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SUMMARY

The last few decades have seen the emergence of computational neuroscience as a mature field 

where researchers are interested in modeling complex and large neuronal systems and require 

access to high performance computing machines and associated cyber infrastructure to manage 

computational workflow and data. The neuronal simulation tools, used in this research field, are 

also implemented for parallel computers and suitable for high performance computing machines. 

But using these tools on complex high performance computing machines remains a challenge 

because of issues with acquiring computer time on these machines located at national 

supercomputer centers, dealing with complex user interface of these machines, dealing with data 

management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide 

these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of 

view of the users, all the administrative and technical barriers and makes parallel neuronal 

simulation tools easily available and accessible on complex high performance computing 

machines. It handles the running of jobs and data management and retrieval. This paper shares the 

early experiences in bringing up this gateway and describes the software architecture it is based 

on, how it is implemented, and how users can use this for computational neuroscience research 

using high performance computing at the back end. We also look at parallel scaling of some 

publicly available neuronal models and analyze the recent usage data of the neuroscience gateway.
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1. INTRODUCTION

Computational neuroscience has seen tremendous growth in recent years. This is evident 

from the large number of publications, in prestigious neuroscience journals, that are more 

and more based on modeling. In the last two decades, this has motivated development of 

simulation tools such as NEURON [1], GENESIS3 [2], MOOSE [3], NEST [4], PyNN [5] 

and Brian [6], which are mature and written for parallel computers. Complex neuroscience 
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problems, which involve network models, optimization or exploration of high-dimensional 

parameter spaces, require access to high performance computing (HPC), data storage, and 

complex workflow. Yet accessing and using HPC resources remain difficult because of the 

need to write yearly allocation proposals for acquiring computer time on national 

supercomputer centers, understand complex HPC architecture, learn complex OS/software, 

install neuronal software optimally, learn policies and batch environments, manage data 

transfer/retrieval, and understand remote authentication issues. As a solution to this problem, 

we have developed a community infrastructure layer, that is, a science gateway [7, 8], which 

provides a set of applications that are made available via a portal and is customized for 

researchers from a specific domain science. It allows researchers to use national resources 

and hides the complexities associated with using those resources. Our science gateway is 

specifically meant for computational neuroscientists, and it abstracts away technical and 

administrative details associated with using HPC for neuronal simulations. As a result, this 

allows neuroscience researchers easy access to best neuroscience simulation and analysis 

packages running on large-scale HPC resources. The neuroscience gateway (NSG) [9] was 

initially made available to few selected users, in the third quarter of 2012, and these users 

helped us to test the NSG before it was opened to all researchers. NSG was opened to all 

users at the end of December 2012. Since then, we continue to add more neural simulation 

tools. This extended paper is based on the conference paper [10] and describes the NSG 

software architecture, how it is implemented, the impact it has had until now, and the future 

plan.

2. MOTIVATION AND BACKGROUND

Most computational neuronal modeling projects start ‘small’, and many stay ‘small’, in the 

sense of being accommodated by individual desktop systems, but many eventually outstrip 

the speed and/or storage capabilities of local hardware. This is most often the case with 

projects that involve complex models (especially large-scale networks) or complex protocols 

(often involving learning rules), or require high-dimensional optimization or parameter 

space exploration. Such projects have a tremendous potential to use cyber infrastructure 

(CI), but only a very few neuroscientists have been able to perform simulations on extreme 

scale HPC machines [11–13]. There is a broad consensus that the wider computational 

neuroscience community needs access to complex CI and HPC resources. Those who lack 

such access are at a significant disadvantage relative to the very few who have it. This 

disparity is particularly telling in light of the fact that the widely used simulation tools such 

as NEURON, GENESIS3, MOOSE, NEST, Brian, and PyNN have been implemented on 

and released for parallel hardware, including HPC machines, for several years now. The 

typical neuroscientist—even one who is engaged in computational modeling—has limited 

compute resources, usually only a few desktop machines. The investigator whose project 

requires HPC machines must write a yearly proposal for allocation of supercomputer time. 

In the USA, these are peer reviewed for computer time on National Science Foundation 

(NSF)’s HPC machines, and there is no guarantee that full requested resource will be 

approved. If the proposal succeeds, the next task is to install simulation software 

(NEURON, GENESIS 3, MOOSE, NEST, PyNN, Brian) optimally on the supercomputer, 

then apply the batch software process to configure and run the model on the cluster, and 
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finally deal with output data retrieval and storage issues. These steps involve many vexing 

details that not only are time consuming and require knowledge of HPC and information 

technology (IT), but also differ significantly from facility to facility. Investigators who want 

to use neuronal software on HPC resources directly have to deal with these issues 

themselves. The entire process constitutes a barrier that impedes effective utilization of HPC 

resources and also distracts neuroscientists from their primary research goals. We believe 

that many of these issues are encountered by neuroscientists in other parts of the world such 

as in Europe and Asia. Our proposed solution enables the entire community of 

computational neuroscientists to access NSF (and other organization) funded national HPC 

resources transparently through a common, convenient interface that is already configured 

for optimal use and operates within a common spatial and semantic framework. The benefit 

of this infrastructure can be extended to many more end users, allowing investigators to 

focus on their research and fostering collaboration.

In recent years, user-friendly scientific gateways have been developed successfully for many 

research fields and have resulted in tremendous adoption of CI and HPC by the broader user 

community of those fields. A few examples of such gateways in the USA include the 

nanoHUB gateway [14] for nanotechnology, the CIPRES gateway [15] for phylogenetics 

research, the GRIDCHEM [16] gateway for computational chemistry, and the ROBETTA 

[17] gateway for protein structure prediction. In the USA, most of these gateways are funded 

by the NSF for specific scientific domains and primarily utilize NSF’s Extreme Science and 

Engineering Discovery Environment (XSEDE) [18] or Open Science Grid (OSG) [19] for 

accessing HPC resources. Similarly in Europe, PRACE [20] and EGI [21] provide HPC and 

high throughput computing resources for users. In the USA, in addition to NSF-funded 

science gateways, there are gateways that are funded by other organizations such as the US 

Department of Energy (DOE) at various DOE laboratories.

Similarly, many gateways and gateway development frameworks exist in Europe and Asia. 

Liferay [22], EUMEDGRID [23], Catania Science Gateway Framework [24], INDICATE 

[25], and Apache Airavata [26] are some other frameworks available to build science 

gateways and provide provision for customization. EGI database [27] lists many 

applications, frameworks, and workflows that are available for building science gateways.

Example of neuroscience-related science gateways include the neuGRID [28], the Blue 

Brain project portal [29], the DECIDE gateway [30], the Charite grid portal [31], and other 

neuroscience gateways [32–35] dealing with neuroimaging and data analysis. It should be 

noted that most of these neuroscience-related science gateways deal with brain imaging 

analysis primarily focusing on MRI data, ultrasound data, image segmentation, statistical 

analysis of PET images, processing of EEG data, and visualization. These are useful to 

clinical oriented neuroscientists and medical researchers dealing directly with people with 

neurodegenerative diseases. Many of these gateways, such as the Charite grid, deal with 

secure and efficient data management and pseudonymization of data and again are geared 

towards clinical and medical brain image processing, whereas the NSG is focused on 

providing neuronal simulation tools and software (e.g., NEURON, GENESIS, Brian, NEST, 

and PyNN), which are used to simulate neuronal network models, neuronal spikes, and so 

on. As a result, the NSG is providing different research codes for computational 
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neuroscientists who primarily include non-clinical researchers trying to model neuronal 

activities that have impact on fundamental understanding of neuronal functions and 

eventually and indirectly help understanding brain-related diseases.

3. NEUROSCIENCE GATEWAY ARCHITECTURE

The NSG architecture design is based on the Workbench Framework (WF) [36,15], which 

has been very successful in building the CIPRES phylogenetics gateway as well as other 

gateways such as the Portal for Petascale Lifescience Applications and Research (PoPLAR) 

gateway [37] for bioinformatics researchers. The WF is a very mature framework and was 

implemented at the San Diego Supercomputer Center (SDSC), by SDSC researchers, and 

programmers. In the succeeding text, we describe the various software architecture 

components of the WF in Section 3.1, their functional adaptation specifically for the NSG in 

Section 3.2, the NSG workflow, from user’s point of view, in Section 3.3, and discuss the 

computer time allocation-related issues in Section 3.4.

3.1. Underlying architecture

The WF is a software development kit (SDK) designed to generically deploy computational 

jobs and database searches to a generic set of computational resources and databases, 

respectively. The WF contains modules to manage submission of jobs to various 

computational resources and modules to manage queries on data resources. The higher level 

schematic of the WF architecture, as described in a diagram by the WF project developers 

[15] is shown in Figure 1. The modules in the WF are as follows.

3.1.1. Presentation layer—The WF presentation layer accesses SDK capabilities through 

the J2EE front controller pattern, which involves only two Java classes. As a result, the WF 

is neutral with respect to interface access. The presentation layer provides lightweight access 

through a web browser and preserves flexibility for alternative access routes and adopts an 

architecture on the basis of Linux, Apache Tomcat, MySQL, and Java Struts2. The browser 

interface is easy to use and supports data and task management in user-created folders. The 

complexity of gateway layer is hidden from users through this interface that also allows 

users to create a login-protected personal account. Registered users can store their data and 

records of their activities for a defined period. Uploaded user data are checked for format 

compatibility. Users can also manually specify data types and formats.

3.1.2. User module—The user module passes user-initiated queries and tasks from the 

interface to the executive portions of the infrastructure via data and task management 

modules. It also stores all user data and task information in a MySQL database. It supports 

individual user roles, permitting the assignment of individual user accounts, the sharing of 

data between accounts, and selective access to tools and data sources that may be 

proprietary. Mapping user information takes places at this layer that helps track the 

individual usage on computational resources.

3.1.3. Broker module—The broker module provides access to all application-specific 

information in a central registry. This registry contains information about all data types 

required as input and output for each application along with the formats accepted by each 
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tool. Concepts and concept relationships are formulated in XML files and read by central 

registry API implementing classes. Defining tools and data types in a single location allows 

adding new tools and data types with no impact on the functioning of the application outside 

the registry.

3.1.4. Tool module—The tool module manages the translation of tasks submitted by users 

into command lines and submission of the command line strings along with user data for 

execution by appropriate compute engines. The tool module handles data formatting for jobs 

and job staging. It also keeps track of which tools can be run on which computational 

resources and the status of those resources. The design allows great flexibility in 

determining what assets a science gateway can access for job execution. Computational 

resources can be added through editing the tool resource configuration file, and the 

application can send command line scripts and receive output via essentially any well-

defined protocol such as the unix command line, web services, SSH, DRMMA, GRAM, and 

gsissh.

3.1.5. External resources—The generic design of the WF architecture supports access to 

a wide variety of computational resources and databases, whether local or remote. Access 

can be accomplished through a combination of individual mechanisms, including SSH, 

GRAM/Globus, SOAP, and ReST services.

3.2. Neuroscience gateway adaptation

The phylogenetics gateway CIPRES is built on the basis of the WF. CIPRES is one of the 

most successful gateways and handles large number of users. WF was modified for the 

CIPRES gateway. From here on, we refer to this modified version of the WF as the 

CIPRES-workbench framework (CIPRES-WF). To build the NSG, we decided to start from 

the CIPRES-WF. The adaptation of CIPRES-WF to NSG was carried out with the idea of 

hiding all the complexities associated with accessing and using an HPC resource such as job 

submission, input data transfer, choosing of machine specific HPC parameters, and output 

retrieval and storage

As shown in Figure 1, each module has many components essential to the functioning of a 

gateway. The adaptation of the CIPRES-WF to the functional NSG is shown in Figure 2. It 

outlines the NSG architecture highlighting some of the key components essential to the 

functioning of NSG. Among those components, the ones that required modifications for the 

NSG are highlighted in purple, whereas the other boxes are left with blue. The 

implementation includes enhancement and modification to the CIPRES-WF based on the 

needs of the neuroscience community. The portal and SDK together make up the framework 

for the NSG. The portal layer in Figure 2 maps to the presentation layer in Figure 1, and the 

SDK layer in Figure 2 maps to the overall workbench framework in Figure 1. We list in the 

succeeding text the key adaptations carried out to the existing CIPRES-WF for the NSG.

• Addition of uuencode/uudecode functionality to support upload of input files in zip 

format in the portal. This is performed in the portal layer in the create data function.
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• Modification of job submission environment to accommodate compilation of the 

NEURON code in the computational resource. The submit scripts on the 

computational resource were modified to accommodate this.

• Storing of output file per session in SDSC’s Cloud storage on computational 

resource. This is performed by modifying submit scripts to copy the output results 

to cloud.

• Automatic deletion of unused user files based on time length of inactivity in the 

portal. This is performed in the portal layer interacting with the gateway database.

• Defining computational neuronal tools in the PISE XML format and interfacing 

with the portal in SDK. This is performed in the SDK layer in the tool module.

• Mounting the HPC cluster’s home directory on a newly acquired disk space to 

eliminate GridFTP errors.

Hardware needed for setting up the NSG utilizes SDSC’s reference VM server, MySQL, 

Cloud storage, and web services. Some of the core functional implementation changes are 

discussed in the succeeding text.

3.2.1. Access—A web browser serves as the entry point to the NSG portal. The web 

browser offers a simple interface, which allows users to upload input file or neuronal 

models, specify neuronal code specific input files, and specify the job submission 

parameters such as number of cores or nodes, expected wall clock time for job completion. 

Users are able to monitor the status of submitted jobs and extract output files from the user-

friendly portal. The access interface is a part of the portal layer as shown in Figure 2.

Although the community gateway account is used for job submission, individual user 

accounts are necessary to keep track of usage and access. Some of the neuronal simulation 

tools, such as NEURON, require that users be able to use the higher order calculator (HOC) 

[38] programming language as a scripting language for neuronal models and compile a HOC 

code via NSG. This is different from most other science gateways where users run 

precompiled codes only. Because of the possibility of malicious or incorrect use or handling 

of HOC codes, which poses a security concern, direct user registration on the NSG is not 

allowed. Users are required to fill out a form with identity information, which allows NSG 

administrators to validate the user manually (‘vetting’) prior to creating their account. Once 

registered, NSG can track each individual user’s access and usage, as well as can enforce 

NSG-specified usage policies. The account information and usage statistics are stored in the 

NSG’s MySQL database at SDSC.

3.2.2. Installation of computational neuroscience tools—Currently NEURON 7.2, 

NEURON 7.3, PGENESIS 2.3, NEST, Brian, and PyNN have been installed on SDSC’s 

Trestles HPC machine and are being installed on Texas Advanced Computing Center’s 

(TACC) [39] Lonestar HPC machine. These codes are available through the NSG for the 

neuroscience community. Additional neuronal tools are installed on the basis of users’ 

needs. In the SDK, the tools are defined in the PISEXML format. The tools and the resource 

are then added in the SDK in the tool registry module.
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3.2.3. User-input file and job submission—Most neuroscience computational models 

usually have more than one input file from sources such as ModelDB [40]. To accommodate 

this requirement, we have added the capability for NSG users to upload input file in a zip 

format. The CIPRES-WF did not have the capability of uploading binary files, and it also 

uses precompiled executable to run their job. For the NSG, we had to add and implement the 

functionality to uuencode the uploaded zip file and to uudecode the zip file on the 

computational resource during the staging of the input. In Figure 2, the portal layer handles 

this functionality. The NSG allows compilation and running of user’s code based on the 

requirement of the neuroscience application (e.g., NEURON, GENESIS 3, MOOSE, NEST, 

Brian, and PyNN). NEURON allows custom C++ code to be used for new equations within 

a particular model. To accommodate this, we created a mechanism to collect all such codes 

and compile them as a part of the job submission process. Job scripts are automatically 

created and submitted. Once a job completes, the working directory is compressed along 

with the input files, job submission scripts, and output files, and are transferred to SDSC’s 

Cloud storage. The compressed file is also made available for immediate download through 

the NSG portal. File staging is handled via the Java CoG Kit GridFTP API and Java runtime 

exec of Globus ‘gsissh’ is used to remotely run commands. Figure 3 shows the event-driven 

interaction flow diagram for the NSG. Figure 3 shows the daemons responsible for 

submitting a job, monitoring job status, and retrieving the output. The daemons also help 

keep track of job and usage monitoring by updating the database. The submit daemon is 

called when a task is created and submitted. While the job is processing on the HPC cluster, 

an intermediate results view option is available in the portal that gives a snapshot of the 

working directory that was created in the backend HPC cluster. Advanced users can look at 

the intermediate results folder to see if their job has started or if any output file has been 

written. Another notable feature is the ability to clone a job on the portal. Users are able to 

clone their jobs, and this is helpful when they want to submit a job with the same input file 

but vary the parameters such as number of cores or the wall clock time. Ability to do 

parameter sweep studies will be provided in the future. NSG portal occasionally faced issues 

related to using GridFTP or the NFS server on the remote HPC cluster. During file staging 

from the portal to the remote cluster or while copying the results back, the task would fail 

either because there are too many open GridFTP connections on the remote cluster or the 

NFS home directory on the HPC cluster is slow because of multiple users using it. 

Addressing this issue requires restarting autofs by system administrator of the HPC cluster. 

To avoid this, we mounted the HPC cluster’s home directory on a new disk space meant 

specifically for the NSG.

3.2.4. Storage and data retrieval—The output data, generated as a result of simulations 

using the NSG, are saved as a zip file and are made available on the portal. Email 

notification is sent to the users when a job completes. This is handled by a curl command in 

the job submission script, which notifies a servlet in the Web application when the job 

finishes. In case of curl failure, two daemon processes named ‘checkJobsD’ and 

‘loadResultsD’ check to see which jobs have finished and transfer the result to the NSG. The 

check jobs and load results flowcharts are shown in Figure 3. The NSG also moves the data 

from the HPC resource’s scratch disk space to SDSC’s Cloud archival storage and employs 

a storage policy based on data last accessed. User’s data are allowed to be stored in NSG’s 
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disk space as long as the user is using NSG actively. If there is no activity for a year, the 

user’s data will be deleted after the user is informed of such inactivity.

3.3. User workflow

Figure 4 shows at a high level and from a neuroscience user’s point of view how the flow of 

work will appear as a simple environment. It should be noted that our goal was to provide a 

simple workflow as far as the users are concerned and hide all the complexities from them. 

The NSG user workflow consists of the following steps:

1. User logs into the NSG.

2. User uploads input data.

3. User chooses particular neuronal software.

4. User requests simulation run on an HPC resource.

5. NSG frontend sends input data and job request to the remote HPC machine.

6. NSG retrieves output data from the remote machine.

7. NSG notifies users of job (completion) status.

8. NSG provides user information about output data location and retrieval process.

3.4. Allocation and policies

Initial allocation, called Startup allocation within the XSEDE allocation process (XRAC) 

[41], was obtained for 50,000 core hours on SDSC’s Trestles and 50,000 core hours on 

TACC’s Lonestar machines. Each core hour is called a service unit (SU) as a part of XSEDE 

terminology. We also obtained community gateway account on both Trestles and Lonestar. 

The initial allocation of 100,000 core hours was used up by early 2013 and, an additional 

200,000 core hours was requested and approved by the XSEDE allocation committee. This 

allocated time was also completely used up by the NSG users by mid-September 2013. Even 

when the allocated hours were almost fully spent, users requested to keep the NSG 

functional, and we were able to use an SDSC guest account that, among other things, allows 

users to use HPC resources under special circumstances. The NSG PIs and CO-PIs dealt 

with acquiring computer time and thus shielding the users from the complexities associated 

with getting allocation. Subsequent to this, an allocation request for 2.3 million core hours 

was submitted to the XRAC review committee in early October 2013. This estimate was 

based on usage during the third quarter of 2013 and from direct input from selected users. 

Although we do not have any usage data of what users did prior to the availability of the 

NSG, the usage demonstrates that there is certainly a need of such a science gateway for 

neuronal simulations on HPC resources. This allocation proposal was favorably reviewed, 

and in December 2014, we were awarded 1.6 million core hours for the 2014 calendar year. 

We consider this as a good recognition of the NSG as the national scale XRAC review 

process is rigorous and award of HPC core hours is very competitive and selective. We will 

continue to submit yearly XRAC allocation requests such that the NSG always has time on 

HPC resources.
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Users of the community gateway account abide by the policies set by the NSG 

administrators. Currently, we allow 5000 core hours per user per year. On the basis of the 

total amount of computer time acquired every year for the NSG and the total number of 

NSG users, we will decide what percentage of the total time can be allocated freely to each 

user and monitor their usage. Because not all the users consume the same amount of 

resource, we try to obtain an estimate from the users, and on the basis of their average usage 

and job size, the amount allocated to them will vary. The NSG also has the capability to 

allow users to run jobs with their own acquired allocation. For assessment of impact to 

identifiable members of the community, individual gateway user’s tag will be propagated 

through the batch system, such that the final job accounting reconciliation process will 

report quantitative usage by those individual gateway users. All user activities such as job 

submission statistics and usage are logged in the database. As a part of the user support 

environment, a ticketing system, monitored by NSG developers, is in place and is used to 

keep track of user questions and provide immediate assistance.

4. ANALYSIS AND USER ACTIVITIES

In this section, we discuss three topics that are part of most science gateways. Our focus for 

NSG has been to provide easy access to HPC resources for computational neuroscientists. 

The parallel performance of neuronal models is important in this regard as we expect our 

users to run parallel models using HPC resources. The performance of parallel models is 

also important when we write XRAC allocation proposals justifying the total time we 

request for each year. Associated with this is the analysis of usage statistics of the allocated 

time by NSG users. As a part of the user activities, we also discuss some of the educational 

projects performed by undergraduate and high school students using the NSG.

4.1. Parallel scaling performance

The parallel scaling performance results for few of the publicly available neuronal models 

on HPC resources are discussed in this section. Parallel scaling is defined as the plot of 

speedup versus number of cores. Speedup on N cores is defined as the time taken to run on 

one core divided by the time taken to run the same case on N cores. Parallel scaling will 

very much depend on the specific parallel neuronal models that will be developed as a part 

of research by the individual computational neuroscientists and run via the NSG on HPC 

resources. We decided to run two parallel neuronal models using the NEURON software 

because most of our users are currently using this software for their research. The idea 

behind the scaling study is to show that depending on size of the parallel model, the 

NEURON code will scale to different number of cores [42]. It should be noted that the other 

neuronal tools, currently provided by the NSG, are also capable of running parallel models.

The neuronal simulation software NEURON, installed on both SDSC’s Trestles and 

TACC’s Lonestar machine, is a flexible and powerful simulation environment for modeling 

individual neurons and network of neurons. It provides tools for conveniently building, 

managing, and using models that are numerically sound and computationally effIcient. It is 

particularly suitable for problems that involve cells with complex anatomical and 

biophysical properties. NEURON is a parallel code and can execute parallel simulations 

using both MPI and OpenMP implementations. Most of the NSG usage so far has been 
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using the parallel NEURON code. Two publically available models from ModelDB [40] 

were run on SDSC’s Trestles cluster and TACC’s Lonestar cluster to study the parallel 

scaling effects as example benchmark problems.

Figure 5 describes the scaling of biophysically realistic neural modeling of the MEG mu 

rhythm [43] system starting from four cores. This model deals with variations in cortical 

oscillations and has been correlated with attention, working memory, and stimulus detection. 

Figure 6 describes the scaling of the large-scale model of the olfactory bulb [44] starting 

from 24 cores. The olfactory bulb case models sparse distributed representation of odors in a 

large-scale olfactory bulb circuit. Typically, NSG users will run models starting on few 

cores and scale up, as the memory requirement may not make it feasible to run models on a 

single core. Following this, we have also showed results, in Figures 5 and 6, starting from 

few cores. Figure 5 shows that the MEG mu rhythm model scales to about 128 cores, and 

Figure 6 shows that the olfactory bulb model scales to about 384 cores. These results are 

expected as the MEG mu rhythm model is a smaller model, that is, having less number of 

neuronal cells, compared with the olfactory bulb model. It should be noted that the time 

taken to do these benchmark runs was at most around 20 h and so an insignifIcant part of the 

total allocation utilized by the users as reported in Section 3.4

4.2. User activity—education projects

An example of user activities is work performed by students using NSG. A high school 

student created a tutorial on multiple sclerosis using the NEURON code. The tutorial is now 

available on the NSG website [45]. As a part of a separate project, an undergraduate student 

from the University of California San Diego performed parallel scaling study of various 

models, available from ModelDB, on HPC resources located at SDSC. In this study, it was 

shown that consistency of a model was not affected by running on varying number cores 

[46].

The Neuroscience Information Framework (NIF) [47] is a dynamic inventory of Web-based 

neuroscience resources such as data, materials, and tools—accessible via any computer 

connected to the internet. NIF enables discovery and access to public research data and tools 

worldwide via open source, networked environment. The NSG team and the NIF joined 

forces, to utilize the computational capabilities provided by the NSG with the semantic 

knowledge layer provided by the NIF environment. The ultimate goal is to provide an API 

for NIF and thus enabling NIF users to submit computational jobs directly from the NIF 

website. To achieve this, the overall integration is to be performed in a series of small steps 

where each step addresses certain aspect of interaction between the two systems and 

provides clear measurable results. The first integration step was completed with the help of 

two high school student interns who utilized a simple strategy to answer the question—

which models will run ‘off the shelf’ in a parallel computing environment. NIF provided 

search and filtering capability on the metadata schema of several model repositories, 

including ModelDB, to find eligible computational models. The students then downloaded 

the models from the repository and submitted all the models using the NSG to run on 

SDSC’s Trestles machine. The result set consisted of a set of attributes including a flag for 

the ability to run the model, type of error generated, run time, number of nodes used, output 
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files of each model, and other basic metadata such as date. The data were put up on a server, 

and the metadata that students maintained in a spreadsheet was made available to the NIF 

crawler and was ingested into the data stores at NIF. A view was built on the basis of this 

metadata, which links to the raw output of models and can inform NIF users, if the model is 

expected to run, as is, on the NSG as shown in Figure 7. Future work involves developing 

standard APIs between the two systems to automate operations.

4.3. User base and usage

Users were added, following the ‘vetting’ process, to the NSG since the end of December 

2012. Within the first 10-month period, we had 110 users, out of which 65% are from USA 

and the rest are from Europe and Asia, and this distribution is shown in Figure 8. Forty-five 

users attended the first NSG workshop, held at SDSC in March 2013, and this was 

simultaneously broadcasted over the Web for remote attendees. Of the 45 attendees, 10 

attended the workshop on-site at SDSC and 35 users attended virtually. In addition, we have 

also presented three webinars in 2013 to explain the functionalities of the NSG.

As mentioned in Section 3.4, a total of 300,000 core hours has been consumed by NSG users 

since the beginning of the friendly user period in December 2012 and till mid-September 

2013 as shown in Figure 9. During the first quarter of 2013, usage was low, as is expected of 

any new science gateways because users were just becoming aware of this new gateway. 

There was one exception in January 2013 when a single user used 30,000 core hours, and we 

consider it an exception as the per-user basis usage limit was not properly in place then. 

During the second quarter of 2013, we observed that more users were starting to use the 

NSG but still mostly to test and run small jobs to become familiar with the gateway. During 

the third quarter of 2013, users started to employ the NSG in a more consistent way for 

actual neuroscience simulations, driven by their research needs. We believe that a realistic 

steady state usage was reached during the July to mid-September period of 2013. As 

mentioned in Section 3.4, our initial allocation of 300,000 core hours was used up by mid-

September 2013, and we resorted to SDSC guest allocation to keep NSG functional until 

new XRAC allocation was received for the 2014 calendar year.

Usage during the period from July to September 15, 2013, that is, over two and half months, 

was 246,353 core hours as can be seen from Figures 9 and 10. Because we ran out of all 

allocated core hours by September 15, 2013, it is the cutoff date chosen in Figure 10. In 

Figure 11, we show the total number of jobs during each month of the third quarter of 2013 

and average job size.

As stated earlier, because of the inherent way neuronal models are created by computational 

neuroscience users, scaling of models is very much dependent on the particular parallel 

model being run by the users and will vary from user to user.

As shown in scaling plots in Figures 5 and 6 for two benchmark models, the results using 

NEURON on Trestles and Lonestar are scaling well to the number of cores of average job 

sizes as shown in Figure 11. It should be noted from Figure 11 that the total number of jobs 

submitted in August and 15 days of September 2013 are consistent and show about 100 jobs 

a month. In July, the job count is higher from that by about 100 jobs as two high school 
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students, participating in July as summer student interns, submitted these additional ~100 

jobs as a part of their summer internship work to test various publicly available neuronal 

models. This usage of the initial 300,000 core hours demonstrates the interest and initial 

success of the project. Now that we have received 1.6 million core hours, for the 2014 

calendar year, we are providing this computer time to NSG users. This alleviates the need 

for the NSG users to deal with the allocation process directly and is one of the benefits of a 

science gateway.

An important metrics of the NSG is publications being performed by neuroscience 

researchers and for which the NSG was used and acknowledged. As the NSG is being used 

in a consistent way for research primarily from July 2013, we believe that publications are 

expected to come out by the third quarter of 2014, that is, about a year after the researchers 

have started to use the NSG, and this is the feedback we have received from the users. So 

although at this point (early 2014), we cannot list publications, where the research was 

performed using NSG, we expect to list that in the later part of 2014 from the NSG website.

5. SUMMARY AND FUTURE WORK

The main thrust of this paper was to share the early experiences associated with bringing up 

a domain science-specific (in this case, computational neuroscience) science gateway. We 

have discussed our experience in adapting the CIPRES-WF for the NSG and how utilizing a 

proven and existing software base was beneficial in bringing up the NSG in a short period.

As mentioned earlier, from the very outset of developing the NSG, we decided to use the 

CIPRES-WF’s code base as our starting point. The key reasons for choosing CIPRES-WF 

and adapting it to create the NSG are as follows:

• The WF is a well-established framework for science gateways and which has been 

developed over the past 10 years by experienced software developers and 

researchers.

• The CIPRES-WF has been successfully used for building gateways for 

phylogenetics community and other domain sciences such as bioinformatics.

• CIPRES-WF developers are researchers at SDSC, and as a result, we were able to 

obtain expert help when needed.

• Reuse of existing NSF-funded software was considered a good practice.

• Any additions or modifications performed as a part of the NSG implementation 

will be contributed back to the WF and can be adopted by future gateway 

developers.

Bringing up the NSG to early production took about 2 months of time using approximately 

75% of equivalent staff effort. In reality, three staff members shared the work load and spent 

approximately 40%, 20%, and 15% of effort, respectively, over the 2-month period. 

Although there was overlapping work by all of the three staff members, one of the staff 

members spent time primarily in NSG software implementation, the second staff member 

spent time primarily in installing, testing, and benchmarking the neuronal software on HPC 
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resources, and the third staff member dealt with writing allocation proposal to acquire time 

on HPC resources and other coordination efforts. We also received guidance and advice 

from our other collaborators at UCSD and Yale University.

All of the IT resources, such as VM servers and SDSC Cloud storage, which are used for the 

NSG project, are located at SDSC, and this was beneficial to the project. Reusability of 

software played a key role and helped us to save lot of time and effort. As a result, we were 

able to make the portal available to computational neuroscientists within a relatively short 

period since the initiation of the project. We believe that this discussion will give other 

potential gateway developers some general idea about the effort and time needed to bring up 

a science gateway that has similar requirements and general characteristics as the NSG and 

specially if they are able and interested to use the WF for their domain specific science 

gateway.

As a part of the future work, we plan to integrate a programmatic interface module, which 

will provide an interface layer for external neuroscience frameworks such as ModelDB, 

NIF, and NeuroConstruct [48], and will allow mapping of user requests directly from these 

external frameworks to the NSG. The module will translate user requirements and 

authentication to the NSG interface. The external framework would format its request in 

XML for job processing, status query, and output data retrieval. REST API will also be 

incorporated to provide programmatic access to NSG. An interface for model sharing with 

data provenance will be provided. Users who are willing to share their models or output will 

be able to do so in a collaborative environment. Validated data models will be provided for 

educational purposes.
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Figure 1. 
Workbench framework (from WF Reference [15]).
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Figure 2. 
Neuroscience gateway architecture.
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Figure 3. 
Event-driven interaction flow.
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Figure 4. 
User’s view of the neuroscience gateway flow of work.
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Figure 5. 
MEG mu rhythm model speedup.
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Figure 6. 
OlfactoryBulb_2013 model speedup.
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Figure 7. 
ModelDB runs using neuroscience gateway on the Neuroscience Information Framework 

website.
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Figure 8. 
Distribution of location of neuroscience gateway users.
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Figure 9. 
Service units used for quarters 1–3, 2013.
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Figure 10. 
The 2013 third quarter service unit consumption.
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Figure 11. 
The 2013 third quarter jobs and job size.
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