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Abstract

Two parametric tests are proposed for designing randomized two-arm phase 111 survival trials
under the Weibull model. The properties of the two parametric tests are compared with the non-
parametric log-rank test through simulation studies. Power and sample size formulas of the two
parametric tests are derived. The impact on sample size under mis-specification of the Weibull
shape parameter is also investigated. The study can be designed by planning the study duration
and handling nonuniform entry and loss to follow-up under the Weibull model using either the
proposed parametric tests or the well known non-parametric log-rank test.
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1 Introduction

In randomized clinical trials, the primary interest is often to compare the survival
distributions between treatment groups. To have adequate power to detect a pre-specified
treatment difference, sample size calculation is of particular importance. Various researchers
have proposed methods for sample size calculations for randomized clinical trials with a
time-to-event endpoint. Some of these methods were discussed under the proportional
hazards model (Freedman, 1982; Schoenfeld, 1983; Lakatos, 1988; Collett, 2003; and
others). Most of these methods were derived under the assumption of an exponential
distribution because of the simplicity of a constant hazard function (George and Desu, 1977;
Bernstein and Lagakos, 1978; Lachin, 1981; Rubenstein et al., 1981; Schoenfeld and
Richter, 1982; Lachin and Foulkes, 1986; and many others). Commercially available
software packages, including PASS, nQuery and EAST, also implement methods for
calculating sample size based on an exponential model and proportional hazards model. The
same is true in the standard text books (Chow et al., 2003; Julious, 2010), where sample size
calculation under the Weibull model is not usually considered. Only a few of the existing
methods for power and sample size calculations consider the Weibull distribution. For
example, Heo et al. (1998) derived a sample size formula under a proportional Weibull
model, but test statistics were not discussed in their paper. Recently, Jiang et al. (2012)
proposed a simulation method to calculate sample size for group sequential trials under a



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wu Page 2

proportional Weibull model, but it is a computationally intensive method with restrictive
assumptions. Lu et al. (2012) derived sample size formulas for a non-proportional Weibull
model for designing a two-stage seamless adaptive trial. For survival data, the exponential
and Weibull distribution are the two most frequently used parametric models. Of the two
distribution forms, the Weibull distribution is more appropriate to describe time-to-event
data than the exponential distribution in most cases because it includes the shape parameter
in addition to the scale parameter, with a decreasing or increasing hazard (Jiang et al., 2012).
In advanced stage cancer studies, the survival rate usually dramatically drops towards the
end of the study. Such characteristics of the survival time distribution can be better
approximated by a Weibull distribution. In general, a survival trial under the Weibull model
with a common shape parameter can be designed under the proportional hazards model
using the well known log-rank test. However, a parametric test derived under the Weibull
model could be expected to have better properties than the non-parametric log-rank test. No
comparison has been made between the parametric test and the non-parametric log-rank test
under the Weibull model in the literature.

The rest of this paper is organized as follows. In Section 2, two parametric tests are
proposed under a proportional Weibull model. Sample size formulas are derived.
Nonuniform entry and loss to follow-up are also discussed. In Section 3, empirical type |
error and power of the proposed two parametric tests are compared with the non-parametric
log-rank test by simulation studies. An example is given in Section 4 to illustrate a
randomized two-arm cancer survival trial design by using the proposed methods. The final
conclusion is presented in Section 5.

2 Test Statistics and Sample Size Calculation

Two parametric test statistics are discussed in this section to provide power and sample size
calculations for designing randomized two-arm survival trials. Assume that time-to-event
variable Tj of a subject from the jth group follows the Weibull distribution with a common
shape parameter xand scale parameter g, j = 1, 2. That is, Tj has survival distribution
function

Sj(t):e_(”jt)m

b

and hazard function
h; (t):/{p;’t”fl.

The shape parameter x indicates the degree of acceleration (x> 1) or deceleration (x < 1) of
the hazard over time. In a cancer trial, the median survival time is an intuitive endpoint for
clinicians. The median survival time of the jt group for the Weibull distribution can be

calculated as mjzpj’l{log(2)}1/’“. Therefore, the Weibull survival distribution can be
expressed as
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o ty\E
5, (1) EDG)

' ,j=1,2.

The hypotheses of a randomized two-arm trial defined by median survival times can be
expressed as

H01m1:m2 vs. H1:m1 * Mg.

2.1 Test Statistics and Sample Size Formulas

To derive the test statistics, we assume that the common shape parameter x is known or can
be estimated from historical data. Good quality historical data from standard treatment group
can provide estimates of the Weibull parameters that are reliable for the planned study
design. For notation convenience, we convert the scale parameter g to a hazard parameter

Aj=pj=log(2)/m7j. Then the above hypotheses on median survival times are equivalent to
the following hypotheses:

H(T:)q:)\Q ’US.H;(I)\] # Ao,

where the hazards ratio is A = 13/1; = R”, with R = my/m;.

Now, suppose during the accrual phase of the trial, n; subjects of the jth group are enrolled in
the study. Let

Xij: min(Tij, Cij) and 5ij:I(Tij S Cij)a iZl, sy g, j:]., 2

be the observed times from entry to an event and event indicator, respectively, where Tj; is
the true event time from a Weibull distribution with shape parameter x and scale parameter
pj, and Cjj is a non-informative censoring time, which is assumed to be independent of Tj;.
The likelihood function is given by

L(Ala )\2):)\f1 /\g2 ei)‘lUl 7)\2U2’

where djzziil%' is the total number of events observed in j group and szziilej is
the cumulative follow-up time penalized by the Weibull shape parameter x. The maximum
likelihood estimate of 4; can be derived as

Aj=d;/Uj,
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and its variance is approximately X?/dj which can be obtained from the Fisher information
matrix.

The distribution of /”Lins often skewed. This is partly begause /1]-Ais restricted to be

nonnegative value. A logarithmic transformation log/; takes the value over the entire real
line, so the asymptotlc normality is expected to be more accurate. Using the delta method,
the variance of log/; is approximately 1/d;. Thus a standardized statistic of Iogﬂ,l - Iogxlz

_ _1\—1/2
Zy=log(Usdy /U do)(dy  +dy 1) ™2,

is an asymptotically standard normal distribution under the null hypothesis which was
derived under the exponential model by Schoenfeld and Richter (1982). We call it the
Schoenfeld test statistic. To calculate the power, let pj be the probability of a subject from
the j" group having an event during the study, and assume that the randomization treatment
allocation ratio is 7as ny = ziny. Then under the alternative hypothesis A = /11//12(> 1),Z;is

an approximately normal distribution with mean n'/2xlog(R) (p7+7p3 1) /% and unit
variance. Therefore, given a significance level a, the power (1 — f) of the Z; test under the
alternative is given by

—1 71) 1/2

1/2
power:@{n/ klog(R)(p; ' 47 1p, — Z1—a/2h

where () is the standard normal distribution function and z;_.; = ®~1(1 — a/2). Thus,
sample size of the first group based on the Z4 test can be calculated as

2, -1, —1,-1
n1:<zl—a/2+217ﬁ) (py 2"‘7" 2 ) O
[rlog(R)]

~1/3. .
:Aj/ in small samples is much more closely
~1/3
Aj

Sprott (1973) showed that the distribution of gEj
approximated by a normal distribution than is /Ij.AThen qBj: is approximately normal

with mean qu:A;/g and variance estimate &?/(de) (Lawless, 1992). Therefore, the test
statistic

o1 — &y

Za= ~2 ~2 1/2
{61/(9d1)+¢5/(9d2) }

is an approximately standard normal distribution under the null hypothesis. We call it the
Sprott test statistic. It rejects the null hypothesis if |Z5| > z1_.. Thus, the power of the
Sprott test under the alternative is determined by
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powem@{%?%R?"/%;Jw*%ﬁ) / <R*”~/3—z>—z1_(,/2>},

and sample size of the first group based on the Sprott test can be calculated as

_ (2’1—a/2+21—ﬁ)2(RQK'/3P1_1+71'_1P2_1)
9(Rs/3 — 1)

ny (2

To compare the proposed parametric test statistics with the non-parametric method, we
introduce the log-rank test (Cox and Oakes, 1984) as follows: Let (1) < t) < ... <t denote
the k distinct event times by pooling the two samples. In the j'" group there are dsj events at
the time ts) forj=1,2ands =1, 2, ..., k. Also suppose that the number at risk at t) in the
jth group is Ngj, and ns = gy + gy for the total number at risk at t(s), and dg = dg; + ds for the
number of events at t(). The log-rank statistic is defined as

where eg; = ng1dg/ng is the expected number of events in the first group, and the variance of
the log-rank statistic is

Vv:zk:nslns2ds (ns - ds) )

—  ni(ns-1)

Under a proportional hazards model S,(t) = [S1(t)]”, for small values of the log hazards ratio
log(A) = log(1/7), and the standardized log-rank statistic Z3 = L/VY/2 is an approximately
normal distribution with mean log(A)VY/2 and unit variance (Tsiatis, 1982; Sellke and
Siegmund, 1983). Thus, the sample size of the log-rank test can be derived at the alternative
y= n(< 1) as (Collett, 2003; Schoenfeld, 1983)

(r+1)? (21-aj2t21-p)°
T [log(A)*(pr+7pa)’

®

ni=

where A = 1/y, = R under the Weibull model. The total sample sizeisn=n; + n, = (7 +
1)n1.

2.2 Sample Size under Uniform Entry

To calculate the number of subjects required for the study, we need to calculate pj, the
probability of a subject in the jt group having an event during study. Typically, assume that
subjects are accrued over an accrual period of length t, with an additional follow-up period
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of length t;. A subject enters the study at time u, the entry time is uniformly distributed on
[0, t5], and no subject drops out or is lost to follow-up during the study. Then the probability
of a subject having an event during the study under the Weibull model can be calculated by

K

1 —1 —Ly®
pi=L— i e =10
a

This integration can be obtained numerically. Therefore, given the design parameters: x, my,
my, @, B, 7, s and ty, the number of subjects n required for the study can be calculated using
formulas (1)-(3).

In an actual trial design, if there are historical data for the standard treatment group showing
that the Weibull distribution provides a satisfactory model and gives reliable estimates for
median survival time (m;) and shape parameter x, and if the investigators can also provide
an estimate of the median survival time (my) of the new treatment based on a literature
review or data from a pilot study on the new treatment, then the trial can be designed as
discussed above. However, if there are no such historical data to provide full information on
the Weibull parameters, then an alternative way to estimate the shape parameter is by using
the following relationship:

o 108(A)
log(m2 /ml) ’

where, m; and m, can be obtained as discussed above and the hazard ratio A can be obtained
by the expectation for the new treatment that can increase the survival rate S;(x) from the
standard treatment to S,(x) of the new treatment, where x is a landmark point. That is A =
logS1(x)/logSy(x). Of course, one question is whether a rough estimate of the shape
parameter can still provide a reliable study design. To answer this question, it is necessary to
investigate the sensitivity of the sample size or power under mis-specification of the shape
parameter. Simulation studies were conducted (see Section 4) and the results showed that
the impact on the sample size and power is small under mis-specification of the shape
parameter xwhen it lays within a reasonable range (x + 30%x).

Another issue in designing an actual trial is that, given the accrual time t, calculating the
sample size is often impractical because we may not be able to enroll the total number of
patients as planned in the given accrual duration. It is more practical to design the study
starting with given the accrual rate r and then calculating the required accrual time t,. This
can be accomplished under the Weibull model assumption. First the integration in the
probability formula (4) is approximated using Simpson's rule,

1
=1 = c{Sj(ts)+45;(0.5tatts)+S;(tatty)}- 6

Then, using the total sample size formula based on (1)-(3), for example (1), we can define a
root function of the accrual time t,
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(77+1)(Zl—a/2+21—ﬂ)2(p1_1+7T_1p2_1)

root(t,)=rt, — [klog(R)]?

Now the accrual time t, can be obtained by solving the root equation root(ty) =0
numerically in Splus/R using the uniroot function. The total sample size required for the
study is approximately n = [rt;]*, where [x]* denote the smallest integer greater than x.

2.3 Sample Size under Nonuniform Entry and Loss to Follow-up

In section 2.2, we discussed sample size calculation under the usual assumptions of uniform
entry and censoring only administratively at the end of the trial. Here, we will briefly discuss
how to handle nonuniform entry and loss to follow-up.

Consider a general entry time distribution G(u) with density function g(u), for example, a
truncated exponential entry distribution over the interval [0, t5], with density (Lachin and
Foulkes, 1986; Grisp and Curtis, 2007)

—vu

()=

where v is the parameter reflecting the subject accrual pattern. For v > 0, the entry
distribution is convex, whereas for v < 0, the entry distribution is concave, and v=0
corresponds to a uniform entry on interval [0, tg]. Then, the probability of a subject having
an event during the study can be calculated by

a to+t
p=1— [ S(tatty —u)dG(u)=1— [;""7 S(t)g(tatts — t)dt,

where S(t):e*k’g@)(%)ﬁ- This integration can be obtained numerically.

To consider loss to follow-up, let u be the entry time of a subject, with distribution G(u),
which implies an exposure period F =t + t; — u, and let T be the event time. In addition, let
s denote the time of loss to follow-up, which follows a loss distribution H(s) over the
complete follow-up interval [0, t5 + tf]. Then, the probability of a subject having an event
during the study can be calculated by (Lachin and Foulkes, 1986)

p=/k P|T<min(F, s)|g(u)du=[{ [¢ " g(u) f(t)[1 — H(t)]dtdu,

where f(t) = ko't le=(M" is the Weibull density function. Assuming that the accrual time is
a piece-wise constant function, this integral can be calculated numerically too (see
Appendix).
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3 Comparisons of Power and Sample Size

In this section we conducted simulation studies to compare the power and type | error of the
three test statistics under various scenarios. In the simulations, the survival distribution of
the j™ group was taken as Sj(t) = e'°9@UM)™, which is the Weibull distribution with shape
parameter xand median survival time m;, j = 1, 2. The parameter settings for the simulation
studies were x= 0.5, 1, and 2 to reflect cases of decreasing, constant, and increasing hazard
functions. The ratio R = my/m4 under the null and alternative hypothesis was set to be
between 1.0 and 2.0, with other parameters fixed as follows: mq = 1, accrual period t; =5
and follow-up time t; = 2. For the proportional hazards model, under the Weibull
distribution, the hazard ratio A = R .

The simulations were performed for a variety of sample sizes, n = 30, 50, and 100 per group
for equal allocation. We assumed subjects were recruited with a uniform distribution over
the accrual period t; and followed for t;. A subject was censored if his/her event time was
longer than t, + t; — u, where u was the time when the subject entered the study. We further
assumed that no subject was lost to follow-up during the study period t; + t;. In each
parameter configuration, 100,000 observed samples of censored event times were generated
from the Weibull distribution to calculate the test statistics under the null or alternative
hypothesis. The nominal significance level was set to be 0.05, and the standard error of the
simulated empirical type | error based on 100,000 random samples was

\/0'05 +0.95/100, 000=0.00069 Tpgq proportions rejecting the null under the true null
hypothesis (R = 1) represent the estimated empirical type I error. The proportions rejecting
the null under the alternative hypothesis (R > 1) represent the estimated empirical power.
The simulated empirical type | errors and powers in various scenarios are summarized in
Table 1. Highlighted values are those that exceed the nominal level plus three standard
errors of the simulation.

The simulation results showed that the log-rank test was slightly liberal when the sample
size was small. The type | error of the Schoenfeld test and Sprott test were satisfactorily
close to the nominal level of 0.05 in all scenarios. The powers of the Schoenfeld test, Sprott
test, and log-rank test were very close, even though the power of the log-rank test dropped
slightly when R was getting large.

The sample sizes calculated using formulas (1)-(3) for various hazards ratios are given in
Table 2. The Schoenfeld test, Sprott test, and log-rank test gave almost identical sample
sizes, which is consistent with the power simulation results. The empirical powers for the
corresponding sample sizes given in Table 2 were based on 20,000 simulation runs. The
simulated empirical powers of the Schoenfeld test, Sprott test, and log-rank test were all
close to the nominal power of 90%, with a few exceptions in which the powers of the log-
rank test dropped to 86%-87% when sample sizes were small.

To study the sensitivity of three tests against the shape parameter, sample size and empirical
power are also calculated under mis-specification of the shape parameter within a range of x«
+ 30% 1. The empirical powers were obtained through simulation based 20,000 runs. The
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results (Table 3) showed that the mis-specification of the shape parameter has only small
impact on the study study power for all three test statistics.

4 An Example

Rhabdoid tumors are aggressive pediatric malignancies with a poor prognosis. Over the past
5 years, St. Jude Children's Research Hospital accrued 14 pediatric patients with recurrent or
refractory non-CNS rhabdoid tumors treated with conventional chemotherapy. The median
event-free survival is only about 1 year, where the event is defined as disease relapse or
death. All 14 patients had events within about 3 years. The Weibull model was fitted in R to
the data, resulting an estimate (standard error) of the shape parameter x = 1.37(0.28) and
median event-free survival time of mq = 0.936 years. For comparison, the exponential model
was also fitted to the data and the Kaplan-Meier curve and fitted exponential and Weibull
survival curves were plotted on the same Figure. The log likelihood for the Weibull model
was -13.60 whereas, for the exponential model, it was -14.60. The likelihood ratio test
statistic was 2[-13.60-(-14.60)]=2.0, which was not significant compared with a chi-square
percentile with one degree of freedom. However the log likelihood value and curve fitting
suggest that the Weibull model provides a more satisfactory model than the exponential
model. Now, suppose that we would like to design a multi-center randomized two-arm trial
to assess the effectiveness of the small molecule inhibitor alisertib versus conventional
chemotherapy for this group of patients. Patients will be randomized with equal allocation to
each treatment group. The hypotheses of the planned study are Hp: my =myvs. Hy : my #
m,. The investigators would like to detect a half year difference of median event-free
survival times between the alisertib treatment group to the conventional chemotherapy
group, or equivalently to detect a hazard ratio A = 1.80, with 90% power and 5% type |
error, and 2 years of follow-up after last patient enrolled on study. Assume this multi-center
trial has the capacity to enroll and treat 20 patients per year. Then under the assumption of
the Weibull model, with uniform entry and no loss to follow-up, the required total study
durations are 6.26 and 6.36 years, or total sample sizes are 126 and 128 patients for the
Schoenfeld test/log-rank test and Sprott test, respectively.

5 Conclusion

Two parametric test statistics and corresponding sample size formulas are proposed under
the Weibull model. Within the parameter setting of the simulation, the results showed that
both the Schoenfeld test and Sprott test preserve the type | error very well. The non-
parametric log-rank test also preserves the type | error well for moderate and large samples,
but it is slightly liberal in the case of small sample sizes. The empirical powers of the three
tests are very close. Therefore the non-parametric log-rank test is still competitive against
the proposed parametric tests. This is not surprising, because the log-rank test is fully
efficient under the proportional hazards model (Schoenfeld and Ritcher, 1982). Even
through the asymptotic normality of the two parametric tests is more accurate than that of
the log-rank test for small samples, the log-rank test is well-known and is available in most
commercial software packages. Therefore all three tests can be used to design a randomized
two-arm trial under the Weibull model by planning the study accrual duration and handling
nonuniform entry and loss to follow-up.
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Appendix

By changing the order of integration, we have

p=/k P[T<min(F, s)|g(u)du
=[l T T g F o)
— H(t)ldtdu=[{ [ g(u) f(1)[1
— H(t))dudt
+i 15T 9w Fo)
— H(t))dudt.

Suppose the accrual rate is a piece-wise constant function, without loss of generality, and
assume it is uniformly distributed on [0, t;]. Then the above integral is simplified as

p=/d F(t)[1— H<t>]dt+tift;:“f (tatty — ) F(£)[1 — H(t)]dt.

Inserting the Weibull density f(t) = xp*t*~1e~(™" and exponential losses to follow-up
distribution H(t) = 1 — e into above integrals, we obtain

3 K ]. n K
p=| ’éf Hpntn—le*(Pt) 7ntdt+t_uli;+tf (tatts — t)/{p”t”ilef(pt) g,
a

which can be integrated numerically. If we assume that both survival and loss to follow-up
distributions are exponential, that is f(t) = le~*t and H(t) = 1 - e’%, then the above two
integrations can be integrated as

A { ety _ e—(A+n)<ta+tf)}
p 1-—-

A ta(A+n)

which is given by Lachin and Foulkes (1986).
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Year from diagnosis
Figure. Kaplan-Meier Curve and Fitted Survival Distributions

Step functions are Kaplan-Meier survival curve and its 90% confidence boundaries. Solid
and dotted curves are the fitted Weibull and exponential survival distributions, respectively.
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