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Substance use disorders (addiction; abuse or dependence in DSM-IV terms) are chronic, 

relapsing conditions. Our current state of knowledge does not allow for accurate prediction 

of the trajectory of substance use patterns or development of the disorder in the general 

population, in a small subgroup (e.g. participants in a clinical trial), or in individual patients. 

At the population level, this limits our ability to efficiently allocate limited clinical, public 

health, and law enforcement resources to prevent the growth in use and abuse of existing 

and novel psychoactive substances (NPS). At the clinical trial level, this limits our ability to 

accurately identify factors influencing treatment outcome in subgroups of patients. At the 

patient level, this limits the clinician’s ability to identify and promptly intervene during 

periods of heightened risk of relapse. Four articles in this issue of The American Journal of 

Drug and Alcohol Abuse by Wagner et al. (1), Westover et al. (2), Wakeland et al. (3) and 

Stogner (4) describe statistical approaches that may improve the current state of the art, 

ranging from how to handle the raw data that is collected in order to extract the maximum 

information (in terms of level of aggregation and the best outcome distribution for 

modeling) (1) to the optimal model to use when evaluating (retrospectively or prospectively) 

substance use outcomes, whether in a circumscribed group of users (e.g. clinical trial 

participants) (2) or in the population as a whole (3,4). Overall, the examples in these papers 

show how sensitive the results of statistical analysis can be to the choice of data aggregation 

and modeling, highlighting the importance of using the best possible statistical approaches.

Wagner et al. (1) make several recommendations for improved handling of data on self-

reported substance use to extract the maximum information. They illustrate their 

recommendations with data collected using the timeline follow-back (TLFB) method (5), a 

semi-structured, calendar-based interview widely used in clinical studies. Their 

recommendations address two common issues with such data: treatment of substance use as 

a single variable, ignoring which specific substance(s) was used, and which mathematical 
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distribution best approximates the actual data, especially when data are missing or not 

collected over the same time interval from all individuals.

In their example, Wagner et al. (1) convincingly demonstrate what is lost when use of any 

and all substances is aggregated into a single variable. Disaggregation of substance use data 

improved the findings in two ways. First, it revealed significantly different predictors 

associated with use patterns of the various individual abused substances (in part because use 

data for different substances follow different distributions [see below]). Second, it improved 

the effectiveness of “sensitivity analyses” (i.e. analyzing the same dataset multiple times 

under different assumptions about the dataset to evaluate how much the resulting outcomes 

vary with different assumptions) in evaluating the validity of statistical results. Given the 

promise and increased information resulting from disaggregation, we recommend also 

applying it, when possible, to the quantification of use, i.e. by analyzing use of each 

substance as a quantitative, rather than dichotomous (used/abstained) variable, e.g. “number 

of cigarettes smoked” or “number of drinks consumed”. Such quantification should 

significantly increase the accuracy and precision of the treatment effect estimate.

Wagner et al. (1) also point out that data on substance use, whether dichotomous (used/

abstained) or continuous (e.g. counts of use), are often not normally distributed, e.g. because 

of the frequency of zero values. They recommend a 4-step approach to selecting the best 

frequency distribution to assume for model-fitting to such data: (i) identify those frequency 

distributions that are theoretically appropriate based on knowledge of the outcome’s 

characteristics, (ii) visually inspect the outcome data and compare the fit of possible 

distributions to the outcome data using both (iii) a standard statistical model selection 

criterion (such as Akaike Information Criterion [AIC]) (6,7) and (iv) visual confirmation 

(e.g. by superimposing the model based on each distribution onto a histogram of the actual 

data distribution).

In their example, Wagner et al. (1) again convincingly demonstrate how their 4-step 

approach efficiently identified the best outcome distribution for effectively modeling the 

outcome, allowing identification of significant clinical associations that would have been 

missed using other distributions. Put another way, the validity of study findings was highly 

sensitive to the model used for analysis. We support their recommendation, and have some 

suggestions of our own to improve its utility. Model selection would be better informed by 

using multiple global “fit” indices, rather than only one. We suggest that use of additional 

criteria would improve decision-making, e.g. the Bayesian Information Criterion (BIC) (8,9) 

and the Vuong (10,11) test (used for identifying whether controlling for a high frequency of 

zero values is appropriate). Most statistical software packages (e.g. R, SAS®, and Stata®) 

can readily calculate such tests. Stata’s® “countfit” program automates the process and 

produces tables for quick comparison across several frequency distributions (e.g. Poisson, 

negative binomial, and their zero-inflated counterparts) of their model fit using several fit 

indices (e.g. AIC and BIC), thereby helping identify which model might be best for use in 

statistical analysis (12).

While not discussed by the authors, we also believe it would be useful to apply their 4-step 

procedure when addressing the longitudinal (i.e. repeated measures) aspect of most clinical 
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datasets by use of longitudinal modeling techniques. This allows for a more flexible, and 

presumably more accurate, representation of the data, resulting in findings with greater 

validity. For example, a “piecewise growth model” can break up change over time into 

distinct segments (13,14). This is relevant because many longitudinal data sets show 

different patterns of change over time during different time intervals. For example, a clinical 

trial may show significantly more change during the initial treatment period than later on; 

uptake of a NPS may be much more rapid when it initially appears on the market than later 

on. Another useful model might be the two-part or semi-continuous model (15,16). This 

model breaks up the data frequency distribution into two distinct pieces: a binary component 

(i.e. was alcohol used at all, yes/no?) and a continuous component (i.e. if yes to drinking, 

how many drinks were consumed?), allowing for a detailed portrait of use.

Westover et al. (2) present an innovative, systematic, stepwise approach for conducting sub-

group analyses on a clinical dataset. Typical currently used approaches to evaluating effects 

in specific subgroups of an overall study population include stepwise selection procedures 

(e.g. stepwise regression) or testing each subgroup separately. Limitations of the former 

approach include evaluation of only a small proportion of possible hypotheses (models), use 

of a biased sequential model selection process, and use of hypothesis-testing methods that 

do not control for effects of model misspecification or experiment-wise error rates. The 

latter approach has two limitations: inflating the probability of false positive findings (type I 

error) because of multiple comparisons and masking true findings (type II error) that may be 

apparent only in combinations of subgroups.

Building on the concept of a weighted single-indicator moderator score (17), Westover et al. 

(2) propose a “maximum likelihood type” search process that they term “Best 

Approximating Model” (BAM). BAM can encompass literally millions of candidate models 

(with numerous covariates [predictors] and moderator variables) and identifies the “best” 

model based on a sequence of several specified statistical criteria, including “goodness of 

fit” measures such as the Generalized AIC. BAM can be considered a highly sophisticated 

version of stepwise regression which minimizes problems from data multi-collinearity, 

model misspecification, and multiple comparisons (i.e. family-wise error).

Westover et al. (2) applied their BAM approach to data from a controlled clinical trial of 

long-acting oral methyl-phenidate as treatment for nicotine dependence (tobacco use 

disorder) in adults with attention deficit hyperactivity disorder (ADHD) (18). The original 

investigators found no overall significant effect of medication on cigarette smoking; using 

conventional subgroup analysis, they found a significant treatment effect associated with 

ADHD symptom severity and subtype and a trend toward association with lifetime history 

of substance use disorder. The BAM approach replicated these findings and identified two 

more treatment associations – with patient age (younger patients did better) and across clinic 

sites. Thus, use of the BAM approach for this study yielded additional clinically applicable 

insight into factors associated with treatment response to methylphenidate for smoking 

cessation in this patient population.

We agree on the promise of the BAM approach, but have some concern about an issue it 

does not address in its current form. While the final model selected is based on robust model 
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comparison indices, one factor not considered is how much better the final model is 

compared to the second-best model. Given the massive number of potential models 

considered, could the final selected model be just one of a large group of approximately 

comparable models, making the final selection somewhat arbitrary? We suggest 

consideration of expanding BAM to include the factor of “clinical utility,” i.e. how likely is 

the generated model to influence (change) current clinical practice? In more specific terms, 

does incorporation of the proposed risk factor or treatment moderator produce a clinically 

meaningful change in the outcome variable?

One method of integrating clinical utility into the choice among several comparable, well-

fitting statistical models might be assessment of three related indices to guide model 

selection: area under the curve (AUC) of the receiver operating characteristic (ROC) curve, 

integrated discrimination improvement (IDI), and net reclassification improvement (NRI) 

(19,20). Each of these indices provides a distinct measure of improvement in model 

prediction. Change in AUC when a new predictor (covariate) is introduced into the model 

(compared to the model without the predictor) may be considered comparable to an 

improvement in “variance accounted for”, but does not specifically quantify and test the 

difference between models nor indicate whether the new model reclassifies subjects into a 

different category. IDI is a measure of the difference in discrimination slopes between two 

models in terms of discrimination slope, i.e. the difference between the mean predicted 

probabilities of an event for subjects actually experiencing the event and the corresponding 

mean for those not experiencing the event (19,21). NRI is a measure of the relative increase 

in correctly predicted probabilities (e.g. model predicted substance use yes/no) for 

participants in the sample. For example, a model that shows an AUC improvement from 

0.75–0.76 or that reclassifies an additional 5 out of 1000 patients into their correct category 

represents only minimal improvement that likely does not warrant changing clinical 

practice. Minimal criteria have been proposed (e.g. 3–5% increase in IDI), based on 

empirical simulation (19,20), for judging the clinical importance of a risk/protective factor. 

Use of these indices does not involve conventional null hypothesis testing, but rather is a 

comparison among potential models.

ROC curve values are presented by Westover et al. (2) for the final model that was selected, 

but were not utilized as model selection criteria. Calculation of model differences based on 

AUC, IDI, or NRI is readily done in several available commercial software packages. We 

recommend that the assessment of clinically meaningful improvement become a routine part 

of any model comparison and selection approach.

Wakeland et al. (3) employed a “closed-loop” dynamic system model to better understand 

the development of a significant current public health problem in the US population, i.e., 

misuse of prescription opioid analgesics. Their comprehensive model has several advantages 

over typical approaches to modeling large-scale substance use problems. First, it 

incorporates all phases of the development of substance use and misuse, starting with entry 

processes such as peer influence on initiation of use, substance availability, transitions from 

informal sharing to paying for drugs, from oral to injecting administration, and to a more 

potent illegal drug (heroin, in this example) by some users; and exit processes such as 

quitting use and death. Second, it uses both qualitative and quantitative data. Third, the 

Gorelick and McPherson Page 4

Am J Drug Alcohol Abuse. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dynamic systems feature allows modeling (simulation) of feedback effects in response to 

changes (single or multiple) in key transition points, e.g. how might strengthening of anti-

diversion measures (such as tamper-proof formulations) influence the transition from oral to 

injecting use?

Wakeland et al. (3) applied their model to several large data sets drawn from nationally 

representative surveys and published studies. The model accurately retrospectively 

replicated historical patterns of prescription opioid analgesic use in various population 

subgroups (to within 8–12% of actual values), including important outcomes such as 

overdose deaths. More importantly, the model simulations generated predictions about 

interventions that might significantly reduce prescription opioid analgesic use and adverse 

consequences, some already being implemented (e.g. tamper-proof formulations) and some 

worthy of future empirical evaluation (e.g. reducing informal drug sharing with drug buy-

back programs).

We believe that this dynamic simulation modeling approach offers major advantages over 

more conventional approaches. It helps identify gaps in the existing literature, e.g. where 

there are weak or no estimates for key parameters being utilized in the model. More 

importantly, it offers the ability to conduct a virtually unlimited number of “thought 

experiments” that evaluate possible public health and public policy changes (both singly and 

in combination), thereby better informing clinicians and policy makers. The ability to 

conduct sensitivity analyses that provide upper and lower bounds for predicted effects 

makes any model prediction more plausible and therefore more useful to policy makers. For 

example, Wakeland et al. (3) generate upper and lower limits for the number of overdose 

deaths caused by prescription opioid analgesics after (theoretical) implementation of two 

public health measures. The lower limit was half the existing number of such deaths, 

convincingly suggesting the benefit of these two measures.

Despite the enormous promise of the dynamic simulation modeling approach, we must point 

out a key weakness of this methodology, i.e., it is completely dependent on the assumptions 

made. Because it is a closed feedback loop system, even small errors in some putative 

estimates could generate drastically unrealistic predictions. Also, as with virtually all 

statistical models, accuracy depends on the degree to which all relevant covariates 

(predictors) are included in the model. These weaknesses are common in other statistical 

domains (e.g. power analyses often rest heavily on certain assumptions) and do not diminish 

our enthusiasm for this approach. They are important for users and their audience to keep in 

mind when judging the resultant models.

Stogner (4) proposes a 5-step algorithm for predicting whether a novel psychoactive 

substance will develop into a public health concern. The algorithm comprises five factors: 

availability of a user base, costs of substance use (price, legal, health, etc.) relative to other 

available psychoactive substances, quality of the subjective intoxication experience, 

potential for addiction, and ease of acquiring the substance. A major strength of the 

approach is comparing the NPS to alternative abusable drugs already in the marketplace. If 

demonstrated to be accurate, such a predictive algorithm should greatly improve the 

allocation of finite clinical, public health, and law enforcement resources, resulting in 
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improved early detection, diagnosis, and treatment efforts. In addition, it would direct public 

(and political) attention to where it is most appropriate and away from unjustified concerns, 

thereby reinforcing the more appropriate allocation of societal resources.

Stogner (4) validates his algorithm by applying it retroactively to three past NPS (synthetic 

cannabinoids, Salvia divinorum, and crystal methamphetamine). We agree with his 

assessment that the algorithm was clearly accurate with regard to the first NPS and arguably 

fairly accurate with regard to the latter two. To his credit, Stogner (4) argues that the true 

test of his algorithm is the accuracy of its future predictions; thus, he generates predictions 

regarding three recent NPS: the synthetic hallucinogen “bromo-dragonfly,” the potent opiate 

agonist acetyl fentanyl, and electronic cigarettes (e-cigarettes). In the 11 months since this 

manuscript was first submitted for publication, we interpret the initial data as clearly 

confirming the prediction about e-cigarettes (a growing public health concern) and at least 

partially confirming the prediction that acetyl fentanyl “warrants attention” (it was 

reclassified into CSA schedule I by the DEA on 21 May 2015). We consider the jury still 

out on bromo-dragonfly.

The framework provided in this article is a good starting point, but an apparent weakness is 

lack of specificity. The current method is qualitative, making it difficult to demonstrate 

utility to clinicians, policy makers, law enforcement officials, and others. We suggest 

formalizing the process, similar in rationale to conducting a meta-analysis (22). This should 

include incorporating comprehensive, quantitative data from existing “early warning” data 

collection networks (such as the Community Epidemiology Work Group [CEWG] organized 

by NIDA, Researched Abuse, Diversion and Addiction-Related Surveillance [RADARS®] 

System operated by Denver Health, National Poison Data System operated by the American 

Association of Poison Control Centers, and US DEA System to Retrieve Information from 

Drug Evidence [STRIDE]) and specifying what variables will be used and how they will be 

coded. Overall, the Stogner (4) algorithm might benefit from incorporating many of the 

statistical modeling features employed by Wakeland et al. (3).

Dynamic simulation modeling would be one such useful feature, a kind of “sensitivity” 

analysis, wherein different parameters are modified and the prediction changed in order to 

run several “what if” scenarios based on scenarios being discussed in the media. For 

example, one could assume a 50% increase in hospitalizations due to a new NPS and see 

how this influences 5-year cost projections. This would allow for calculation of confidence 

bounds around the projected estimate, a measure of prediction accuracy. One could imagine 

a sort of “moving” projection based on newly acquired data as it becomes available. This 

might be an important tool for avoiding the bias that is all too common in these types of 

forecasts, especially in the face of popular media reporting.

We commend the authors of these four papers for addressing the seemingly mundane, 

technical, and often overlooked issue of analysis and modeling of substance use data. Their 

useful recommendations do not require extensive new resources to implement, but, if refined 

and widely adopted, would significantly improve the interpretation of existing and future 

clinical and epidemiological research data, to the betterment of patients with substance use 

disorders and society at large.
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