
Power and Sample Size for Randomized Phase III Survival Trials 
under the Weibull Model

Jianrong Wu
Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, 
Memphis, TN 38105, USA

Jianrong Wu: jianrong.wu@stjude.org

Abstract

Two parametric tests are proposed for designing randomized two-arm phase III survival trials 

under the Weibull model. The properties of the two parametric tests are compared with the non-

parametric log-rank test through simulation studies. Power and sample size formulas of the two 

parametric tests are derived. The impact on sample size under mis-specification of the Weibull 

shape parameter is also investigated. The study can be designed by planning the study duration 

and handling nonuniform entry and loss to follow-up under the Weibull model using either the 

proposed parametric tests or the well known non-parametric log-rank test.
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1 Introduction

In randomized clinical trials, the primary interest is often to compare the survival 

distributions between treatment groups. To have adequate power to detect a pre-specified 

treatment difference, sample size calculation is of particular importance. Various researchers 

have proposed methods for sample size calculations for randomized clinical trials with a 

time-to-event endpoint. Some of these methods were discussed under the proportional 

hazards model (Freedman, 1982; Schoenfeld, 1983; Lakatos, 1988; Collett, 2003; and 

others). Most of these methods were derived under the assumption of an exponential 

distribution because of the simplicity of a constant hazard function (George and Desu, 1977; 

Bernstein and Lagakos, 1978; Lachin, 1981; Rubenstein et al., 1981; Schoenfeld and 

Richter, 1982; Lachin and Foulkes, 1986; and many others). Commercially available 

software packages, including PASS, nQuery and EAST, also implement methods for 

calculating sample size based on an exponential model and proportional hazards model. The 

same is true in the standard text books (Chow et al., 2003; Julious, 2010), where sample size 

calculation under the Weibull model is not usually considered. Only a few of the existing 

methods for power and sample size calculations consider the Weibull distribution. For 

example, Heo et al. (1998) derived a sample size formula under a proportional Weibull 

model, but test statistics were not discussed in their paper. Recently, Jiang et al. (2012) 

proposed a simulation method to calculate sample size for group sequential trials under a 
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proportional Weibull model, but it is a computationally intensive method with restrictive 

assumptions. Lu et al. (2012) derived sample size formulas for a non-proportional Weibull 

model for designing a two-stage seamless adaptive trial. For survival data, the exponential 

and Weibull distribution are the two most frequently used parametric models. Of the two 

distribution forms, the Weibull distribution is more appropriate to describe time-to-event 

data than the exponential distribution in most cases because it includes the shape parameter 

in addition to the scale parameter, with a decreasing or increasing hazard (Jiang et al., 2012). 

In advanced stage cancer studies, the survival rate usually dramatically drops towards the 

end of the study. Such characteristics of the survival time distribution can be better 

approximated by a Weibull distribution. In general, a survival trial under the Weibull model 

with a common shape parameter can be designed under the proportional hazards model 

using the well known log-rank test. However, a parametric test derived under the Weibull 

model could be expected to have better properties than the non-parametric log-rank test. No 

comparison has been made between the parametric test and the non-parametric log-rank test 

under the Weibull model in the literature.

The rest of this paper is organized as follows. In Section 2, two parametric tests are 

proposed under a proportional Weibull model. Sample size formulas are derived. 

Nonuniform entry and loss to follow-up are also discussed. In Section 3, empirical type I 

error and power of the proposed two parametric tests are compared with the non-parametric 

log-rank test by simulation studies. An example is given in Section 4 to illustrate a 

randomized two-arm cancer survival trial design by using the proposed methods. The final 

conclusion is presented in Section 5.

2 Test Statistics and Sample Size Calculation

Two parametric test statistics are discussed in this section to provide power and sample size 

calculations for designing randomized two-arm survival trials. Assume that time-to-event 

variable Tj of a subject from the jth group follows the Weibull distribution with a common 

shape parameter κ and scale parameter ρj, j = 1, 2. That is, Tj has survival distribution 

function

and hazard function

The shape parameter κ indicates the degree of acceleration (κ > 1) or deceleration (κ < 1) of 

the hazard over time. In a cancer trial, the median survival time is an intuitive endpoint for 

clinicians. The median survival time of the jth group for the Weibull distribution can be 

calculated as . Therefore, the Weibull survival distribution can be 

expressed as

Wu Page 2

J Biopharm Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The hypotheses of a randomized two-arm trial defined by median survival times can be 

expressed as

2.1 Test Statistics and Sample Size Formulas

To derive the test statistics, we assume that the common shape parameter κ is known or can 

be estimated from historical data. Good quality historical data from standard treatment group 

can provide estimates of the Weibull parameters that are reliable for the planned study 

design. For notation convenience, we convert the scale parameter ρj to a hazard parameter 

. Then the above hypotheses on median survival times are equivalent to 

the following hypotheses:

where the hazards ratio is Δ = λ1/λ2 = Rκ, with R = m2/m1.

Now, suppose during the accrual phase of the trial, nj subjects of the jth group are enrolled in 

the study. Let

be the observed times from entry to an event and event indicator, respectively, where Tij is 

the true event time from a Weibull distribution with shape parameter κ and scale parameter 

ρj, and Cij is a non-informative censoring time, which is assumed to be independent of Tij. 

The likelihood function is given by

where  is the total number of events observed in jth group and  is 

the cumulative follow-up time penalized by the Weibull shape parameter κ. The maximum 

likelihood estimate of λj can be derived as
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and its variance is approximately  which can be obtained from the Fisher information 

matrix.

The distribution of λ̂
j is often skewed. This is partly because λĵ is restricted to be 

nonnegative value. A logarithmic transformation logλ̂
j takes the value over the entire real 

line, so the asymptotic normality is expected to be more accurate. Using the delta method, 

the variance of logλ̂
j is approximately 1/dj. Thus a standardized statistic of logλ̂

1 – logλ̂
2

is an asymptotically standard normal distribution under the null hypothesis which was 

derived under the exponential model by Schoenfeld and Richter (1982). We call it the 

Schoenfeld test statistic. To calculate the power, let pj be the probability of a subject from 

the jth group having an event during the study, and assume that the randomization treatment 

allocation ratio is π as n2 = πn1. Then under the alternative hypothesis Δ = λ1/λ2(> 1), Z1 is 

an approximately normal distribution with mean  and unit 

variance. Therefore, given a significance level α, the power (1 – β) of the Z1 test under the 

alternative is given by

where Φ(·) is the standard normal distribution function and z1–α/2 = Φ−1(1 – α/2). Thus, 

sample size of the first group based on the Z1 test can be calculated as

(1)

Sprott (1973) showed that the distribution of  in small samples is much more closely 

approximated by a normal distribution than is λ̂
j. Then  is approximately normal 

with mean  and variance estimate  (Lawless, 1992). Therefore, the test 

statistic

is an approximately standard normal distribution under the null hypothesis. We call it the 

Sprott test statistic. It rejects the null hypothesis if |Z2| > z1–α/2. Thus, the power of the 

Sprott test under the alternative is determined by
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and sample size of the first group based on the Sprott test can be calculated as

(2)

To compare the proposed parametric test statistics with the non-parametric method, we 

introduce the log-rank test (Cox and Oakes, 1984) as follows: Let t(1) < t(2) < … < t(k) denote 

the k distinct event times by pooling the two samples. In the jth group there are dsj events at 

the time t(s) for j = 1, 2 and s = 1, 2, …, k. Also suppose that the number at risk at t(s) in the 

jth group is nsj, and ns = ns1 + ns2 for the total number at risk at t(s), and ds = ds1 + ds2 for the 

number of events at t(s). The log-rank statistic is defined as

where es1 = ns1ds/ns is the expected number of events in the first group, and the variance of 

the log-rank statistic is

Under a proportional hazards model S2(t) = [S1(t)]γ, for small values of the log hazards ratio 

log(Δ) = log(1/γ), and the standardized log-rank statistic Z3 = L/V1/2 is an approximately 

normal distribution with mean log(Δ)V1/2 and unit variance (Tsiatis, 1982; Sellke and 

Siegmund, 1983). Thus, the sample size of the log-rank test can be derived at the alternative 

γ = γ1(< 1) as (Collett, 2003; Schoenfeld, 1983)

(3)

where Δ = 1/γ1 = Rκ under the Weibull model. The total sample size is n = n1 + n2 = (π + 

1)n1.

2.2 Sample Size under Uniform Entry

To calculate the number of subjects required for the study, we need to calculate pj, the 

probability of a subject in the jth group having an event during study. Typically, assume that 

subjects are accrued over an accrual period of length ta with an additional follow-up period 
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of length tf. A subject enters the study at time u, the entry time is uniformly distributed on 

[0, ta], and no subject drops out or is lost to follow-up during the study. Then the probability 

of a subject having an event during the study under the Weibull model can be calculated by

(4)

This integration can be obtained numerically. Therefore, given the design parameters: κ, m1, 

m2, α, β, π, tf and ta, the number of subjects n required for the study can be calculated using 

formulas (1)-(3).

In an actual trial design, if there are historical data for the standard treatment group showing 

that the Weibull distribution provides a satisfactory model and gives reliable estimates for 

median survival time (m1) and shape parameter κ, and if the investigators can also provide 

an estimate of the median survival time (m2) of the new treatment based on a literature 

review or data from a pilot study on the new treatment, then the trial can be designed as 

discussed above. However, if there are no such historical data to provide full information on 

the Weibull parameters, then an alternative way to estimate the shape parameter is by using 

the following relationship:

where, m1 and m2 can be obtained as discussed above and the hazard ratio Δ can be obtained 

by the expectation for the new treatment that can increase the survival rate S1(x) from the 

standard treatment to S2(x) of the new treatment, where x is a landmark point. That is Δ = 

logS1(x)/logS2(x). Of course, one question is whether a rough estimate of the shape 

parameter can still provide a reliable study design. To answer this question, it is necessary to 

investigate the sensitivity of the sample size or power under mis-specification of the shape 

parameter. Simulation studies were conducted (see Section 4) and the results showed that 

the impact on the sample size and power is small under mis-specification of the shape 

parameter κ when it lays within a reasonable range (κ ± 30%κ).

Another issue in designing an actual trial is that, given the accrual time ta, calculating the 

sample size is often impractical because we may not be able to enroll the total number of 

patients as planned in the given accrual duration. It is more practical to design the study 

starting with given the accrual rate r and then calculating the required accrual time ta. This 

can be accomplished under the Weibull model assumption. First the integration in the 

probability formula (4) is approximated using Simpson's rule,

(5)

Then, using the total sample size formula based on (1)-(3), for example (1), we can define a 

root function of the accrual time ta
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Now the accrual time ta can be obtained by solving the root equation root(ta) = 0 

numerically in Splus/R using the uniroot function. The total sample size required for the 

study is approximately n = [rta]+, where [x]+ denote the smallest integer greater than x.

2.3 Sample Size under Nonuniform Entry and Loss to Follow-up

In section 2.2, we discussed sample size calculation under the usual assumptions of uniform 

entry and censoring only administratively at the end of the trial. Here, we will briefly discuss 

how to handle nonuniform entry and loss to follow-up.

Consider a general entry time distribution G(u) with density function g(u), for example, a 

truncated exponential entry distribution over the interval [0, ta], with density (Lachin and 

Foulkes, 1986; Grisp and Curtis, 2007)

where v is the parameter reflecting the subject accrual pattern. For v > 0, the entry 

distribution is convex, whereas for v < 0, the entry distribution is concave, and v = 0 

corresponds to a uniform entry on interval [0, ta]. Then, the probability of a subject having 

an event during the study can be calculated by

where . This integration can be obtained numerically.

To consider loss to follow-up, let u be the entry time of a subject, with distribution G(u), 

which implies an exposure period F = ta + tf − u, and let T be the event time. In addition, let 

s denote the time of loss to follow-up, which follows a loss distribution H(s) over the 

complete follow-up interval [0, ta + tf]. Then, the probability of a subject having an event 

during the study can be calculated by (Lachin and Foulkes, 1986)

where f(t) = κρκtκ−1e−(ρt)κ is the Weibull density function. Assuming that the accrual time is 

a piece-wise constant function, this integral can be calculated numerically too (see 

Appendix).
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3 Comparisons of Power and Sample Size

In this section we conducted simulation studies to compare the power and type I error of the 

three test statistics under various scenarios. In the simulations, the survival distribution of 

the jth group was taken as Sj(t) = e−log(2)(t/mj)κ, which is the Weibull distribution with shape 

parameter κ and median survival time mj, j = 1, 2. The parameter settings for the simulation 

studies were κ = 0.5, 1, and 2 to reflect cases of decreasing, constant, and increasing hazard 

functions. The ratio R = m2/m1 under the null and alternative hypothesis was set to be 

between 1.0 and 2.0, with other parameters fixed as follows: m1 = 1, accrual period ta = 5 

and follow-up time tf = 2. For the proportional hazards model, under the Weibull 

distribution, the hazard ratio Δ = Rκ.

The simulations were performed for a variety of sample sizes, n = 30, 50, and 100 per group 

for equal allocation. We assumed subjects were recruited with a uniform distribution over 

the accrual period ta and followed for tf. A subject was censored if his/her event time was 

longer than ta + tf − u, where u was the time when the subject entered the study. We further 

assumed that no subject was lost to follow-up during the study period ta + tf. In each 

parameter configuration, 100,000 observed samples of censored event times were generated 

from the Weibull distribution to calculate the test statistics under the null or alternative 

hypothesis. The nominal significance level was set to be 0.05, and the standard error of the 

simulated empirical type I error based on 100,000 random samples was 

. The proportions rejecting the null under the true null 

hypothesis (R = 1) represent the estimated empirical type I error. The proportions rejecting 

the null under the alternative hypothesis (R > 1) represent the estimated empirical power. 

The simulated empirical type I errors and powers in various scenarios are summarized in 

Table 1. Highlighted values are those that exceed the nominal level plus three standard 

errors of the simulation.

The simulation results showed that the log-rank test was slightly liberal when the sample 

size was small. The type I error of the Schoenfeld test and Sprott test were satisfactorily 

close to the nominal level of 0.05 in all scenarios. The powers of the Schoenfeld test, Sprott 

test, and log-rank test were very close, even though the power of the log-rank test dropped 

slightly when R was getting large.

The sample sizes calculated using formulas (1)-(3) for various hazards ratios are given in 

Table 2. The Schoenfeld test, Sprott test, and log-rank test gave almost identical sample 

sizes, which is consistent with the power simulation results. The empirical powers for the 

corresponding sample sizes given in Table 2 were based on 20,000 simulation runs. The 

simulated empirical powers of the Schoenfeld test, Sprott test, and log-rank test were all 

close to the nominal power of 90%, with a few exceptions in which the powers of the log-

rank test dropped to 86%-87% when sample sizes were small.

To study the sensitivity of three tests against the shape parameter, sample size and empirical 

power are also calculated under mis-specification of the shape parameter within a range of κ 

± 30%κ. The empirical powers were obtained through simulation based 20,000 runs. The 
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results (Table 3) showed that the mis-specification of the shape parameter has only small 

impact on the study study power for all three test statistics.

4 An Example

Rhabdoid tumors are aggressive pediatric malignancies with a poor prognosis. Over the past 

5 years, St. Jude Children's Research Hospital accrued 14 pediatric patients with recurrent or 

refractory non-CNS rhabdoid tumors treated with conventional chemotherapy. The median 

event-free survival is only about 1 year, where the event is defined as disease relapse or 

death. All 14 patients had events within about 3 years. The Weibull model was fitted in R to 

the data, resulting an estimate (standard error) of the shape parameter κ = 1.37(0.28) and 

median event-free survival time of m1 = 0.936 years. For comparison, the exponential model 

was also fitted to the data and the Kaplan-Meier curve and fitted exponential and Weibull 

survival curves were plotted on the same Figure. The log likelihood for the Weibull model 

was -13.60 whereas, for the exponential model, it was -14.60. The likelihood ratio test 

statistic was 2[-13.60-(-14.60)]=2.0, which was not significant compared with a chi-square 

percentile with one degree of freedom. However the log likelihood value and curve fitting 

suggest that the Weibull model provides a more satisfactory model than the exponential 

model. Now, suppose that we would like to design a multi-center randomized two-arm trial 

to assess the effectiveness of the small molecule inhibitor alisertib versus conventional 

chemotherapy for this group of patients. Patients will be randomized with equal allocation to 

each treatment group. The hypotheses of the planned study are H0 : m1 = m2 vs. H1 : m1 ≠ 

m2. The investigators would like to detect a half year difference of median event-free 

survival times between the alisertib treatment group to the conventional chemotherapy 

group, or equivalently to detect a hazard ratio Δ = 1.80, with 90% power and 5% type I 

error, and 2 years of follow-up after last patient enrolled on study. Assume this multi-center 

trial has the capacity to enroll and treat 20 patients per year. Then under the assumption of 

the Weibull model, with uniform entry and no loss to follow-up, the required total study 

durations are 6.26 and 6.36 years, or total sample sizes are 126 and 128 patients for the 

Schoenfeld test/log-rank test and Sprott test, respectively.

5 Conclusion

Two parametric test statistics and corresponding sample size formulas are proposed under 

the Weibull model. Within the parameter setting of the simulation, the results showed that 

both the Schoenfeld test and Sprott test preserve the type I error very well. The non-

parametric log-rank test also preserves the type I error well for moderate and large samples, 

but it is slightly liberal in the case of small sample sizes. The empirical powers of the three 

tests are very close. Therefore the non-parametric log-rank test is still competitive against 

the proposed parametric tests. This is not surprising, because the log-rank test is fully 

efficient under the proportional hazards model (Schoenfeld and Ritcher, 1982). Even 

through the asymptotic normality of the two parametric tests is more accurate than that of 

the log-rank test for small samples, the log-rank test is well-known and is available in most 

commercial software packages. Therefore all three tests can be used to design a randomized 

two-arm trial under the Weibull model by planning the study accrual duration and handling 

nonuniform entry and loss to follow-up.

Wu Page 9

J Biopharm Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The author gratefully acknowledges three anonymous reviewers and an associate editor for their valuable comments 
and suggestions that significantly improved this from an earlier version of the paper. The work was supported in 
part by National Cancer Institute (NCI) support grant CA21765 and the American Lebanese Syrian Associated 
Charities (ALSAC).

Appendix

By changing the order of integration, we have

Suppose the accrual rate is a piece-wise constant function, without loss of generality, and 

assume it is uniformly distributed on [0, ta]. Then the above integral is simplified as

Inserting the Weibull density f(t) = κρκtκ−1e−(ρt)κ and exponential losses to follow-up 

distribution H(t) = 1 − eηt into above integrals, we obtain

which can be integrated numerically. If we assume that both survival and loss to follow-up 

distributions are exponential, that is f(t) = λe−λt and H(t) = 1 − eηt, then the above two 

integrations can be integrated as

which is given by Lachin and Foulkes (1986).
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Figure. Kaplan-Meier Curve and Fitted Survival Distributions
Step functions are Kaplan-Meier survival curve and its 90% confidence boundaries. Solid 

and dotted curves are the fitted Weibull and exponential survival distributions, respectively.
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