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Abstract

Neuronal microcircuits in the superficial layers of the mammalian cortex provide the substrate for 

associative cortical computation. Inhibitory interneurons constitute an essential component of the 

circuitry and are fundamental to the integration of local and long-range information. Here we 

report that, during early development, superficially positioned Reelin-expressing neurogliaform 

interneurons in the mouse somatosensory cortex receive afferent innervation from both cortical 

and thalamic excitatory sources. Attenuation of ascending sensory, but not intracortical, excitation 

leads to axo-dendritic morphological defects in these interneurons. Moreover, abrogation of the 

NMDA receptors through which the thalamic inputs signal results in a similar phenotype, as well 

as in the selective loss of thalamic and a concomitant increase in intracortical connectivity. These 

results suggest that thalamic inputs are critical in determining the balance between local and long-

range connectivity and are fundamental to the proper integration of Reelin-expressing interneurons 

into nascent cortical circuits.

The ability of the neocortex to process sensory information and transform it into meaningful 

motor output depends on functional neural circuits involving a diversity of cell types. At the 

microcircuit level, neurons face the challenge of integrating peripheral sensory information 

and recurrent local cortical activity. Indeed, the maintenance of a proper balance between 

cortical and thalamic inputs is fundamental to information processing because the former 

inputs regulate the gain of thalamic excitation1. However, the mechanisms by which the 

formation of these complex cortical circuits is regulated, including the establishment and 
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maintenance of an appropriate balance between thalamic and intracortical inputs, are 

unknown.

Recent work has highlighted the importance of interneurons in the superficial layers of the 

cortex for cortical computation. Indeed, these neurons are strategically positioned to receive 

feedforward inputs from the thalamus and feedback inputs from the cortex. Superficial 

cortical interneurons, delineated by Reelin (Re) or vasointestinal peptide (VIP) expression, 

constitute approximately 30% of the total number of interneurons in the mouse brain and 

50% in the human brain2,3. The increase in abundance of this population across species is 

speculated to reflect the larger demand for associative functions in the human brain3. In the 

mouse, superficial cortical interneurons have been shown both to participate in local 

disinhibitory circuits4,5 and to control the transfer of long-range information from the motor 

cortex6, contralateral hemisphere7 and amygdala8. Despite the central role of these 

interneurons in cortical function, the developmental steps that regulate the establishment of 

their specific connectivity patterns are not understood. In an effort to understand the 

contribution of activity to interneuron development, we compared in a preceding study how 

dampening excitation of interneurons at particular developmental time points affected the 

positioning and maturation of specific interneuron subtypes9. We observed marked 

differences in the requirement for activity in VIP multipolar cells, which were apparently 

unaffected by attenuated levels of excitation, unlike Re+ neurogliaform cells, whose 

migration and morphological development were markedly impaired9. Despite discovering a 

requirement for activity for the development of Re+ neurogliaform cells, the presynaptic 

source and the neurotransmitter used, as well as receptor(s) required for this process, all 

remained unknown.

To begin to assess whether aspects of the developing circuit play a role in the proper 

integration of Re+ interneurons, we here examined the early connectivity of this subtype 

using a modified version of the rabies-based monosynaptic tracing method10. Although layer 

IV has been classically regarded as the primary recipient of ascending sensory information 

carried via thalamic terminals11, we found, unexpectedly, that during the first postnatal 

week, in addition to inputs from intracortical sources, Re+ interneurons in layers I–III also 

receive direct thalamic inputs.

Notably, presynaptic interference with thalamic but not intracortical inputs impaired the 

morphological development of Re+ interneurons. In exploring the mechanisms underlying 

this observation, we found that thalamocortical synapses use NMDA receptors (NMDARs) 

containing the NR2B subunit and that cell-autonomous removal of these receptors (but not 

NR2A-containing receptors) led to severe morphological defects in Re+ interneurons. 

Strikingly, in the absence of NMDAR-mediated currents, the ratio of thalamocortical to 

intracortical innervation was dramatically altered such that a concomitant increase in 

intracortical innervation occurred at the expense of thalamic afferents (Supplementary Fig. 

1). Our results indicate that ascending excitatory thalamic activity controls the balance of 

afferents impinging on select subtypes of superficial layer interneurons.
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RESULTS

Mapping the anatomical connectivity of developing cortical Re+ neurogliaform 
interneurons

Mature neurogliaform interneurons located in the superficial layers of the somatosensory 

cortex receive innervation from local pyramidal cells and GABAergic interneurons12. 

However, how this pattern of innervation develops is unknown. To determine the 

development pattern of afferent connectivity to these interneurons, we adapted the 

monosynaptic rabies tracing technique10,13,14 such that we could target individual Re+ 

interneurons. We electroporated at embryonic day (E) 15.5 a construct in which the 

expression of a histone2B.eGFP (hGFP) fusion protein reporter, TVA800 receptor and 

B19G glycoprotein was directed to interneurons through the use of an Dlx5/6 enhancer 

element9 (Dlx5/6-hGFP-TVA-B19G). Monosynaptic tracing of the afferents to this 

population was achieved through stereotactic injection of a recombinant rabies virus 

(SADΔG_mCherry(EnvA)) into the somatosensory barrel field 1 area (SSBF1) at postnatal 

day (P) 3, followed by analysis at P8–P10 (Fig. 1a and Supplementary Fig. 2). The focal 

rabies injection together with the sparse electroporation of ventrally generated interneurons 

further diluted by their dispersion during tangential migration to the cortex15 allowed us to 

target one starter cell in each experimental brain (Fig. 1a–d and Supplementary Fig. 2). 

Thus, this technique allowed us to map the afferent connectivity to individual Re+ 

interneurons during early postnatal periods. The identity of starter cells and presynaptic 

targets was confirmed through immunohistochemistry of excitatory cell and interneuron 

markers, combined with analysis of their morphological features (Supplementary Fig. 2; see 

also Online Methods). We found that each Re+ interneuron received inputs from 196 ± 48 

(s.e.m.) presynaptic neurons located in cortical and subcortical structures. Surprisingly, a 

considerable proportion of these inputs originated in the ventroposteromedial (VPM) and 

posteromedial (POm) nuclei of the thalamus (VPM and POm: 56 o 6%). In addition, Re+ 

interneurons received local afferents from pyramidal and subplate cells (14 ± 2%), as well as 

from other interneurons (30 ± 8%) (Fig. 1c). Notably, unlike in other interneuron 

populations we have investigated, such as VIP- and SST-expressing interneurons 

(Supplementary Fig. 3 and data not shown), we did not observe appreciable inputs onto the 

Re+ interneurons from ascending neuromodulatory fibers such as those from the dorsal 

raphe and the nucleus basalis (although, on the basis of our previous findings16, we infer 

such innervation must ultimately be established). As our previous experimental findings had 

suggested a prominent role for glutamatergic activity in driving the integration of Re+ 

interneurons into cortical circuits9, we focused our studies on the contributions of thalamic 

and intracortical excitatory afferents.

Re+ interneurons receive functional connectivity from somatosensory thalamic nuclei

To confirm that the anatomical pattern of connectivity revealed by the retrograde 

monosynaptic tracing corresponds to functional connectivity, we carried out 

channelrhodopsin-2 (ChR2)-assisted optogenetic mapping. To direct the expression of ChR2 

to cortical pyramidal cells, we used Emx1Cre or Bhlhb5Cre (Bhlhe22Cre) mouse driver lines 

in combination with a loxP.Stop.loxP (LSL) ChR2 (Rosa26LSL.ChR2-EYFP) line. To achieve 

expression of ChR2 in thalamic afferents, we used a vesicular glutamate transporter 
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(VGlut2, also known as Slc17a6) Cre driver mouse line in combination with a ChR2 

reporter: VGlut2Cre;Rosa26LSL.ChR2.EYFP or Olig3Cre;Rosa26LSL.ChR2.EYFP (Fig. 1e,f and 

Supplementary Fig. 4). Re+ interneurons were targeted for whole-cell recordings either by 

using the same electroporation approach we used for monosynaptic rabies or by recording 

unlabeled layer I cells. In accordance with the anatomical tracing, we recorded light-evoked 

monosynaptic excitatory responses from these neurons in the presence of tetrodotoxin 

(TTX) to block polysynaptic events and 4-aminopyridine (4AP) to enhance presynaptic 

vesicular release17–19 (Fig. 1e,f and Supplementary Fig. 5). In a separate set of experiments, 

we further validated these results by recording NMDAR-dependent monosynaptic responses 

in the presence of AMPA and kainate receptor antagonists (Supplementary Fig. 5b). In these 

experiments the observed EPSC latencies were around 10 ms, which matched the latencies 

of the AMPAR-mediated responses in the absence of TTX and 4AP (Supplementary Fig. 

5a,c,d). These values are consistent with what has been reported in previous studies using 

very similar approaches17–19. Taken together, the monosynaptic rabies tracing and 

optogenetic mapping revealed that, during the first postnatal week, developing Re+ 

interneurons positioned in the superficial layers of the cortex receive functional 

glutamatergic innervation not only from the expected local network, but also from 

somatosensory thalamic nuclei.

Attenuation of thalamic activity leads to abnormal differentiation of Re+ but not VIP+ 

subtypes

Because thalamic afferents provide excitatory drive to Re+ interneurons during the first 

postnatal week (see also Supplementary Fig. 6), we assessed their contribution to the 

morphological development of these neurons. To manipulate sensory activity relayed 

through the thalamus, we used a sensory-deprivation protocol20. In mice where the Re+ 

population had previously been labeled using in utero electroporation with a Dlx5/6-eGFP 

plasmid, we carried out chronic bilateral whisker plucking during the first postnatal week 

beginning at birth (Fig. 2a). Thalamic terminals were visualized through their expression of 

VGlut2 and, in control conditions, were found to typically form barrels in layer IV (Fig. 2b). 

In contrast, these terminals exhibited an abnormally diffuse termination pattern after sensory 

deprivation (Fig. 2b). While this manipulation did not perturb cortical layering or 

interneuron migration (Fig. 2b and Supplementary Fig. 7a,b), analysis of the morphological 

maturation of Re+ interneurons revealed severely truncated axonal arbors and dendritic trees 

(Fig. 2c,e–g and Supplementary Fig. 7c). This effect was specific to this subtype, as VIP+ 

interneurons, which we have previously shown to be unaffected by other activity 

manipulations9, developed proper axo-dendritic arbors in this setting (Fig. 2d,h–j and 

Supplementary Fig. 7d).

To further characterize the role of thalamic activity, we genetically blocked thalamic 

transmission and assessed the effect of this manipulation on interneuron maturation. As the 

VGlut2Cre driver also targets some cortical neurons (Supplementary Fig. 4g), we crossed 

Olig3Cre with Rosa26LSL.TeLC mice21, which restricted the expression of the tetanus toxin 

light chain (TeLC) to thalamic nuclei. The use of the Rosa26LSL.TeLC mouse line as an 

effective method for blockade of synaptic release has been previously documented22. 

Consistent with the expression of the toxin, we found a marked reduction in the levels of 
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vesicle-associated protein 2 (VAMP2), a synaptic protein cleaved by TeLC and required for 

synaptic vesicular release (Supplementary Fig. 8). This genetic blockade of thalamic activity 

led to a more robust disorganization of defined barrels in layer IV as compared to sensory 

deprivation (Fig. 2b). Furthermore, similarly to those in the whisker-plucked animals, Re+ 

interneurons showed morphological impairment after blockade of thalamic glutamate release 

(Fig. 2c,e–g). These results suggest that thalamic activity is fundamental to the axo-dendritic 

development of Re+ interneurons and are consistent with our previous findings indicating 

that, in contrast to VIP+ subtypes, Re+ interneurons are affected by alterations in activity9.

Severe attenuation of cortical glutamatergic activity does not perturb Re+ interneuron 
differentiation

Since the rabies tracing experiments indicated that Re+ interneurons also receive local 

cortical inputs, we sought to assess the impact of altering intracortical activity on 

interneuron development. We began by electroporating Emx1Cre mice with a Dlx5/6-

mCherry plasmid at E15.5 to label Re+ interneurons. Subsequently, we injected an adeno-

associated virus (AAV) containing a Cre-dependent genetic switch (FLEx switch) and 

TeLC.eGFP23 in the somatosensory and other cortical areas at P1 and analyzed their brains 

at P8–P10 (Fig. 3a). This experimental strategy has been successfully used to block synaptic 

output from hippocampal interneurons23 and cortical neurons22. We found that the 

TeLC.eGFP fusion protein was robustly expressed in pyramidal cells at P8 as reflected by 

the high levels of eGFP expression (Fig. 3b–d). In an effort to maximize the level of viral 

expression, we also carried out the viral injections at the time of the electroporation at 

E15.5. We indeed found that these early injections caused a marked decrease in the VAMP2 

protein levels (Fig. 3e). We then reconstructed the morphology of labeled Re+ interneurons 

surrounded by pyramidal cells expressing TeLC (Fig. 3f–h) in both sets of experiments and 

found no significant changes in the length or complexity of axonal arbors and dendritic trees 

(Fig. 3g,h).

Although we observed a marked decrease in VAMP2 levels upon injection with the AAV-

flex-TeLC.eGFP virus (Fig. 3e), we could not formally exclude the possibility that residual 

cortical glutamatergic signaling to Re+ interneurons persisted. To achieve a more complete 

blockade of intracortical glutamate release, we crossed Emx1Cre to Rosa26LSL.TeLC mice. 

Although the lethality of this cross is high, we obtained a single survivor 

Emx1Cre;Rosa26LSL.TeLC (hereafter, Emx1-TeLC) mouse (out of 15 crosses). It appeared 

healthy and was undistinguishable from its littermates. Consistent with the cortical 

expression of tetanus toxin in this mouse, we observed a reduction in VAMP2 levels in the 

cortex but not in ventral structures (Fig. 3i). To confirm the absence of cortically evoked 

synaptic responses, we performed in vitro electrophysiology and at the same time filled 

layer I Re+ interneurons with biocytin to reveal their morphology. In the same session, we 

recorded from a littermate Rosa26LSL.TeLC (Cre−) animal. We subsequently recorded from 

additional Rosa26LSL.TeLC (Cre−) animals to increase the number of data points for both the 

electrophysiological and morphological analyses. To test for the blockade of intracortical 

inputs onto Re+ interneurons, we placed a bipolar stimulating electrode under the recorded 

cell in layer II and stimulated at increasing intensities (0.2–3.2 mA) with a 60-μs-long 

square pulse (Fig. 3j). All control cells displayed evoked EPSCs at −70 mV, but only one of 
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the cells recorded in the Emx1-TeLC animal showed any response, and it was very small, 

consistent with the reduced levels of VAMP2 protein (Rosa26LSL.TeLC: −83.89 ± 17.62 pA, 

n = 14 cells; Emx1-TeLC: −3.60 ± 3.60 pA, n = 4 cells; P = 0.0008, Mann-Whitney test) 

(Fig. 3j,k). Interestingly, though, we were able to evoke EPSCs after placing the stimulating 

electrode in layer I, presumably by stimulating thalamic afferents, consistent with the 

specific expression of TeLC in cortical but not thalamic terminals (Fig. 3j,k). Despite the 

blockade of intracortical excitation, we found that Re+ interneurons developed normal 

morphologies in the Emx1-TeLC mouse (Fig. 3l,m).

In an effort to increase the sample size for this analysis, we generated mice containing a 

Bhlhb5Cre allele and loxP-flanked (fl) Munc18 (Stxbp1) alleles24. Bhlhb5Cre;Munc18fl/fl 

mice were born at Mendelian frequencies and survived until P15. Despite a marked 

reduction in cortical thickness (Fig. 3n), Re+ interneurons in layer I exhibit normal 

morphology in Bhlhb5Cre;Munc18fl/fl mice compared to Munc18fl/fl controls (Fig. 3o,p). 

These results show that we can substantially reduce the afferent intracortical drive to Re+ 

interneurons without noticeably impairing their development. Taken together, our results 

suggest that early thalamic activity is uniquely critical for the proper morphological 

development of Re+ interneurons. Hence, while it appears likely that, under physiological 

circumstances, secondary activation of excitatory cortical neurons augments the 

developmental excitatory drive that neurogliaform cells receive from the thalamus, the direct 

thalamic excitatory drive to neurogliaform cells alone is sufficient to allow them to develop 

normally.

Thalamo-cortical inputs preferentially activate NR2B-containing NMDARs

What, then, are the molecular and functional distinctions that result in the differential 

requirement of thalamic versus intracortical activity for Re+ neurogliaform interneuron 

development? In the hippocampus, inputs from the perforant and Schaffer collateral 

pathways onto CA1 pyramidal cells can be distinguished by the selective enrichment of 

NR2B-containing NMDARs25. However, whether a similar mechanism could operate in Re+ 

neurogliaform interneurons, which possess smaller dendritic arbors, remained unknown.

NMDAR-mediated currents are prominent in several neuronal populations, including 

maturing cortical pyramidal cells26, olfactory granule cells27 and hippocampal 

interneurons28. To dissect the receptor composition of thalamic and intracortical synapses, 

we used a Rosa26LSL.ChR.EYFP line in combination with either Emx1Cre and Bhlhb5Cre driver 

lines, which exclusively target excitatory cortical neurons, or a VGlut2Cre driver line, which 

preferentially (but not exclusively) induces recombination in thalamic neurons (hereafter 

Emx1-ChR2 and VGlut2-ChR2, respectively) (Fig. 4a and Supplementary Fig. 4). We then 

performed optogenetic stimulation of the different afferents and recorded NMDAR-

dependent responses from Re+ interneurons (Fig. 4d–f). Most cortical NMDARs are 

heterotetramers composed of two obligatory NR1 and two NR2 (NR2A or NR2B) subunits, 

with hippocampal interneurons expressing both 2A and 2B28,29. Notably, depending on the 

NR2 subunit present, the receptors may display differential downstream signaling 

pathways26. We therefore assessed the NMDAR composition in Re+ interneurons activated 

in VGlut2-ChR2 and in Emx1-ChR2 mice, by analyzing their degree of blockade by the 

De Marco García et al. Page 6

Nat Neurosci. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NR2B-specific antagonist ifenprodil. We found that light-evoked NMDAR-mediated 

synaptic responses showed a larger NR2B-component in VGlut2-ChR2 than in Emx1-ChR2 

mice (Fig. 4d–f). Based on the observed patterns of ChR2 expression in these two 

compound genotypes, we infer that the thalamocortical projection preferentially activates 

NR2B-containing receptors on the Re+ interneuron population.

In an effort to assess the robustness of the results obtained by our experimental design, we 

performed two more sets of experiments. First, to activate the intracortical inputs onto Re+ 

interneurons, we used a bipolar stimulating electrode placed close to the recorded cell 

(Supplementary Fig. 9). Second, in an effort to overcome the potentially confounding effect 

of the cortical expression of VGlut2, we performed thalamic injections with an 

AAV1.Ef1a.dflox.hChR2.mCherry.WPRE. hGH (where Ef1a represents human elongation 

factor-1α (EEF1A), hChR2 represents an H134R variant and hGH represents the human 

growth hormone polyadenylation sequence) virus in VGlut2Cre mice at P2 and performed 

recordings at P9–P12 (Fig. 4b). This strategy allowed robust viral expression in the thalamus 

without impinging on the cortex (Fig. 4c). Although there was more variability in the 

AMPA-mediated responses among the thalamically injected mice (possibly due to 

variability in the levels of ChR2 expression and/or number of thalamic neurons infected with 

the virus), there was no statistical difference between them and the responses from VGlut2-

ChR2 mice (P = 0.54 for charge, Mann-Whitney), and the results we obtained using the two 

approaches were comparable (Fig. 4 and Supplementary Fig. 9).

Abrogation of NMDAR activity leads to aberrant Re+ interneuron differentiation

To assess the contribution of NMDARs versus AMPARs to the development of Re+ 

interneurons, we carried out genetic and pharmacological blockade of the different types of 

receptors. To ablate all NMDAR-mediated responses, we co-electroporated Dlx5/6-eGFP 

and Dlx5/6-Cre plasmids into NR1fl/fl (Grin1fl/fl) mice (Fig. 5a). By removing the NR1 

subunit, we efficiently ablated NMDAR-dependent currents in Dlx5/6-Cre;NR1fl/fl Re+ 

interneurons while maintaining AMPAR-dependent currents (Fig. 5b). To selectively ablate 

NR2B-containing receptors, we electroporated NR2Bfl/fl mice (Fig. 5a). As judged by 

comparison of their passive electrophysiological properties and ability to discharge action 

potentials to control cells, Re+ interneurons with NMDAR deletion appeared healthy 

(Supplementary Fig. 10). Re+ interneurons migrated to their normal position in the 

somatosensory cortex (data not shown). In both NR1fl/fl and NR2Bfl/fl mice, however, we 

found that, as with manipulations that attenuate thalamocortical output, Re+ (but not VIP+) 

interneurons failed to mature properly and displayed both truncated axonal arbors and 

dendritic trees (Fig. 5c–h and Supplementary Fig. 10). In a parallel experiment, we observed 

similar morphological defects after subdural administration of ifenprodil (0.5 nM) at P3 

(Supplementary Fig. 11). These defects were specific to the loss of NR2B-containing 

receptors, as Re+ interneurons developed normally in NR2A−/− (Grin2a−/−) mice (Fig. 6), as 

well as after blockade of AMPA receptors in vivo (Supplementary Fig. 12). Thus, the 

activation of NR2B-containing NMDARs is selectively required for the proper maturation of 

Re+ interneurons allocated to the superficial layers of the cortex.
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A critical period for the requirement of NMDARs in morphological development

Our previous observations indicate that activity is required for morphological development 

of Re+ interneurons after P3 (ref. 9). To assess whether the requirement for NMDAR 

activation follows a similar time course, we selectively removed the receptor at different 

developmental time points. After electroporating Dlx5/6-CreER (estrogen receptor) and 

CAG-STOP-GFP plasmids in NR1fl/fl mice at E15.5, we subsequently administered 

tamoxifen at P3 or P6 and analyzed Re+ interneuron morphology at P8. Tamoxifen 

administration at P3 but not at P6 phenocopied the morphological defects observed in the 

embryonic Dlx5/6-Cre ablation experiments (Supplementary Fig. 13). These results indicate 

that NR2B-containing NMDARs driven by the thalamic inputs are required in Re+ 

interneurons between P3 and P6 for their proper morphological development.

Severe reduction of thalamic inputs after abrogation of NMDAR function

Does the morphological impairment observed in NMDAR-ablated Re+ interneurons 

preclude their proper integration into nascent cortical circuits? To determine whether the 

afferent connectivity onto NMDAR-ablated interneurons was affected, we performed 

monosynaptic rabies tracing after cell-autonomous removal of NMDARs. We first 

electroporated Dlx5/6-hGFP-TVA-B19G and Dlx5/6-Cre plasmids into NR1fl/fl mice and 

subsequently injected the SADΔG_mCherry(EnvA) virus at P3 (Fig. 7). At P8, we observed 

a single starter cell (Re+) per brain in the control (Cre−, Ctrl; n = 6 mice) and the NMDAR-

ablated (Cre+, Dlx5/6-Cre;NR1fl/fl; n = 3 mice) groups, corroborating previous results that 

ablation of these receptors does not affect Re+ cell survival. Furthermore, the total number 

of presynaptic traced cells was not significantly different between control (190 ± 55) and 

Dlx5/6-Cre;NR1fl/fl (150 ± 47; P = 0.646) interneurons (Fig. 7d). However, the distribution 

of presynaptic partners was significantly altered by NMDAR ablation. Dlx5/6-Cre;NR1fl/fl 

interneurons showed a severe reduction in thalamic afferent connectivity (Ctrl: 60% ± 6 

versus Dlx5/6-Cre;NR1fl/fl: 16% ± 2, P < 0.01) and a concomitant increase in intracortical 

pyramidal cell innervation (Ctrl: 14% ± 1 versus Dlx5/6-Cre;NR1fl/fl: 42% ± 2, P < 0.0001) 

(Fig. 7c,e,f). In contrast, interneuron afferent connectivity was not significantly changed in 

Dlx5/6-Cre;NR1fl/fl interneurons (Ctrl: 27% ± 6 versus Dlx5/6-Cre;NR1fl/fl: 42% ± 4, P = 

0.103) (Fig. 7f). It is interesting that, despite developing a rudimentary dendritic tree, 

Dlx5/6-Cre;NR1fl/fl interneurons received exuberant yet aberrant intracortical innervation. 

Remarkably, even in the presence of substantial glutamatergic signaling through AMPARs, 

Dlx5/6-Cre;NR1fl/fl interneurons failed to develop proper axonal processes and to integrate 

properly into nascent cortical circuits. Together these data suggest that activation of 

NMDARs mediates the proper integration of maturing interneurons in the brain.

DISCUSSION

Our results indicate that specific types of early activity play an active and crucial role in 

directing the formation of selective connectivity patterns. We found that Re+ neurogliaform 

interneurons respond differentially to distinct glutamatergic inputs, which regulate their 

selective synaptic connectivity. Our observations complement recent findings indicating that 

glutamatergic transmission from retinal ganglion cell (RGC) axons from the ipsilateral eye 

is fundamental in preventing aberrant contralateral RGC axon innervation in the dorsal 
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lateral geniculate nucleus (dLGN)30. In addition, manipulation of spontaneous cholinergic 

retinal activity, while sparing overall activity levels, prevents the eye-specific segregation 

and refinement of RGC projections in the dLGN31. Similarly, our activity manipulations 

affecting NMDAR-mediated signaling, even under conditions that preserve both intrinsic 

electrophysiological properties and AMPAR-mediated responses, resulted in profound 

neuronal maturation defects.

Re+ interneurons in the somatosensory cortex receive abundant local innervation from 

pyramidal cells, as revealed by glutamate uncaging in adult cortical slices12. In addition to 

this pattern of local connectivity, recent experimental evidence has revealed that Re+ 

interneurons of layer I in the prefrontal cortex receive monosynaptic connections from the 

thalamic ventromedial nucleus and in turn provide feedforward inhibition to layer II 

pyramidal cells17. Together these findings suggest that the appropriate connectivity of Re+ 

interneurons (and perhaps other subtypes) may depend on critical specific interactions 

occurring when interneurons cease migrating and attain their final position. Our in vivo 

analysis provides one example in which Re+ interneurons allocated to layers I through III 

receive strong thalamic drive during development, which is essential in determining their 

mature connectivity.

In addition to providing specific insights regarding the development of connectivity onto 

Re+ interneurons, our findings suggest that monosynaptic tracing using the rabies virus 

provides an effective method for determining the afferent connectivity of cortical neurons at 

different developmental time points. Furthermore, to rule out a bias of the rabies tracing to 

GABAergic and glutamatergic synapses, we carried out the same experiment in a larger 

subset of superficial interneurons, including VIP- and calretinin-expressing subtypes. We 

found that, in contrast to Re+ interneurons, these populations of superficial interneurons 

received innervation from the nucleus basalis at P6, indicating that the rabies tracing 

strategy does not preclude per se the tracing of these synapses (Supplementary Fig. 3). 

These results are in agreement with recently published data on rabies tracing of mature VIP+ 

interneurons32. VIP+ interneurons present in the visual cortex receive substantial innervation 

from intracortical populations and the nucleus basalis, with a minor contribution from the 

dLGN, indicating that the rabies virus does not preferentially label thalamic synapses over 

cortical or cholinergic ones.

Our findings extend previous work demonstrating that sensory experience shapes the 

topography of the sensory cortices33–37 directly and not through second order cortical 

neurons. To exclude generalized effects of activity on cortical cytoarchitecture, we 

performed a more restricted manipulation of thalamic activity, whisker-plucking, which 

does not cause layering defects, and confined our analysis to the first postnatal week. 

Indeed, the total number and the distribution of pyramidal cells in superficial and deep 

layers were similar in control and sensory-deprived brains (Fig. 2b and Supplementary Fig. 

7a,b). Similar results were obtained after genetic blockade of thalamic transmission (Fig. 

2b–g and Supplementary Fig. 8). In spite of the normal layering of the cortex at P8, these 

manipulations induced profound defects in the morphological development of Re+ 

interneurons.
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How do different afferent sources of excitation differentially impact development? Re+ 

interneurons distinguished between seemingly similar inputs on the basis of the postsynaptic 

receptors that the afferents impinge on. The prominent requirement for NMDARs during 

CNS maturation is well established26. In cortical excitatory neurons, the NR2B subunit is 

required for proper dendritic patterning38 and is also differentially used by hippocampal 

interneuron subtypes sharing the same embryonic origin as the Re+ interneurons studied 

here28. Our results extend these observations and suggest that there is a preferential 

allocation of NR2B-containing NMDARs to the postsynaptic sites in the dendrites of Re+ 

interneurons that receive thalamic input.

The present results, combined with findings from both our laboratory9 and others39, suggest 

that the roles of activity in interneuron development are both specific to subtype and 

multifaceted, and affect both migration and differentiation. Re+ but not VIP+ interneurons 

failed to migrate to appropriate laminae and displayed impaired morphological maturation 

after an overall dampening of neuronal excitability. Similarly, Re+ but not VIP+ 

interneurons failed to develop normal axonal arbors and dendritic trees after sensory 

deprivation, genetic blockade of thalamic glutamate release or blockade of NMDAR-

dependent currents. These results indicate that Re+ neurogliaform interneurons are critically 

reliant on electrical activity to mature and integrate into cortical circuits, whereas VIP+ 

interneurons may use either intrinsic genetic programs or as-yet-unidentified sources of 

activity. Thus, an intriguing combination of intrinsic and extrinsic mechanisms is used for 

the integration of distinct interneurons into cortical circuits.

In summary, our results indicate that emergent electrical activity is crucial in shaping the 

assembly of select cortical neuronal circuits. These observations emphasize that 

understanding how brain wiring is achieved will require a case-by-case examination of how 

different cell types and the cortical microcircuits they contribute to are assembled. This in 

turn suggests that developmental insults are likely to differentially affect the formation of 

specific circuit configurations. As such, understanding the rules governing the integration of 

different interneurons subtypes into cortical circuits may provide insights into the 

pathogenesis of neuropsychiatric disease.

METHODS

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

Mouse strains

Pregnant mice were electroporated at 15 d of gestation (E15.5). Strains from Jackson 

laboratories used in this study include Swiss Webster, NR1fl, Emx1Cre, VGlut2Cre, RCEfl and 

Ros26LSL.ChR2.EYFP (Ai32). In addition, we used Olig3Cre (a gift from Y. Nakagawa, 

University of Minnesota), Bhlhb5Cre (a gift from L. Gan, University of Rochester Medical 

Center), R26floxstop-TeNT (which we called Rosa26LSL.TeLC for consistency with the viral 

tools; a gift from M. Goulding, Salk Institute for Biological Studies), NR2A−/− (a gift from 

S. Nakanishi, Kyoto University), NR2Bfl (a gift from H. Monyer, University of Heidelberg), 
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a Munc18fl/fl (a gift from M. Verhage, VU University Amsterdam) and a 5HT3ACre (a gift 

from N. Henitz, Rockefeller University) mouse lines. Tamoxifen (20 mg/ml in corn oil; 50–

100 μl per pup) was administered by oral gavage at selected time points (P3, P6). 

Information about the mouse strains including genotyping protocols can be found at http://

www.jax.org/ and elsewhere21,24,27,40,41.

In utero electroporation

The protocol for mouse in utero electroporation has been described elsewhere9,42,43. The 

plasmids used in the electroporation experiments were generated using standard cloning 

techniques. To generate the Dlx5/6-hGFP-TVA-B19G plasmid, the H2BGFP-F2A-TVA-

T2A-B19 fragment (a gift from M. Goulding, Salk Institute for Biological Studies) was 

cloned into a Dlx5/6-Pmin-polyA plasmid. Mouse colony maintenance and handling was 

performed in compliance with the protocols approved by the Institutional Animal Care and 

Use Committee of the New York University School of Medicine.

Viral injections

Adeno-associated virus containing the eGFP-tagged tetanus toxin light chain (TeLC) 

reading frame inverted in a Flip-excision (flex) cassette23 (AAV1/2.flex.TeLC.eGFP) (a gift 

from P. Wulff, University of Aberdeen) was injected unilaterally into the cortex of 

electroporated (Dlx5/6.mCherry) wild-type mice at E15.5 or P0. For the E15.5 viral 

injections, we first performed the electroporation and promptly injected the AAV virus in 

the developing cortex of Emx1Cre embryos. For all postnatal injections, animals were 

anesthetized by inducing hypothermia on ice and kept on either ice wrapped in a cloth or an 

ice-cold clay mold. For rabies tracing experiments, recombinant mCherry-expressing, 

ASLV-A envelope glycoprotein (EnvA)-pseudotyped, glycoprotein-deleted rabies virus 

SADG-mCherry(EnvA) (gift from E. Callaway, Salk Institute for Biological Studies)44,45 

was injected unilaterally into the cortex of electroporated wild-type, NR1fl/fl or 5HT3ACre 

mice between postnatal days 0 and 3. To achieve ChR2 expression in thalamic terminals, we 

unilaterally and stereotactically injected AAV1.Ef1a.dflox.hChR2.mCherry.WPRE.hGH 

(University of Pennsylvania viral vector core) into the thalamus of VGlut2Cre animals at P2. 

In these experiments, we did not observe any ectopic expression of the virus in the 

neocortex, as judged by immunofluorescence and the lack of light-induced depolarization in 

randomly picked excitatory cells around the injection site. For the rabies experiments, we 

injected 100 nl of virus; for the thalamic ones, 300 nl. These injections were done over a 2-

min period using a glass micropipette (tip diameter ~20 μm) attached to a Nanolitre 2000 

pressure injection apparatus (World Precision Instruments). The pipette was held in place for 

2 min after each injection before being completely retracted from the brain. To allow for 

adequate virus expression after the injection, mice were returned to their home cage for 5–9 

d before either fixing the brain for cryostat section analysis or using a vibratome for acute 

slice preparation and electrophysiology.

Immunohistochemistry, neuronal morphology analysis and subdural injections

The methodology for these analyses has been previously described9. The identity of 

presynaptic partners identified by means of rabies monosynaptic tracing was determined by 
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coexpression of mCherry (SADG-mCherry(EnvA)), excitatory cell markers (rabbit anti-

RORβ, 1:1000 (a gift from G. Miyoshi, New York School of Medicine); rabbit anti-CTIP2, 

1:1000, Abcam (ab28448); rabbit anti-Tbr1, 1:1000, Abcam (ab31940); rabbit anti-Satb2, 

1:500, Abcam (3ab4735) and GABAergic interneuron markers (guinea pig anti-GABA, 

Abcam (ab17413), mouse anti-Reelin, 1:500, MBL (D223-3); rabbit anti-dsRED, Abcam 

(ab62341)). For assessing the effectiveness of tetanus toxin expression, we used a mouse 

anti-VAMP2 BT antibody (1:200, Synaptic Systems 104 211BT). Successful targeting of the 

desired Re+ and VIP+ populations in all of our experiments was confirmed through post hoc 

examination of marker expression (rabbit anti-VIP 1:1000, Immunostar, 20077). The 

morphology of Cre+ NR1fl/+ and NR2Bfl/+ interneurons was not significantly different than 

that of control Cre− NR1fl/fl or NR2Bfl/fl interneurons (Cre-NR1fl/fl versus Cre-NR2Bfl/fl: 

axonal length, P = 0.30; dendritic length, P = 0.11); therefore, these interneurons were all 

grouped in the controls. Similarly, wild-type non-sensory-deprived and Rosa26LSL.TeLC mice 

were grouped in the control group (axonal length, P = 0.222; axonal nodes, P = 0.793; 

dendritic length, P = 0.879). Finally, NR2A+/+ and NR2A+/− mice were also grouped in a 

control group (axonal length, P = 0.33; axonal nodes, P = 0.73; dendritic length, P = 0.563; 

dendritic nodes, P = 1).

Analysis of presynaptic inputs

To quantify the number of cortical and subcortical inputs, all cryostat sections from an 

individual rabies-infected brain were collected for analysis. Confocal z-stacks were analyzed 

with the custom-made Matlab plug-in “Reference Axes”13. The program allowed 

digitalization of the images and quantification of cortical excitatory (Tbr1+, Ctip2+, RORβ+, 

Satb2+) neurons, thalamic (VPM and POm) and GABAergic interneurons (GABA+). 

Morphological criteria were also used to confirm the identity of the neurons. The identity of 

presynaptic inputs was determined as the proportion of the total number of mCherry+ 

neurons (cortical and thalamic) that expressed either cortical excitatory or GABAergic 

markers or were located in the VPM and POm nuclei of the thalamus. For identification of 

the starter cells in the rabies tracing experiments, 20-μm cryostat sections were analyzed for 

GFP and mCherry coexpression under an Olympus upright microscope equipped for multi-

fluorescence analysis before processing the tissue for immunohistochemistry. The sections 

that showed cells coexpressing GFP and mCherry (starter cells) were processed for 

immunohistochemistry against Reelin, GFP and mCherry. All of the brains used in our 

experiments exhibited a single Re+ starter cell (Supplementary Fig. 2). The sections that did 

not contain starter cells (240–280 sections per brain) were processed for presynaptic partner 

analysis. Immunohistochemistry was performed on these sections with a cocktail of rabbit 

antibodies against excitatory cell markers (Satb2, Ctip2, RORβ, Tbr1) and a guinea pig anti-

GABA antibody to label interneurons. Subsequently, the sections were processed with anti-

rabbit Alexa 488 and anti–guinea pig Cy5 secondaries in combination with mCherry 

fluorescence to identify mCherry+ cortical excitatory and inhibitory neurons.

Electrophysiology and analysis

Whole-cell patch-clamp electrophysiological recordings were performed on eGFP-positive 

and eGFP-negative cells of layers I–III in acute brain slices prepared from P8–P12 animals. 

No data reported have been previously published with the exception of the control and 
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Kir2.1-expressing Re+ cells used for comparison of the intrinsic electrophysiological 

properties to the NMDA receptor knockout Re+ cells42 (Supplementary Fig. 10).

Briefly, animals were decapitated and the brain was dissected out and transferred to 

physiological Ringer’s solution (ACSF) cooled to 4 °C, of the following composition (mM): 

125 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2 and 20 glucose. The 

brain was then glued to a stage and slices 250–300 μm were cut using a vibratome 

(Vibratome 3000 EP). The slices were allowed to recover in recording ACSF at room 

temperature for at least 45 min before recording. Acute slices were then placed in a 

recording chamber mounted on the stage of an upright microscope (Axioscope, Zeiss, 

Germany) equipped with immersion differential interference contrast objectives (5×, 40×) 

coupled to an infrared camera system (Zeiss), superfused at a rate of 1–2 ml/min with 

oxygenated recording ACSF and maintained at a temperature of 31 °C. An EGFP filter was 

used to visualize the fluorescent interneurons in epifluorescence.

Patch electrodes were made from borosilicate glass (Harvard Apparatus) and had a 

resistance of 4–8 MΩ. For both intrinsic electrophysiological properties and spontaneous 

excitatory postsynaptic current (sEPSC) recordings, the patch pipettes were filled with a 

solution containing the following (in mM): 128 potassium gluconate, 4 NaCl, 0.3 Na-GTP, 5 

Mg-ATP, 0.0001 CaCl2, 10 HEPES.

For acquisition of both AMPA receptor–mediated and NMDA receptor–mediated excitatory 

currents in the same cell, the pipettes were filled with the following (in mM): 126 cesium 

methanesulfonate, 4 CsCl, 0.3 Na-GTP, 4 Mg-ATP, 10 HEPES, 20 D-trisphosphocreatine. 

In all cases 5 mg/ml biocytin (Sigma) was added in the recording solutions.

All experiments that involved extracellular stimulation with an electrode or optogenetic 

stimulation of channel rhodopsin were performed in voltage clamp in the presence of 

GABAA receptor blockers, either bicuculine (20 μM) or SR95531 (20 μM), except for slices 

from the Emx1Cre;Rosa26LSL.TeLC/TeLC animal, where no drugs were added. AMPAR-

mediated currents were recorded at −70 mV, whereas NMDAR-mediated currents were 

recorded at +40 mV in the presence of 20 μM CNQX. For all optogenetic stimulation 

experiments, TTX (1 μM) and 4-aminopyridine (400–800 μM) were present in the bath 

unless otherwise specified.

The blue light source (Mightex BioLED Light Source, 470 nm or Polygon 400) used to 

stimulate channel rhodopsin was mounted on the microscope either in place of the 

binoculars or on the side between the camera and the objective, in which case light was 

directed toward the specimen by means of a dichroic mirror. In both cases, light reached the 

slice through a 40× Zeiss objective. The light intensity used with the BioLED in the 

presence of TTX and 4AP was 100% and the duration was set to obtain the optimal 

monosynaptic responses (50–100 ms long). When using the Polygon 400 to stimulate 

thalamic fibers expressing Ch2R via AAV injections in the presence of TTX and 4AP, the 

duration and intensity used was more variable: 5–50 ms and 5–100%, respectively. The 

inter-stimulus interval was always set to 15–20 s to allow for a full recovery of the activated 

channels.
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Experiments were performed in current-clamp and voltage-clamp modes using the Axopatch 

200B amplifier (Molecular Devices). sEPSCs were recorded in multiple epochs of 2–4 min 

at Vh = −70 mV with a sampling rate of 10 kHz and were filtered online at 3 kHz. The 

recorded sEPSCs were analyzed using Minianalysis software (Synaptosoft, Decatur, GA, 

USA) or Clampfit. The evoked synaptic values were obtained from the average trace after 

visual inspection of individual events. The area was measured as an absolute value of the 

integral of the synaptic current. The latency was measured as the time between the 

beginning of the deflection of the electrical stimulus artifact or the light onset and the onset 

of the synaptic current. The decay time was calculated by fitting the average trace with a 

single exponential. When performing extracellular stimulation, a rate of 0.1 Hz was 

delivered by using rectangular pulses of 0.05–0.1 ms width with a concentric platinum/

iridium bipolar electrode (CBARC75, FHC, Brunswick, ME) connected to a constant-

current isolation unit (Digitimer LTD, Model DS3). The intensity of stimulation was usually 

1.5–2.5 times the minimum intensity required to evoke a response. This intensity evoked a 

single synaptic component most of the time. The stimulation electrode was placed at the 

bottom right side of the recorded cell in layer 2 and right next to the cell when moved to 

layer 1. Access resistance was always monitored to ensure the stability of recording 

conditions. Cells were accepted for analysis only if the initial series resistance was less than 

or equal to 40 MΩ and did not change by more than 20% throughout the recording period. 

No compensation was made for access resistance and no correction was made for the 

junction potential between the pipette and the ACSF.

Passive and active membrane properties were recorded in current-clamp mode by applying a 

series of sub- and suprathreshold current steps. The analysis was done in Clampfit. The 

resting membrane potential was ascertained in current clamp right after rupturing the patch 

by applying zero current. All values presented in the manuscript are average ± s.e.m. and all 

comparisons have been done using a Mann-Whitney test.

The data from the Bhlhb5Cre × Ai32 and Emx1Cre × Ai32 crosses were collected from 4 cells 

from the Bhlhb5Cre × Ai32 cross and 7 cells from the Emx1Cre × Ai32 cross. We compared 

to the two data sets for the NMDA/AMPA charge ratio, percentage of amplitude and 

percentage charge reduction by ifenprodil. The P values are, for NMDA/AMPA charge 

ratio, P = 0.894; for percentage of NMDA amplitude reduction, P = 0.567; for percentage of 

NMDA charge reduction, P = 0.833). On the basis of these data, we grouped the values from 

the two crosses together and compared them to the ones we got from the VGlutCre × Ai32 

cross and the VGlut2Cre thalamic injection at P2.

Whisker trimming protocol and morphological analysis

Previously electroporated (Dlx5/6-eGFP) newborn pups were subjected to whisker plucking 

daily from P0 to P8. Pups from the same litter were randomly divided into two groups. In 

the experimental group, all the whiskers and most of the facial hair on the whisker pad were 

plucked bilaterally using sterile forceps, whereas in the control group all the whiskers were 

spared. During the procedure, all pups from both groups were briefly separated from the 

dam and anesthetized by inducing hypothermia (3–5 min) and subsequently allowed to 

recover on a heating pad after completion of the procedure and returned to their dam. We 
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analyzed the morphology of control (n = 24), sensory-deprived (n = 12) and TeLC (n = 8) 

interneurons.

Statistical analysis

Statistical analysis was performed by using either unpaired t-tests (two-tailed distribution) or 

Mann-Whitney U tests. For all electrophysiology data analysis, the nonparametric Mann-

Whitney test was chosen, as the number of values compared was not high enough to merit a 

normality test and usage of the unpaired t-test. All values represent mean values ± s.e.m. For 

all other data, normality and equality of variance were formally tested with SPSS Statistics 

software. The experiments were not blinded to genotype. No statistical methods were used 

to predetermine sample sizes, but our sample sizes are similar to those reported in previous 

publications9,42.

A Supplementary Methods Checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are grateful to S. Arber, B. Benedetti, J. Burrone, X. Jaglin, J. Kaltschmidt, S. Lee, D. Pisapia and S. Shi for 
comments on the manuscript. We thank E. Callaway (Salk Institute for Biological Sciences) for providing the 
recombinant rabies virus; M. Tripodi, A. Ponti and S. Arber for guidance with the rabies method analysis; and L. 
Yin, J. Deng and J. Dai for technical assistance. N.V.D.M.G. is a recipient of a NARSAD Young Investigator 
Award and is also supported by grants from the US National Institutes of Health (5 K99 MH095825-02; 3 K99 
MH095825-02S1). T.K. has been supported by the Patterson Trust postdoctoral fellowship in brain circuitry and a 
Roche postdoctoral fellowship. Research in the Fishell laboratory is supported by the US National Institutes of 
Health, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, New York 
State Stem Cell Science and the Simons Foundation.

References

1. Lien AD, Scanziani M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat 
Neurosci. 2013; 16:1315–1323. [PubMed: 23933748] 

2. Ma T, et al. Subcortical origins of human and monkey neocortical interneurons. Nat Neurosci. 2013; 
16:1588–1597. [PubMed: 24097041] 

3. Hansen DV, et al. Non-epithelial stem cells and cortical interneuron production in the human 
ganglionic eminences. Nat Neurosci. 2013; 16:1576–1587. [PubMed: 24097039] 

4. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the 
logic of connections between molecularly distinct interneurons. Nat Neurosci. 2013; 16:1068–1076. 
[PubMed: 23817549] 

5. Pi HJ, et al. Cortical interneurons that specialize in disinhibitory control. Nature. 2013; 503:521–
524. [PubMed: 24097352] 

6. Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B. A disinhibitory circuit mediates motor integration 
in the somatosensory cortex. Nat Neurosci. 2013; 16:1662–1670. [PubMed: 24097044] 

7. Palmer LM, et al. The cellular basis of GABAB-mediated interhemispheric inhibition. Science. 
2012; 335:989–993. [PubMed: 22363012] 

8. Letzkus JJ, et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. 
Nature. 2011; 480:331–335. [PubMed: 22158104] 

9. De Marco García NV, Karayannis T, Fishell G. Neuronal activity is required for the development of 
specific cortical interneuron subtypes. Nature. 2011; 472:351–355. [PubMed: 21460837] 

De Marco García et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Wickersham IR, Finke S, Conzelmann KK, Callaway EM. Retrograde neuronal tracing with a 
deletion-mutant rabies virus. Nat Methods. 2007; 4:47–49. [PubMed: 17179932] 

11. Petersen CC. The functional organization of the barrel cortex. Neuron. 2007; 56:339–355. 
[PubMed: 17964250] 

12. Xu X, Callaway EM. Laminar specificity of functional input to distinct types of inhibitory cortical 
neurons. J Neurosci. 2009; 29:70–85. [PubMed: 19129386] 

13. Tripodi M, Stepien AE, Arber S. Motor antagonism exposed by spatial segregation and timing of 
neurogenesis. Nature. 2011; 479:61–66. [PubMed: 22012263] 

14. Miyamichi K, et al. Cortical representations of olfactory input by trans-synaptic tracing. Nature. 
2011; 472:191–196. [PubMed: 21179085] 

15. Fishell G, Rudy B. Mechanisms of inhibition within the telencephalon: “where the wild things are. 
Annu Rev Neurosci. 2011; 34:535–567. [PubMed: 21469958] 

16. Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B. The largest group of superficial neocortical 
GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci. 2010; 30:16796–
16808. [PubMed: 21159951] 

17. Cruikshank SJ, et al. Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci. 2012; 
32:17813–17823. [PubMed: 23223300] 

18. Petreanu L, Mao T, Sternson SM, Svoboda K. The subcellular organization of neocortical 
excitatory connections. Nature. 2009; 457:1142–1145. [PubMed: 19151697] 

19. Mao T, et al. Long-range neuronal circuits underlying the interaction between sensory and motor 
cortex. Neuron. 2011; 72:111–123. [PubMed: 21982373] 

20. Toda T, et al. Birth regulates the initiation of sensory map formation through serotonin signaling. 
Dev Cell. 2013; 27:32–46. [PubMed: 24135230] 

21. Zhang Y, et al. V3 spinal neurons establish a robust and balanced locomotor rhythm during 
walking. Neuron. 2008; 60:84–96. [PubMed: 18940590] 

22. Xu W, Sudhof TC. A neural circuit for memory specificity and generalization. Science. 2013; 
339:1290–1295. [PubMed: 23493706] 

23. Murray AJ, et al. Parvalbumin-positive CA1 interneurons are required for spatial working but not 
for reference memory. Nat Neurosci. 2011; 14:297–299. [PubMed: 21278730] 

24. Dudok JJ, Groffen AJ, Toonen RF, Verhage M. Deletion of Munc18–1 in 5-HT neurons results in 
rapid degeneration of the 5-HT system and early postnatal lethality. PLoS ONE. 2011; 6:e28137. 
[PubMed: 22140524] 

25. Arrigoni E, Greene RW. Schaffer collateral and perforant path inputs activate different subtypes of 
NMDA receptors on the same CA1 pyramidal cell. Br J Pharmacol. 2004; 142:317–322. [PubMed: 
15155538] 

26. Wang CC, et al. A critical role for GluN2B-containing NMDA receptors in cortical development 
and function. Neuron. 2011; 72:789–805. [PubMed: 22153375] 

27. Kelsch W, Li Z, Eliava M, Goengrich C, Monyer H. GluN2B-containing NMDA receptors 
promote wiring of adult-born neurons into olfactory bulb circuits. J Neurosci. 2012; 32:12603–
12611. [PubMed: 22956849] 

28. Matta JA, et al. Developmental origin dictates interneuron AMPA and NMDA receptor subunit 
composition and plasticity. Nat Neurosci. 2013; 16:1032–1041. [PubMed: 23852113] 

29. Sanz-Clemente A, Nicoll RA, Roche KW. Diversity in NMDA receptor composition: many 
regulators, many consequences. Neuroscientist. 2013; 19:62–75. [PubMed: 22343826] 

30. Koch SM, et al. Pathway-specific genetic attenuation of glutamate release alters select features of 
competition-based visual circuit refinement. Neuron. 2011; 71:235–242. [PubMed: 21791283] 

31. Xu HP, et al. An instructive role for patterned spontaneous retinal activity in mouse visual map 
development. Neuron. 2011; 70:1115–1127. [PubMed: 21689598] 

32. Fu Y, et al. A cortical circuit for gain control by behavioral state. Cell. 2014; 156:1139–1152. 
[PubMed: 24630718] 

33. Morishita H, Hensch TK. Critical period revisited: impact on vision. Curr Opin Neurobiol. 2008; 
18:101–107. [PubMed: 18534841] 

De Marco García et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Li H, et al. Laminar and columnar development of barrel cortex relies on thalamocortical 
neurotransmission. Neuron. 2013; 79:970–986. [PubMed: 24012009] 

35. Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science. 1996; 
274:1133–1138. [PubMed: 8895456] 

36. Li H, Crair MC. How do barrels form in somatosensory cortex? Ann NY Acad Sci. 2011; 
1225:119–129. [PubMed: 21534999] 

37. Dunn FA, Della Santina L, Parker ED, Wong RO. Sensory experience shapes the development of 
the visual system’s first synapse. Neuron. 2013; 80:1159–1166. [PubMed: 24314727] 

38. Espinosa JS, Wheeler DG, Tsien RW, Luo L. Uncoupling dendrite growth and patterning: single-
cell knockout analysis of NMDA receptor 2B. Neuron. 2009; 62:205–217. [PubMed: 19409266] 

39. Bortone D, Polleux F. KCC2 expression promotes the termination of cortical interneuron migration 
in a voltage-sensitive calcium-dependent manner. Neuron. 2009; 62:53–71. [PubMed: 19376067] 

40. Vue TY, et al. Thalamic control of neocortical area formation in mice. J Neurosci. 2013; 33:8442–
8453. [PubMed: 23658181] 

41. Joshi PS, et al. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II–V of the 
developing neocortex. Neuron. 2008; 60:258–272. [PubMed: 18957218] 

42. Karayannis T, De Marco Garcia NV, Fishell GJ. Functional adaptation of cortical interneurons to 
attenuated activity is subtype-specific. Front Neural Circuits. 2012; 6:66. [PubMed: 23015781] 

43. De Marco Garcia NV, Fishell G. Subtype-selective electroporation of cortical interneurons. J Vis 
Exp. 2014:e51518. [PubMed: 25177832] 

44. Miyamichi K, Luo L. Neuroscience. Brain wiring by presorting axons. Science. 2009; 325:544–
545. [PubMed: 19644096] 

45. Wickersham IR, et al. Monosynaptic restriction of transsynaptic tracing from single, genetically 
targeted neurons. Neuron. 2007; 53:639–647. [PubMed: 17329205] 

De Marco García et al. Page 17

Nat Neurosci. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Determining the afferent inputs onto developing Re+ interneurons in layers I/III. (a) 

Schematic representation of the experimental strategy. (b) Presynaptic partners to a single 

starter Re+ interneuron in the somatosensory (SSBF1) cortex and thalamus (see also 

Supplementary Fig. 2). (c) Quantification of the identity of presynaptic inputs. Mean values 

(±s.e.m.) were obtained from 5 mice. (d) The pattern of presynaptic connectivity revealed by 

rabies tracing to a single Re+ interneuron in a wild-type P8 mouse brain. (e,f) Recording of 

AMPAR-mediated monosynaptic responses from Re+ interneurons after in vitro light 

stimulation in Emx1Cre; Rosa26LSL-ChR2-EYFP (Emx1-ChR2) (e) and 

VGlut2Cre;Rosa26LSL-ChR2-EYFP (VGlut2-ChR2) (f) mice. Thal, thalamic neurons; Ecx, 
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cortical excitatory neurons; Icx, cortical interneurons. Scale bars in b, 50 μm (SSBF1) and 

500 μm (thalamus); in e and f, 500 μm.
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Figure 2. 
Perturbation of sensory inputs during the first postnatal week disrupts the axo-dendritic 

development of Re+ interneurons. (a) Protocol for sensory deprivation. (b) Normal layering 

but diffuse barrel boundaries are observed in the somatosensory cortex of sensory-deprived 

and Olig3Cre/+; Rosa26LSL.TeLC mice. Control: wild-type, non-sensory-deprived 

Rosa26LSL.TeLC mice. (c) Severe morphological defects are present in Re+ interneurons after 

whisker plucking and in Olig3Cre/+;Rosa26LSL.TeLC (TeLC) mice. (d) Representative 

examples of neurolucida reconstructions of VIP+ interneurons in control and sensory-

deprived mice. (e–g) Quantification of neurite defects. Mean values (±s.e.m.) were obtained 

from reconstructed Re+ interneurons each in Dlx5/6-eGFP–electroporated control (Ctrl, n = 

7 interneurons), sensory-deprived (Depr, n = 5 interneurons; Ctrl versus Depr: axonal length, 

P = 0.004; axonal nodes, P = 0.011; dendritic length, P = 0.00006) and TeLC mice (n = 6 

interneurons; Ctrl versus TeLC: axonal length, P = 0.003; axonal nodes, P = 0.005; dendritic 

length, P = 0.004). (h–j) Quantification of length and complexity of dendritic tree and 

axonal arbors of VIP+ interneurons (mean values ±s.e.m.; Ctrl n = 12 interneurons; Depr n = 

4 interneurons; axonal length, P = 0.335; axonal nodes, P = 0.273; dendritic length, P = 

0.685). *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001. Unpaired t-test. Scale bars 

for b–d, 50 μm. Axons are shown in red, dendrites in blue.
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Figure 3. 
Severe attenuation of intracortical glutamate release does not interfere with Re+ interneuron 

morphological development. (a) Schematic representation of the experimental strategy. (b) 

Whole-mount epifluorescence image showing cortical expression of TeLC.eGFP 

surrounding the injection site in an Emx1Cre/+ mouse. (c) Coronal section at P9 at the level 

of the injection site in SSBF1 shows that eGFP expression is restricted to cortical neurons. 

(d) Electroporated interneurons (mCherry+) are surrounded by pyramidal cells expressing 

TeLC.eGFP (green). (e) Reduced levels of VAMP2 protein in the ipsilateral, but not in the 

contralateral, SSBF1 or the ipsilateral VPM at P8 after AAV-flex-TeLC.eGFP injection at 

E15.0. (f–h) Morphological analysis of Re+ interneurons after injection of AAV-flex-

TeLC.eGFP in the absence (Ctrl, n = 9 interneurons) and presence (TeLC, n = 10 
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interneurons) of the Emx1Cre allele. Since comparison of Re+ interneuron morphology after 

E15.5 and P0 injections did not show significant difference (P > 0.05), we pooled these 

groups for the analysis in g (axonal length: P = 0.254; axonal nodes: P = 0.36) and h 

(dendritic length: P = 0.37; dendritic nodes: P = 0.548). (i) A marked reduction of VAMP2 

levels is observed in SSBF1 but not the striatum in Emx1-TeLC mice. (j) Intracortically 

evoked EPSCs recorded at −70 mV in layer I interneurons in a TeLC mouse (top) and in the 

Emx1-TeLC mouse (bottom). The red trace shows a small response that was obtained upon 

moving the stimulating electrode from layer II to layer I in the latter mice. (k) Average 

EPSC amplitude at −70 mV in layer I interneurons after stimulating layer II in control TeLC 

and Emx1-TeLC mice (Ctrl = 14 cells; Emx1-TeLC n = 4 cells, P = 0.0008, Mann-Whitney 

test). (l) Representative reconstructions of biocytin filled Re+ interneurons in layer I. (m) 

Quantification of length of dendritic arbors and axonal trees (Ctrl n = 14 interneurons; 

Emx1-TeLC n = 8 interneurons; axonal length, P = 0.725; dendritic length: P = 0.24). (n) 

Reduction of cortical thickness in Bhlhp5Cre/+;Munc18fl/fl compared to Munc18fl/fl control 

mice at P9. (o) Representative reconstructions of biocytin filled Re+ interneurons in layer I. 

(p) Quantification of length of dendritic arbors and axonal trees. (mean values ±s.e.m.; Ctrl 

n = 10 interneurons; Bhlhp5Cre/+;Munc18fl/fl, n = 4 interneurons; axonal length, P = 0.486; 

dendritic length, P = 0.194). ***P < 0.001. Unpaired t-test. Scale bars in b and c, 800 μm; in 

d, f, i, n, l and o, 50 μm; in e, 100 μm.
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Figure 4. 
Enrichment of NR2B-containing NMDARs activated by thalamic afferents onto Re+ 

interneurons. (a) eGFP expression in neuronal cell bodies in the VPM in 

VGlut2Cre/+;RCEfl/+ (where RCE is an R26R CAG-boosted EGFP) mice. (b) Experimental 

design for viral injections. (c) A representative section of a thalamic injection showing 

mCherry expression in axons reaching SSBF1 in VGlut2Cre/+-injected mice. (d) AMPAR- 

and NMDAR-mediated monosynaptic responses recorded from Re+ interneurons after light 

stimulation of Emx1Cre+; Rosa26LSL.ChR2-EYFP or Bhlhb5Cre/+;Rosa26LSL.ChR2.EYFP (n = 11 

interneurons), VGlut2Cre/+;Rosa26LSL.ChR2.EYFP (n = 12 interneurons) or VGlut2Cre/+ 

thalamic injection (n = 9 interneurons) slices. Superimposed example traces of ifenprodil (3 

μM) blockade of NMDAR mediated currents (red). (e) NMDAR/AMPAR charge ratio 

(±s.e.m.) (Emx1-ChR2 versus VGlut2-ChR2, P = 0.0543; Emx1-ChR2 versus VGlut2Cre/+ 

thalamic injection, P = 0.0097, Mann-Whitney test). Emx1-ChR2 Bhlhb5-ChR2 indicates 

that these data sets were pooled (see Online Methods). (f) The percentage reduction of 

NMDAR-dependent current amplitude after ifenprodil application (Emx1-ChR2 versus 

VGlut2-ChR2, P = 0.0089; Emx1-ChR2 versus VGlut2Cre/+ thalamic injection, P = 0.0101, 

Mann-Whitney). **P < 0.01. Scale bar in a, 100 μm; in c, 500 μm. Error bars represent 

s.e.m.

De Marco García et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
NR2B-containing NMDARs are required for proper Re+ but not VIP+ interneuron 

development. (a) A schematic representation of the genetic strategy for ablation of 

NMDARs and NR2B-containing NMDARs in Re+ interneurons. (b) The absence of 

NMDAR-mediated currents in Dlx5/6-Cre;NR1fl/fl cells and the presence of robust 

AMPAR-dependent currents (n = 7 control (Ctrl) interneurons (NR1fl/fl) and n = 3 Dlx5/6-

Cre;NR1fl/fl interneurons; Mann-Whitney test, P = 0.0167). GABAA receptors were blocked 

with SR95531. (c–e) Analysis of neuronal morphology in control (n = 25) interneurons 

(NR1fl/fl or NR2Bfl/fl) and in Dlx5/6-Cre;NR1fl/fl (n = 10) and Dlx5/6-Cre;NR2Bfl/fl (n = 13) 

Re+ interneurons (mean values ± s.e.m.; axonal length, Dlx5/6-Cre;NR1fl/fl, unpaired t-test; 

P = 0.010; Dlx5/6-Cre;NR2Bfl/fl, P = 0.003; dendritic length, Dlx5/6-Cre;NR1fl/fl, P = 0.020; 

Dlx5/6-Cre;NR2Bfl/fl, P = 0.016). (f–h) The same analysis performed in control (n = 9) and 

Dlx5/6-Cre;NR1fl/fl (n = 6) VIP+ interneurons (axonal length, Dlx5/6-Cre;NR2Bfl/fl, P = 

0.656; dendritic length: Dlx5/6-Cre;NR1fl/fl, P = 0.678). *P < 0.05; **P < 0.01. Scale bars, 

50 μm. Axons are shown in red, dendrites in blue.
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Figure 6. 
Morphological development proceeds normally in NR2A−/− Re+ interneurons. (a,b) 

Neurolucida reconstructions of Re+ interneurons in control (a) and in NR2A−/− (b) mice. (c) 

Quantification of length and complexity of dendritic arbors and axonal trees (control 

(NR2A+/+ and NR2A+/−), n = 7 and NR2A−/−, n = 6 interneurons; mean values ± s.e.m.; 

unpaired t-test; axonal length: P = 0.345; axonal nodes: P = 0.243; dendritic length: P = 

0.439; dendritic nodes: P = 0.272). P > 0.05, ns. Scale bars, 50 μm. Axons are shown in red, 

dendrites in blue.
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Figure 7. 
NMDAR ablation reconfigures afferent connectivity onto Re+ interneurons. (a,b) The 

distribution of afferent inputs onto control (a; Cre−, NR1fl/fl) and Dlx5/6-Cre;NR1fl/fl (b; 
Cre+, NR1fl/fl) interneurons as revealed by monosynaptic rabies tracing (see Fig. 1a). (c) 

Representative images of cortical presynaptic neurons to control and Dlx5/6-Cre;NR1fl/fl 

interneurons. (d) Quantification of the total number of presynaptic neurons per starter cell in 

control (Ctrl; n = 6) and Dlx5/6-Cre;NR1fl/fl (n = 3) mice (mean values ± s.e.m.; unpaired t-

test; P = 0.646). (e) Representative images of thalamic presynaptic neurons to control and 

Dlx5/6-Cre;NR1fl/fl interneurons. (f) The proportion of thalamic (Thal), cortical excitatory 

(Ecx) and cortical interneuron (Icx) inputs to control (n = 6 mice) and Dlx5/6-Cre;NR1fl/fl 

interneurons (n = 3 mice) (Thal, P = 0.002; Ecx, P = 3.8E-06; Icx, P = 0.103). **P < 0.01; 

****P < 0.0001. Scale bars in c, 50 μm; in e, 500 μm.
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