelial cell dysfunction, and cytokine release(19) (Table 2).

Innate immune activation

Upregulation of innate immune pathways, including toll-like receptors (TLR) and NOD-like 

receptor (NLR) inflammasome signaling, has been demonstrated in vivo animal models 

following IRI and in human subjects with PGD.(35-38, 40-47) Animal models suggests that 

IRI occurs in two phases mediated in part by a bimodal response by the innate immune 

system with donor macrophages and lymphocytes inducing the early phase and recipient 

monocytes, T-cells, and neutrophils inducing the late phase.(40-47)

A family of innate immune cells, innate lymphoid cells (ILCs) have recently been 

recognized for their role in inflammation regulation, barrier protection and repair, and host 

defense. While ILCs have lymphoid morphology, they lack antigen receptors and can be 

subdivided based on cytokine expression and function.(39, 48, 49) Group 2 ILCs (ILC2) 

produce type 2 T-helper cell-associated cytokines and have been isolated in both human 

blood and lung, suggesting a trafficking ability. In animal models, ILC2 cells appear to play 

an important role in airway epithelial integrity and airway remodeling.(39) Isolation of ILC2 

cells in BAL of transplant recipients warrants further exploration of the role of ILCs and 

other innate immune cells in PGD.(39)

Epithelial cell injury

Numerous markers of epithelial cell injury have also been associated with PGD in both 

animal and human studies, including receptor for advanced glycation end products (RAGE), 

type V collage, and plasma clara cell secretory protein. (20-25, 50-52) The role of traumatic 

brain injury (TBI) in the development of epithelial cell injury and IRI has been of increasing 

interest as the majority of lungs used for transplantation are procured from patients who 

have suffered TBI. High-mobility group box protein 1 (HMGB1) is a danger-associated 

molecular pattern released from necrotic neurons after TBI as well as alveolar macrophages 

after IRI. HMGB1 binds TLR4 and RAGE, inducing cytokine release and tissue damage.

(26, 45) Animal models suggest that HMGB1-induced RAGE activation may contribute to 

IRI via activation of nuclear factor KB (NF-KB) in epithelial cells and production of IL-17 

by natural killer T cells.(26, 45) Elevated levels of HMGB1 from brain-dead donors were 

associated with lower P/F before and after human lung transplantation.(26, 53) Therapeutic 

strategies to block RAGE and decrease epithelial cell injury should be explored in recipients 

of lungs from brain-dead donors post-TBI.

Endothelial dysfunction

Endothelial dysfunction in lung IRI typically results mostly from disruption and restoration 

of blood flow with minimal contribution from tissue hypoxia and reoxygenation since the 

lung does not rely on perfusion for oxygenation.(18) Changes in blood flow during ischemia 

lead to closure of inward rectifying potassium channels and subsequent endothelial cell 

depolarization.(54-56) This depolarization results in production of reactive oxygen species 
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(ROS) and nitric oxide,(57-60) increasing cell adhesion molecules for leukocyte adhesion 

and extravasation and activating NF-KB and other transcription factors.(18, 59, 61) 

Subsequent reperfusion results in hyperpolization of endothelial cells and activation of a 

similar cascade as ischemia, the end result of which is further oxidative injury.(62) Future 

potential targets to modify endothelial activation and decrease PGD may include 

maintenance of lung perfusion with extracorporeal lung perfusion, administration of 

potassium channel agonists, and inhibition of ROS production.(18, 63)

In addition to inducing oxidative injury, disruption in blood flow to the lung may disrupt the 

endothelial cell barrier and induce vascular remodeling. Sphingosine 1-phosphate (S1P) 

controls endothelial cell tight junction formation and prevents chemotaxis. S1P 

supplementation prior to reperfusion decreased inflammatory cytokines and improved 

oxygenation in animal models.(64, 65) Several animal and human studies have demonstrated 

an association between IRI and mediators of vascular permeability and angiogenesis 

including vascular endothelial growth factor and angiopoietin-2.(27-30, 66-68) Further trials 

are needed to explore the role of IRI on endothelial integrity and vascular remodeling.

Chemotaxis and cytokines

In many solid organ models, IRI has been shown to stimulate the release of proinflammatory 

cytokines as well as chemokines involved in migration of recipient immune cells including 

IL-1β, IL-6, IL-8, IL-11, interferon (IFN)-gamma, and tumor necrosis factor (TNF) α.(44, 

69-78) These findings have been confirmed in human lung observational studies and may 

represent future therapeutic targets.(31-34)

Clinical risk factors

Many groups have studied PGD risk factors (Table 3).(6, 11, 12, 14, 27, 79-94) Variability 

in reported risk factors may be attributed to single center studies, differences in peri-

operative management between centers, and use of non-standardized PGD definitions; 

however, several donor, recipient, and procedural risk factors have consistently emerged.

Donor-related clinical risk factors

Reported donor risk factors include age, African American race, female gender, and history 

of tobacco exposure (Table 3).(6, 14, 80-83, 99) Smoke exposure is hypothesized to increase 

oxidative injury and thus IRI.(101) In donor lungs deemed unsuitable for transplantation, 

pulmonary edema and IL-8 were higher in donors who currently smoked although alveolar 

fluid clearance was lower in donors with greater than 20-pack year history compared to 

those with a less than 20-pack year history, suggesting a possible dose-related effect.(102) 

The impact of donor smoke exposure on PGD risk is difficult to ascertain as individual 

studies use different smoking cut-offs and smoking status is obtained from surrogates. 

Further studies are needed to clarify the role of donor smoke exposure on PGD. A recent 

study using registry data suggested that although donor smoke exposure was associated with 

worse recipient outcomes, the survival probability after receiving such an allograft still 

exceeded that of remaining on the waiting list.(103)
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Donor-acquired risk factors, including prolonged mechanical ventilation, aspiration, and 

trauma, are potential risk factors without definitive studies demonstrating consistent 

associations with PGD.(81) Efforts are needed to standardize donor management and to 

optimize donor-recipient matching.

Recipient-related risk factors

Reported recipient risk factors for PGD include obesity, pulmonary hypertension, and 

diagnoses of idiopathic pulmonary fibrosis or sarcoidosis (Table 3). (6, 11, 14, 79, 80, 82, 

89, 97, 98, 100) After adjustment for multiple risk factors, obese and overweight recipient 

body mass index (BMI) were independent predictors of PGD. Higher levels of leptin, which 

regulates adipose tissue mass and has inflammatory properties, were also associated with 

increased PGD risk and mortality.(97) This supports previous studies showing obesity 

increases the risk of acute lung injury.(104, 105) While increasing adiposity is associated 

with PGD, it is unclear how best to assess body composition given a recent study 

demonstrating that BMI is a poor measure of adioposity.(106) Following identification of a 

reliable measure of body composition, future studies should evaluate the role of adipokines 

in cytokine release and PGD.

Peri-operative risk factors

The operative risk factors for PGD reported in multi-center cohort studies are single lung 

transplant procedure type, prolonged ischemic time, cardiopulmonary bypass (CPB) use, 

greater than 1L packed red blood cell transfusion volume, use of Euro-Collins preservation 

solution, and reperfusion FiO2 greater than 0.4 (Table 3).(12, 14, 82, 87, 89, 90, 95, 96) 

Oversized allografts have been associated with a decreased risk of PGD3 and improved 

survival in bilateral lung transplant recipients, especially in non-COPD recipients.(107, 108)

Significant operative variability exists across transplant centers making it difficult to identify 

consistent operative risk factors. Confounding by disease severity or treatment indication 

further complicates the study of operative risk factors. Future trials should distinguish 

between emergent and planned use of cardiopulmonary bypass, evaluate the effect of lower 

reperfusion FiO2 on PGD, and explore the mechanisms by which the above operative factors 

increase PGD risk.

Prevention and treatment

Several agents have been investigated to prevent PGD.(109) While some observational trials 

of inhaled nitric oxide (iNO) suggest improved clinical outcomes, randomized control trials 

failed to show a definitive effect of iNO on PGD prevention when used routinely.(110-116) 

Soluble complement receptor 1 inhibitor, plasminogen activating factor antagonist, and 

exogenous surfactant demonstrated beneficial effects on surrogates of PGD including A-a 

gradient.(117-120) A trial of aprotinin failed to detect an effect on PGD risk, and was 

stopped early out of concern for potential renal toxicity.(121) Clearly, additional trials on 

PGD prevention are needed.
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Therapy for PGD remains largely supportive and is heavily influenced by acute respiratory 

distress syndrome (ARDS) management strategies. While most centers use low-stretch 

ventilation, tidal volumes are frequently selected based on recipient characteristics with little 

consideration given to donor characteristics.(122-124) While there no proven role for iNO in 

the prevention of PGD, it has been used as salvage therapy for severe allograft dysfunction 

following transplant and may be useful in patients with refractory hypoxemia post-

transplant.(125-127)

Veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) has been studied for 

refractory hypoxemia and hemodynamic instability after lung transplant.(128-134) Given 

the link between CPB use and PGD, several groups have evaluated replacing CPB 

intraoperatively with VA-ECMO with mixed results.(135-137) VA-ECMO has been 

associated with shorter duration of mechanical ventilation and ICU/hospital length of stay, 

and lower transfusion requirements, but no statistically significant difference in 90-day 

mortality.(137) With improvement in ECMO technology, including high performance 

membranes and coated circuits, veno-venous (VV) ECMO has been increasingly used with 

similar post-transplant outcomes and survival as VA-ECMO.(131, 135) Several groups have 

evaluated the use of extracorporeal life support (ECLS) with VV, VA, and arterio-venous 

ECMO as a bridge to lung transplantation. Future research is needed to identify optimal 

candidates, standardize management strategies, and understand the impact of ECLS on PGD 

risk.(138-146)

Future directions

Several commercial devices using extracorporeal lung perfusion technology have been 

created and differ by pump type, flow type, mobility, perfusate, and presence of an internal 

ventilator. Extracorporeal lung perfusion has been associated with increased lung utilization, 

similar or lower risk of PGD, and equivalent 30-day, 1-year, and 3-year survival compared 

to standard criteria donors.(147-159) Small case series have described similar incidence of 

acute rejection and respiratory infection up to 1 year after transplant.(150, 153) Use of these 

technologies for donation after circulatory determination of death have demonstrated similar 

survival as donation after neurological determination of death.(151) A portable 

extracorporeal lung perfusion device was created to minimize ischemic time. While case 

reports of this portable extracorporeal perfusion system are promising,(160, 161) the results 

of randomized control trials are pending.(162, 163) Extracorporeal lung perfusion may 

eventually allow safe expansion of the donor pool and serve as a vehicle for testing targeted 

therapeutics to improve organ quality and decrease PGD risk. Several multicenter 

prospective trials are underway to further evaluate this technology, with PGD as an 

endpoint.

Conclusions

PGD is associated with poor short and long-term outcomes. The ISHLT definition has 

improved our ability to study this clinical syndrome, but further refinement of the definition 

is still needed and should be forthcoming. Improved understanding of risk factors and 

pathogenesis will identify potential therapeutic targets to modify the risk of PGD. As the 
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acceptable recipient pool likely expands secondary to increasing ECLS use, continued safe 

expansion of the donor pool must follow and may be possible given the promising results 

seen with extracorporeal lung perfusion.
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Key points

• While the annual number of lung transplantations is increasing, primary graft 

dysfunction following lung transplantation remains a significant source of short- 

and long-term morbidity and mortality.

• The pathogenesis of primary graft dysfunction remains poorly understood, but is 

likely the end result of multiple deleterious mechanisms provoked by donor 

brain death, mechanical ventilation, procurement, storage, and ischemia 

reperfusion injury.

• Better understanding of the role of established clinical risk factors, as well as the 

emerging data on the importance of innate immunity, epithelial cell injury, 

endothelial cell dysfunction, and cytokine production in the development of 

primary graft dysfunction is necessary in order to identify potential high-risk 

populations and therapeutic targets.

• Future trials should focus on identifying appropriate patients to bridge to 

transplant with extracorporeal life support and expanding the donor pool with 

extracorporeal lung perfusion without increasing the risk of primary graft 

dysfunction.
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Table 1

Grading system for PGD(2)

Grade PaO2/FiO2 Radiographic infiltrates consistent with pulmonary edema

0 >300 Absent

1 >300 Present

2 200-300 Present

3 <200 Present

Adapted from Reference(2)
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Table 2

Human translational studies exploring the pathogenesis of PGD

Pathway Human translational studies Reference

Epithelial cell injury Higher blood and BAL levels of RAGE were associated with PGD (20-22)

Preexisting or de novo antibodies against type V collagen were
associated with lower P/F ratio and PGD

(23, 24)

Elevated levels of CC16 were associated with higher odds of PGD (25)

Higher donor levels of HMGB1 correlated with lower P/F before
and after transplantation.

(26)

Endothelial dysfunction Grade 3 PGD was associated with higher VEGF levels than lower
grades of PGD

(27, 28)

Increased pretransplant endothelin-1 levels were associated
with PGD

(29)

Angiopoietin-2 levels were elevated in PGD (30)

Chemotaxis and cytokines Higher plasma levels of MCP-1, IP-10, and IL-2R were associated
with PGD

(31)

Elevated serum IL-8 levels were associated with PGD (32, 33)

Higher blood and BAL levels of IL-6 were associated with grade
3 PGD

(34)

Innate immunity Upregulation in the expression of genes involved in
inflammasome and TLR pathways were found in BAL of patients
with grade 3 PGD

(35)

TLR4 mutations associated with innate immune
hyporesponsiveness were associated with a lower PGD risk

(36)

Higher plasma PTX3 levels were seen in those with grade 3 PGD (37)

Single nucleotide polymorphisms associated with higher levels
of PTX3 were associated with grade 3 PGD

(38)

Innate lymphoid cells were isolated from BAL of lung transplant
recipients

(39)

Adapted from Reference(19)

BAL, bronchoalveolar lavage; CC16, plasma clara cell secretory protein; ET-1, endothelin-1; HMGB1, high-mobility group box-1; IP-10, 
interferon-inducible protein; MCP-1, monocyte chemotactic protein-1; P/F, PaO2/FiO2; PAI-1, plasminogen activator inhibitor-1; PGD, primary 

graft dysfunction; PTX3, long pentraxin-3; RAGE, receptor for advanced glycation end products; TLR, toll-like receptor; VEGF, vascular 
endothelial growth factor
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Table 3

Clinical risk factors for PGD

Category Risk factors for Primary Graft Dysfunction

Donor inherent variables Age>45 or <21yo

African American race

Female sex

Smoke exposure

Donor acquired variables Prolonged mechanical ventilation

Aspiration

Head trauma

Hemodynamic instability after brain death

Recipient variables Female gender

Body mass index>25

Pulmonary arterial hypertension

Pulmonary hypertension secondary to parenchymal lung disease

Idiopathic pulmonary fibrosis

Sarcoidosis

Elevated pulmonary arterial pressure at time of surgery

Operative variables Single lung transplantation

Prolonged ischemic time

Use of cardiopulmonary bypass

Packed red blood transfusion > 1L

High reperfusion FiO2 > 0.4

Use of Euro-Collins preservation solution

Adapted from References (6, 11, 12, 14, 32, 79-83, 87, 89, 90, 93-100)
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