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Mapping the Processivity Determinants of the Kinesin-3 Motor Domain
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ABSTRACT Kinesin superfamily members play important roles in many diverse cellular processes, including cell motility, cell
division, intracellular transport, and regulation of the microtubule cytoskeleton. How the properties of the family-defining motor
domain of distinct kinesins are tailored to their different cellular roles remains largely unknown. Here, we employed molecular-
dynamics simulations coupled with energetic calculations to infer the family-specific interactions of kinesin-1 and kinesin-3 motor
domains with microtubules in different nucleotide states. We then used experimental mutagenesis and single-molecule motility
assays to further assess the predicted residue-wise determinants of distinct kinesin-microtubule binding properties. Collectively,
our results identify residues in the L8, L11, and a6 regions that contribute to family-specific microtubule interactions and whose
mutation affects motor-microtubule complex stability and processive motility (the ability of an individual motor to take multiple
steps along its microtubule filament). In particular, substitutions of prominent kinesin-3 residues with those found in kinesin-1,
namely, R167S/H171D, K266D, and R346M, were found to decrease kinesin-3 processivity 10-fold and thus approach
kinesin-1 levels.
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Kinesins are a large superfamily of microtubule-based
motor proteins, with individual family members playing
essential roles in cell division, cell motility, and intracellular
trafficking. All kinesins contain a family-defining motor
domain that enables nucleotide-dependent interactions
with the microtubule lattice. General principles of how
kinesin motor domains interact with nucleotide and micro-
tubules have been established based on extensive biochem-
ical and biophysical studies of kinesin-1. In particular, it has
been demonstrated that alternating ATP binding and hydro-
lysis in each kinesin-1 motor domain leads to coordinated
changes in microtubule binding affinity that enable proces-
sive motility (the ability to undergo many steps along the
microtubule surface without dissociating) (1,2). It has
been assumed that this is the mechanistic paradigm for all
kinesin motors. However, recent work indicates that some
kinesin motors utilize their core motor domain for very
different functions. For example, the kinesin-8 and kine-
sin-13 families depolymerize microtubules (3,4). Even for
the conventional property of processive motility, evolu-
tionary tuning of the core motor domain has resulted in a
range of family-specific processivities. For example, some
kinesin-4 motors are nonprocessive (5), whereas kinesin-3
motors are superprocessive, being 10-fold more processive
than kinesin-1 (6). How sequence divergence within the mo-
tor domain gave rise to these different properties remains an
outstanding question in the field of cellular and molecular
biology.

To identify microtubule interactions that contribute to
family-specific motility properties, we utilized our recent
cryo-electron microscopy structures of kinesin-3 and kine-
sin-1 onmicrotubules (7) and employedmolecular-dynamics
simulations and energetic calculations. We then used exper-
imental mutagenesis and single-molecule motility assays
to assess the predicted determinants of their distinct microtu-
bule binding properties.

Kinesin-3 displays more extensive microtubule
interactions than kinesin-1

Molecular-dynamics simulations and molecular mechanics
with generalized Born and surface area solvation (MM/
GBSA) binding energy calculations indicate that the residues
that contribute to motor-microtubule stability are clustered in
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the same six regions (L2, L7, L8, L11-a4, L12, anda6) on the
surface of the kinesin-1 and kinesin-3 motor domains (Fig. 1,
A andB, and Figs. S1–S3 in the SupportingMaterial). In gen-
eral, kinesin-3 was found to exhibit more extensive interac-
tions with the tubulin surface than kinesin-1 (Fig. 1 B). The
L2 region makes a comparatively minor contribution to the
tubulin binding of both kinesin-1 and kinesin-3 (Figs. S2
and S3), despite the presence of a family-specific seven-
amino-acid insertion in this region of kinesin-3 motors
(Fig. S4). The L7 region also makes comparatively minor en-
ergetic contributions to complex stability for both kinesin-1
and kinesin-3 (Figs. 1 B, S2, and S3). By contrast, the L8 re-
gion provides a larger contribution due to extensive contacts
with the H12 region of b-tubulin. Particularly notable are the
strong electrostatic contributions from the kinesin-3 residues
R167 and R169 in all nucleotide states. Kinesin-1 lacks direct
equivalents of these charged residues and instead coordinates
with the microtubule via R161 in the Apo state and K166 in
the ADP state (Figs. S2 and S3).

Different charge distributions and energetic contributions
are also evident for the L11-a4, L12, and a6 regions. For
L11-a4, both motors display extensive interactions and
high binding energies with the microtubule surface. Notable
are R254, K261, and K266 of kinesin-3, which display
strong interactions with tubulin in the ATP and Apo states
but weaker interactions in the ADP state (Figs. 1 B and
Biophysical Journal 109(8) 1537–1540
S3), as well as the interactions of K237 of kinesin-1 in
both the Apo and ATP states and K252 in the ADP state
(Fig. S2). The L12 region also contributes strong interac-
tions with tubulin in both motors. Particularly notable is res-
idue R307 in kinesin-3 and the equivalent R278 in kinesin-1
(Figs. S2 and S3). Finally, strong interactions of the a6 helix
with tubulin can be observed for kinesin-3 and originate
from residues R346 and R350 in all nucleotide states
(Figs. 1 B and S3). However, the a6 region of kinesin-1 dis-
plays a different pattern of exposed charges and makes
comparatively minor energetic contributions through resi-
dues K313 and R321 (Figs. 1 B and S2).

Collectively, this analysis identified differences between
kinesin-1 and kinesin-3 motors in the extent of their micro-
tubule interactions and binding energies (see the distinct
kinesin-3 and kinesin-1 peaks in Figs. 1 B and S5). We
hypothesized that these differences contribute to distinct
stabilities for each motor-microtubule complex that in turn
determine the distinct motile properties of these motors.
To test this hypothesis, we replaced kinesin-3 residues
with the corresponding kinesin-1 amino acids (Figs. S4
and S5) and examined the effects on the energetics of mo-
tor-tubulin interactions computationally and on motility
properties experimentally in single-molecule assays. For
this analysis, we focused on the L2, L8, L11, and a6 regions,
as L7 was predicted to contribute little to motor-microtubule
FIGURE 1 Altering select family-specific

tubulin interactions of kinesin-3 motors re-

duces processivity. (A) Refined molecular

structures for kinesin-1 (green) and kine-

sin-3 (blue) resulting from cryo-electron

microscopy (7) and subsequent molecu-

lar-dynamics simulations (see Supporting

Materials and Methods for full details). (B)

Differences in the residue contribution to

the binding energy for kinesin-1 (green)

and kinesin-3 (blue) in the ATP state. These

values were determined from four replicate

40-ns molecular-dynamics simulations and

subsequent energetic calculations. Note

that specific interactions of the L2, L7, L8,

L11, and a6 regions are predicted to

enhance the binding affinity of kinesin-3

in relation to kinesin-1. (C) Processivity

measurements from single-molecule moti-

lity assays of wild-type kinesin-1 (green),

wild-type kinesin-3 (blue), and kinesin-3

mutants (red). The average run length (RL)

and number of observations (N) are noted.
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stability (see above) and L12 was demonstrated in both
Brownian dynamics simulations (8) and experimental
work (9) to enhance the association kinetics of kinesin-3
motors with the microtubule rather than the processivity.
Intriguingly, the results presented here indicate that the
family-specific K-loop insertion in L12 of kinesin-3 motors
lacks significant energetic interactions with tubulin (Fig. S3)
and thus is predicted to have relatively little effect on motor-
microtubule stability. L2 was included in this analysis
despite its predicted minor contributions to tubulin binding
energetics (Figs. 1 B, S2, and S3) due to its functional
importance in other kinesin families (10).
Specific regions of the kinesin-3-microtubule
interface contribute to interaction energy,
velocity, and processivity

For L2, we replaced the two lysine residues at positions 41
and 44 with alanine residues to negate their electrostatic
contributions to motor-microtubule stability. The resulting
K41A/K44A mutant did not significantly alter the predicted
binding affinity (DDG 1.6 kcal/mol) and did not affect the
experimentally determined velocity and run length values
of the motor (2.13 5 0.13 mm/s and 11.79 5 0.33 mm,
respectively; Figs. 1 C, S6, and S7). These results indicate
that the L2 region is not a major determinant of distinct
kinesin-3 motility properties.

We introducedmutations in the L8 region (R167S/H171D)
to investigate the role of the predicted strong interactions of
this region with the H12 region of b-tubulin. In the mutant
Apo state, the missing wild-type interactions were predicted
to be partially compensated for by R307 in L12, and by R346
and R350 in a6. These interactions result from a motor
domain conformational rearrangement that positions a6
2.8 Å closer to the microtubule surface, leading to stronger
interactions with a-tubulin H11 and H12 (Fig. S8) and an
increased Apo-state binding affinity (DDG �7.36 kcal/mol).
In contrast, these new interactions were absent from the
ATP state, which displayed an overall destabilization of the
tubulin interface, resulting in a large reduction of the pre-
dicted binding affinity (DDG 11.07 kcal/mol). The experi-
mental motility assays for this mutant displayed reduced
velocity and processivity values (1.32 5 0.03 mm/s and
1.115 0.06 mm; Fig. 1 C, S6, and S7). This result indicates
that the identified residues in the L8 region of kinesin-3
contribute to the enhanced motility of wild-type kinesin-3.

The L11 region was also found to contribute to the
enhanced stability of the kinesin-3/tubulin complex. In
particular, the K266D mutation was observed to weaken
tubulin interactions in both the ATP and Apo states (DDG
6.66 and 7.58 kcal/mol, respectively) and resulted in a slower
(1.68 5 0.03 mm/s) and less processive (1.96 5 0.09 mm)
mutant motor (Figs. 1 C, S6, and S7). These results indicate
that K266 in L11 is important for the enhanced processivity
of kinesin-3.
Finally, we further investigated the potential family-spe-
cific interactions of the a6 region with tubulin via the single
mutation R346M and double mutation L342K/R346M.
For wild-type kinesin-3, R346 forms strong electrostatic
interactions with the a-tubulin residues E415 and E421.
Mutagenesis studies in budding yeast have suggested that
both of these H12 a-tubulin residues are important for the
interaction of kinesin proteins with microtubules (11). The
R346M mutant removes the exposed positive charge on he-
lix a6, and the double mutant L342K/R346M is predicted
to retain a charge in this region complementary to that
in kinesin-1 (on the next turn of the a6 helix; Fig. S1).
Consistent with this energetic analysis, the R346M single
mutant showed reduced velocity (1.19 5 0.44 mm/s) and
processivity (1.00 5 0.04 mm), whereas the double mutant
L342K/R346M displayed little variation in velocity (1.735
0.01 mm/s) or processivity (12.48 5 0.31 mm; Figs. 1, B
and C, S6, and S7). These results highlight how analogous
interactions can result from nonequivalent positions (i.e.,
nonaligned residues), indicating that one should consider
multiple substitutions and potential epistatic effects when
examining the collective determinants of enhanced kine-
sin-3 processivity.

In summary, using a combined computational and exper-
imental approach, we have uncovered kinesin-3 family-spe-
cific tubulin interactions that influence motor-microtubule
complex stability and motor processivity. Our results indi-
cate that the family-specific distribution of exposed charges
in L8, L11, and a6 regions result in distinct energetic inter-
actions with the microtubule that affect kinesin motility. In
particular, kinesin-3 R167 in L8, K266 in L11, and R346
in a6 contribute to the enhanced processivity of this motor
in relation to kinesin-1, as their independent mutation
resulted in a reduction of velocity and processivity. More
broadly, these findings emphasize how processivity can be
modulated by sequence differences intrinsic to individual
motor domains in addition to established factors such as
neck-linker composition (12–14). We suggest that our pre-
dictive approach should be widely applicable to additional
families as well as to motor domain mutations linked to
various diseases, including neurodegeneration and tumori-
genesis. These expanded studies will generate new insights
into how newmotors can be custom engineered with distinc-
tive motility properties.
SUPPORTING MATERIAL

Supporting Materials and Methods and eight figures are available at http://
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