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Abstract

Mutations in the gene coding for the integral membrane protein polycystin-1 (PC1) are the cause 

of most cases of autosomal-dominant polycystic kidney disease (ADPKD), a very common 

disease that leads to kidney failure and currently lacks approved treatment. Recent work has 

revealed that PC1 can regulate the transcription factor STAT3, and that STAT3 is aberrantly 

activated in the kidneys of ADPKD patients and PKD mouse models. Recent approaches to 

directly inhibit STAT3 in PKD mouse models have been promising. Numerous signaling 

pathways are known to activate STAT3 and many have long been implicated in the pathogenesis 

of PKD - such as EGF/EGFR, HGF/c-Met, Src. However, a role of STAT3 in the pathogenesis of 

PKD had never been considered until now. Here, we review the current findings that suggest that 

STAT3 is a promising target for the treatment of PKD.

Polycystic Kidney Disease

ADPKD is a very common life-threatening, monogenic disease that is characterized by 

excessive proliferation and the growth of epithelial-lined cysts that eventually destroy the 

normal renal parenchyma [1, 2]. Most patients eventually progress to renal failure and will 

require dialysis or kidney transplantation. No approved treatment is currently available to 

halt or slow disease progression. However, a recent phase 3 trial using a vasopressin V2-

receptor antagonist has shown promise in slowing the decline in kidney function [3]. 

ADPKD is caused by mutations in the PKD1 or PKD2 genes which encode the proteins 

polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC2 is a calcium channel of the 

TRP family, and forms a complex with PC1. In addition, PC1 - which is mutated in most 

cases of ADPKD - has been shown to interact with a wide variety of signaling proteins and 

regulates numerous signaling pathways including heterotrimeric G proteins, wnt-, integrin- 

and JAK/STAT-signaling, and the mTOR pathway. It has remained unclear which of these 
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numerous proposed functions is most relevant for understanding the molecular mechanism 

that leads to renal cyst growth in ADPKD.

The polycystins localize to primary cilia - among other locations - and are required for the 

function of cilia as sensors of fluid flow on renal epithelial cells. Since mutations in 

numerous other cilia-associated proteins lead to renal cyst growth, it is currently believed 

that disruption of the function of primary cilia leads to aberrant proliferation of renal tubule 

epithelial cells [4] [5]. However, it is unclear what the purpose of this regulation is or which 

molecular mechanisms are involved.

There are numerous similarities in signaling pathways that are activated both in PKD and in 

response to kidney injury. This has led to the hypothesis that PKD is a manifestation of 

aberrant and chronic activation of injury repair pathways that are normally dormant in the 

healthy kidney but can be rapidly activated in response to insults [6]. Indeed, different forms 

of renal injury have been shown to trigger rapid renal cyst growth in experimental animal 

models [7].

Numerous signaling molecules and pathways have been shown to be aberrantly activated in 

cyst-lining cells in PKD such as Src, Erk and mTOR. Inhibition of many of these pathways 

leads to significant reductions in renal cyst growth in rodent models of PKD but this has not 

yet translated into clinical treatments. A case in point are mTOR inhibitors that proved 

highly effective at high doses in rodent models but were disappointing in subsequent clinical 

trials [8]. Recent results from several investigators have indicated that STAT3 is aberrantly 

activated in PKD, that PC1 can regulate STAT3, and that that STAT3 may be a promising 

drug target for therapy.

STAT3

Signal Transducer and Activator of Transcription 3 (STAT3) is a member of a protein 

family composed of seven members (STAT1, 2, 3, 4, 5a, 5b, 6) [9]. Canonical activation of 

STAT proteins occurs via phosphorylation of a single tyrosine residue within the trans-

activation domain conserved across the family. This causes homo- or hetero-dimerization 

and direct translocation to the nucleus where STATs bind specific DNA sequences in 

complex with transcriptional cofactors to activate gene expression [10]. The cofactors can 

provide additional gene specificity. STATs can be activated by binding to phospho-tyrosine 

residues on the cytoplasmic tails of activated cytokine or growth factor receptors (such as 

IL6 family). This is followed by STAT-phosphorylation via receptor-associated tyrosine 

kinases of the JAK family, receptor tyrosine kinases (such as EGFR and c-Met), or by non-

receptor tyrosine kinases such as Src [10].

STAT3 is one of the first STATs detectable in embryonic development [11], and loss of 

STAT3 causes early embryonic lethality [12]. STAT3 confers resistance to apoptosis in 

many cell types and is considered an oncogene [13, 14]. It is constitutively activated in 

many human cancers, and its inhibition leads to inhibition of tumor growth [15] [16] [17] 

[18] [19, 20]. Intensive efforts are underway to identify STAT3-inhibitory compounds for 

the development of cancer therapies, but none are yet in clinical use [21] [15, 22] [23].
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What is the normal role of STAT3 in the kidney?

Due to its early embryonic lethality, STAT3-null mice have been uninformative for a 

possible role of STAT3 in renal development. We reported that STAT3 is highly active in 

renal tubule epithelial cells of mice at postnatal day 7 (d7) when kidneys are actively 

growing. By d14 STAT3 activity is strongly down-regulated, and almost completely 

undetectable in adult kidneys [24]. This time-course of STAT3 inactivation coincides with a 

developmental switch that occurs in the mouse kidney around d14 and leads to cessation of 

proliferation and kidney growth [25]. In an in vitro culture model with MDCK renal 

epithelial cells, STAT3 has been shown to be required for hepatocyte growth factor (HGF) 

induced tubulogenesis [26, 27]. These studies suggest that STAT3 activity may normally be 

involved in the regulation of tubule cell proliferation and morphogenesis during renal 

development.

The fact that STAT3 activity is extremely low in the adult kidney despite high STAT3 

expression levels [24] suggests that signaling pathways upstream of STAT3 are not active in 

the healthy adult kidney and/or that STAT3 activity is strongly suppressed. However, the 

abundance of STAT3 also suggests that it is ready to be activated at a moment’s notice. 

Indeed, STAT3 was found to be rapidly activated in renal tubule cells in response to 

numerous forms of insults. HgCl2-induced acute kidney injury in mice causes STAT3 

activation that is due - at least in part - to IL6 trans-signaling, a mechanism that involves IL6 

and the shed, soluble form of the IL6-receptor [28]. These authors also demonstrated that 

experimental activation of STAT3 prior to HgCl2 administration dramatically protected 

animals from AKI and resulted in complete survival. This effect was suggested to involve 

the induction of reno-protective proteins such as heme oxygenase HO-1 [28]. Similarly, in 

cultured proximal tubule cells, STAT3 is activated in response to ATP-depletion as a model 

of renal ischemic injury [29]. Overexpression of constitutively active STAT3 led to 

increased protection from apoptosis in this system [29]. Renal ischemia reperfusion injury 

causes increased expression of unphosphorylated STAT3, and strong STAT3 activation by 

tyrosine-phosphorylation but the affected cell types have not been defined [30] [31] [32, 33].

Unilateral ureteral obstruction (UUO), as a model of obstructive nephropathy, was shown to 

lead to STAT3 activation. One study found that STAT3 is activated both in tubule epithelial 

cells and interstitial cells [34] whereas another study reported predominantly activation in 

interstitial fibroblasts [35]. Treatment with the STAT3 inhibitor S3I-201 led to inhibition of 

fibrosis and inflammatory cell infiltration [35]. Renal STAT3 activation has also been found 

in response to adriamycin-induced nephropathy as a model of chronic renal disease but the 

activated cell types have not been defined [36]. Treatment with the JAK2 inhibitor AG490 

was shown to inhibit STAT3 and suppress the long-term renal deterioration in this model 

[36]

As an overall conclusion, a model emerges in which STAT3 is rapidly activated in response 

to several forms of renal insults. STAT3 activity appears to be critical for orchestrating the 

appropriate responses to such insults such as protection from oxidative stress, recruitment of 

immune cells and tissue regeneration. However, prolonged renal STAT3 activation appears 

to play a role in destructive processes such as persistent inflammation and fibrosis.
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STAT regulation by PC1

The initial observation that PC1 can regulate STAT activity was made by Greg Germino’s 

laboratory [37]. These authors showed that overexpression of PC1 causes activation of 

STAT1 leading to STAT1-mediated upregulation of p21waf1 transcription which induces 

cell cycle arrest in G0/G1. PC1 was found to bind to JAK2 suggesting that PC1-mediated 

regulation of JAK2 activity is responsible for STAT1 activation. Finally, PC1-null mouse 

embryos at E15.5 almost completely lacked tyrosine-phosphorylated STAT1 and expression 

of p21waf1 suggesting that PC1 is the master regulator of STAT1/p21waf1 signaling at this 

developmental stage. STAT3 was also found to be activated by PC1 overexpression 

although to a lesser degree, and was not further investigated.

Subsequently, our laboratory discovered that PC1 can also regulate STAT6 activity although 

the mechanism of regulation differed markedly from the regulation of STAT1. We found 

that the C-terminal cytoplasmic tail of the integral membrane protein PC1 is released from 

the membrane by proteolytic cleavage resulting in C-terminal fragments that undergo 

nuclear translocation, interact with STAT6 and the transcriptional co-activator P100, and co-

activate STAT6-dependent gene expression [38]. In contrast, membrane-anchored PC1 

inhibited STAT6 activity [38]. STAT6 itself was found to translocate between primary cilia 

and the nucleus depending on apical fluid flow [38]. Together with the discovery that 

cleavage of the PC1 tail is regulated by fluid flow [39] these results suggested that PC1-

mediated regulation of STAT6 activity plays a role in sensing changes of luminal fluid flow 

and affecting corresponding changes in gene expression [38]. Subsequently, we 

demonstrated that STAT6 is aberrantly activated in cyst-lining epithelial cells, is part of a 

positive feedback loop with interleukin 13 and the IL13 receptor, and that inhibition of 

STAT6 leads to inhibition of renal cyst growth in a PKD mouse model [40]. An important 

mechanistic distinction to STAT1 is that membrane-anchored PC1 was not able to “activate” 

STAT6 by tyrosine-phosphorylation but that instead the soluble, cleaved PC1 tail was able 

to “co-activate” STAT6 that had previously been “activated” by IL13 cytokine signaling.

To clarify the mechanism of STAT regulation by PC1 we re-investigated the effect on 

STAT1/3. Although we were unable to detect activation of STAT1 by PC1, we discovered a 

remarkable dual mechanism of the regulation of STAT3 [24]. Membrane-anchored PC1 

indeed caused JAK2-dependent activation of STAT3 by tyrosine-phosphorylation, and the 

membrane-proximal part of the cytoplasmic tail of PC1 was identified as the JAK2 binding 

site. In addition, however, the cleaved, nuclear PC1 tail was also able to co-activate both 

STAT3 or STAT1 that had been tyrosine-phosphorylated by cytokine signaling. This 

indicated that PC1 can regulate STATs at two levels: First, membrane-anchored, full-length 

PC1 can act similar to an activated growth factor receptor and activate STAT1 and STAT3 

by JAK2-mediated tyrosine-phosphorylation. Second, after PC1 is cleaved - e.g. during 

renal injury - its cytoplasmic tail can co-activate either STAT1, STAT3 or STAT6 

depending on which of these STATs has previously been activated by specific growth 

factors. Therefore, cleaved PC1 cannot by itself activate STAT signaling but it can amplify 

STAT signaling in response to the growth factor environment of the cell which can lead to 

different biological responses including proliferation and apoptosis [24].
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The role of STAT3 in renal cyst growth

We reported that STAT3 is very strongly activated by tyrosine-phosphorylation in cyst-

lining cells in human ADPKD kidneys and four different PKD mouse models [24]. 

Independently, two other laboratories also reported strong STAT3 activation in two 

independent Pkd1 mouse models [41, 42]. Importantly, attempts to inhibit STAT3 in PKD 

mouse models have led to promising results. Leonard et al. treated Pkd1 mice with high 

doses of the natural compound curcumin and observed inhibition of renal cyst growth [41]. 

Curcumin has an extremely broad spectrum of molecular targets including Ser/Thr-kinases 

(incl. mTOR), Tyr-kinases, growth factor and cytokine receptors, inflammatory enzymes, 

and several transcription factors including STAT3 [43]. It is possible that the beneficial 

effect of curcumin observed in Pkd1 mice may be partially due to inhibition of STAT3. 

Curcumin was also recently found to inhibit cyst growth in an in vitro cell culture system 

and in embryonic kidney culture but any possible role of STAT3 was not investigated [44]. 

Another group identified the anti-parasitic compound pyrimethamine as a novel STAT3 

inhibitor and showed that it inhibits renal STAT3 activity and renal cyst growth in a Pkd1 

mouse model [42]. Similar results were obtained using another STAT3 inhibitor, S3I-201 

[42]. Even though the specificity towards STAT3 of these compounds is either poor or not 

well established, altogether these studies suggest that STAT3 may be a highly promising 

therapeutic target for treatment of PKD. More specific inhibitors or genetic approaches are 

needed to define the contribution of STAT3 as a driver of renal cyst growth.

What are the upstream activators of STAT3 in PKD? Since PC1, the protein affected in most 

cases of ADPKD, regulates STAT3 [37] [24] it is reasonable to assume that PC1 may play a 

role in the aberrant activation of STAT3 in renal cysts. However, the picture appears to be 

rather complicated. Two pathogenic patient mutations were identified that altered the ability 

of membrane-anchored PC1 to activate STAT3, however, one mutation increased STAT3 

activation while another mutation diminished it [24]. Furthermore, renal cyst growth can be 

caused by both reducing/eliminating expression of PC1 (e.g. in conditional KO models or by 

hypomorphic alleles) and by overexpression of PC1 [45]. In kidneys of ADPKD patients, 

PC1 has consistently been found to be overexpressed rather than being absent. Indeed, the 

cleaved, C-terminal tail of PC1 is strongly overexpressed in kidneys from ADPKD patients 

[24] and a PKD mouse model [39]. Since the PC1 tail has the ability to co-activate STAT 

signaling in response to cytokine/growth factor activity [24] it is possible that the observed 

STAT3 activation in PKD is due to a combination of STAT3-activating cytokines and the 

signal-amplifying property of the PC1 tail.

Several growth factors and upstream activators of STAT3 have been implicated in PKD 

including epidermal growth factor (EGF) and its receptor (EGFR), HGF and its receptor c-

Met, and Src. EGF [46] and HGF [47] are both elevated in PKD kidneys and found in cyst 

fluid, the EGFR is overexpressed and mis-targeted to the apical plasma membrane in cyst-

lining cells [46], and overexpression of c-Met leads to polycystic kidneys [48]. Treatment of 

PKD mouse models with EGFR inhibitors [49] and treatment of Pkd1-null embryos with a 

c-Met inhibitor [50] reduce renal cyst growth. A possible link between PC1 and c-Met/

EGFR signaling has been uncovered when it was found that the loss of PC1 leads to a 

trafficking defect of the E3-ubiquitin ligase c-Cbl which is required for the downregulation 
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of MET and EGFR after receptor activation [50]. Furthermore, Src - a tyrosine kinase that 

can activate STAT3 directly - is aberrantly activated in PKD, and the Src inhibitor SKI-606 

reduces renal cyst growth in PKD mice [51]. The immune system may also play a likely role 

in secreting STAT3-activating cytokines in PKD. For example, IL6 is secreted by T-cells 

and macrophages, and IL6-trans-signaling has been shown to activate STAT3 in renal tubule 

cells in response to AKI [28]. Macrophages were recently shown to promote cyst growth in 

PKD [52]. Interestingly, cystic epithelial cells secrete macrophage chemoattractants 

including MCP-1 [52] whose expression is known to be driven by STAT3 [53]. An 

interesting speculation is that STAT3-dependent expression of macrophage chemoattractants 

by tubule epithelial cells leads to macrophage recruitment which, in turn, further activate 

STAT3 in these cells by cytokine signaling. Such an interplay between renal epithelial cells 

and immune cells could lead to a vicious cycle of mutual positive feedback stimulation that 

causes persistent STAT3 activation and eventually cyst growth and fibrosis.

In addition to activation by tyrosine-phosphorylation, STAT3 is regulated by Ser727-

phosphorylation by mTOR- and ERK-dependent pathways [54] which are known to be 

activated in PKD [55, 56]. However, the situation is complicated by the fact that Ser727 

phosphorylation can lead both to increased and decreased nuclear STAT3 activity [57] [58]. 

Unphosphorylated STAT3 (U-STAT3) can also regulate gene expression which leads to a 

more sustained effect than the canonical effects of Tyr-phosphorylated STAT3 [59]. 

Increased expression of U-STAT3 has been observed in PKD mouse models [24, 41, 42]. U-

STAT3 has been suggested to play a role in increased expression of pro-fibrotic/

inflammatory genes in acute kidney injury [30]. U-STAT3 can also increase the expression 

of c-Met [60] which could potentially be involved in the observed upregulation of c-Met-

signaling in PKD.

Given the abundance of over-activated pathways that signal via STAT3 it is almost 

surprising that the role of STAT3 in PKD has only very recently been investigated. It is 

currently unknown which of the biological effects of STAT3-dependent gene activation may 

be most relevant in the pathogenesis of PKD. Based on the known roles of STAT3 in 

promoting proliferation, survival and resistance to apoptosis in cancer cells, these are 

obvious candidates. But other effects should not be discounted. For example, STAT3 drives 

the expression of heme oxygenase (HO) in response to kidney injury which is thought to 

lead to protection from oxidative stress and increased cell survival [28]. A role of HO 

activity in the regulation of renal cyst growth has recently been identified [61]. Furthermore, 

STAT3 is required for HIF-1α RNA expression under both hypoxia and growth signaling 

conditions (Niu, 2008). HIF-1α is an important regulator of tumor growth and angiogenesis 

and has been found to be up-regulated in the renal cyst-lining epithelium and implicated in 

the progression of PKD (Bernhardt, 2007).

Conclusions

Independent work from several laboratories has clearly established that STAT3 is strongly 

activated by tyrosine-phosphorylation in human ADPKD and several mouse models. 

Numerous STAT3-activating signaling pathways have already been shown to be involved in 

renal cyst growth in PKD. Initial approaches at directly inhibiting STAT3 activity in PKD 
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mouse models have been promising and it appears very likely that STAT3 is a valid target 

for PKD therapy. However, more specific experimental approaches are needed to clearly 

define the role of STAT3 in the pathogenesis of PKD. Another important challenge is to 

define the purpose of the regulation of STAT3 activity by PC1 both in the normal kidney 

and under pathological conditions. STAT3 is a hotly pursued target for the treatment of 

numerous types of cancer and it is likely that clinically useful drugs will emerge in the 

future. Such compounds should be tested for their potential efficacy for the treatment of 

PKD.
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Figure. Schematic of current model of STAT3 signaling in the normal and diseased kidney
During renal development, membrane-anchored, full-length PC1 may cause direct activation 

of STAT3 via JAK2 that is associated with its C-terminal cytoplasmic tail. Direct STAT3 

activation by PC1 would be an intrinsic pathway that is independent of growth factor-

mediated STAT3 signaling. It is currently unknown how the activation of STAT3 by full-

length PC1 is regulated. It is possible that an - yet unidentified - extracellular ligand may 

trigger STAT3 activation, or that the extracellular domain of PC1 engages in homo-typic 

interactions. It is also possible that fluid flow may regulate this activity. During renal injury 

and in PKD PC1 appears to undergo proteolytic cleavage that releases its cytoplasmic tail 

into the cytoplasm. This turns “off” the ability of the remaining membrane-anchored portion 

of PC1 to activate STAT3. However, the soluble PC1 tail can now translocate to the nucleus 

and co-activate STAT3 that has been activated by prior growth factor signaling. In addition 

to STAT3, the cleaved PC1 tail can also co-activate STAT1 and STAT6 (not shown here). 

Therefore, the cleaved PC1 tail may have the ability to amplify different signaling pathways 

that lead to different cellular responses depending on the growth factor and cytokine 

environment.

Weimbs and Talbot Page 10

Drug Discov Today Dis Mech. Author manuscript; available in PMC 2015 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


