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Abstract

This review traces the history and logical progression of methods for quantitative analysis of 

enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern 

computational methods today. Following a brief review of methods for fitting steady state kinetic 

data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical 

integration of rate equations, including a re-analysis of the original Michaelis-Menten full time 

course kinetic data. Finally, several illustrations of modern transient state kinetic methods of 

analysis are shown which enable the elucidation of reactions occurring at the active sites of 

enzymes in order to relate structure and function.
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Introduction

In their 1913 paper Leonor Michaelis and Maud Menten sought to achieve “the final aim of 

kinetic research, namely to obtain knowledge of the nature of the reaction from a study of its 

progress” (1). The challenge of the day was to account for the full time course of product 

formation in testing the postulate that the rate of an enzyme-catalyzed reaction was 

proportional to the concentration of enzyme-substrate complex. They did so without 

knowing the concentration or even the chemical nature of enzymes—a tribute to the power 

of quantitative kinetic analysis. Today, the important questions have advanced to asking 

how enzymes achieve such extraordinary efficiency and specificity, while structural and 

spectroscopic studies have provided a powerful complement to kinetic analysis to greatly 

expand our understanding of enzyme catalysis. While the techniques for data collection and 

analysis have advanced to meet the sophistication of the questions that are being addressed, 

kinetic analysis has remained as a cornerstone of enzymology because studies of the rate of 
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reaction allow alternative pathways to be distinguished. Here, I will briefly review the 

methods of kinetic analysis developed by Michaelis and Menten that go beyond the simple 

initial velocity methods for which they are known, and contrast their analysis with modern 

computer-based global data fitting methods.

Roger Goody and I recently published a complete translation of the 1913 Michaelis-Menten 

paper originally written in German (2, 3). We were surprised to learn that Michaelis and 

Menten performed what can be considered as the first global data analysis of full progress 

curves, going far beyond the simple steady state kinetic studies for which they are 

commonly recognized.

As the foundation of their analysis, Michaelis and Menten devised the now popular initial 

velocity measurements, but they also derived equations for competitive product inhibition 

and measured the dissociation constant (Kd) for each product. They studied the enzyme, 

invertase (EC 3.2.1.26, β-D-fructofuranosidase), named for the resulting inversion of optical 

rotation observed upon conversion of sucrose to glucose plus fructose. Interestingly, the 

crystal structure of invertase from Saccharomyces was solved for the first time this year (4). 

Michaelis and Menten chose to study invertase because the change in optical rotation 

provided a convenient signal to monitor the hydrolysis of sucrose and thereby test the theory 

that the rate of reaction was proportional to the concentration of the enzyme-substrate 

complex. They are most noted for the Michaelis-Menten equation, which was first derived 

by Henri (5), although his experiments failed to support the theory because of shortcomings 

in his experimental design; namely, the failure to control pH and to account for mutarotation 

of glucose (1, 2). This provides an important example that is still pertinent today. Testing a 

scientific theory requires careful measurement and accurate quantitative analysis. Because of 

their attention to detail in the laboratory and their careful, quantitative analysis, the names of 

Michaelis and Menten are indelibly linked to the simple equation relating the rate of an 

enzyme-catalyzed reaction to the concentration of substrate:

Eqn 1

Measurement of the binding affinity for an active enzyme-substrate complex was a 

landmark discovery of the day. Although it is now widely accepted that the Michaelis 

constant, Km, is not generally equal to the enzyme-substrate dissociation constant, for 

invertase the Km probably is equal to the Kd given the weak apparent binding affinity (16.7 

mM). The more general derivation of the Michaelis-Menten equation that is presented in 

most textbooks is based upon the steady state approximation, as derived 12 years later in 

1925 by Briggs and Haldane (6).

Finding a method for fitting the concentration dependence of the initial velocity was 

problematic for Michaelis and Menten. Estimation of Km could be obtained from the 

velocity at half of Vmax, but extrapolation to estimate the velocity at infinite substrate 

concentration presented an obstacle. They devised a complicated analysis based upon the 

logarithm of the rate and derived an equation analogous to the Henderson-Hasselbalch 

equation for pH dependence, which was published 4 years later (7). They normalized their 
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data based upon the expected slope of a semi-log plot at the midpoint of the transition, 

thereby affording an estimation of the rate at infinite substrate concentration and hence, the 

Km. It is indeed surprising that in spite of the complexities of this analysis, it was not until 

twenty years later that Lineweaver and Burk devised the simple reciprocal plot (8). As a 

tribute to the popularity of this simple algebraic transformation, their paper went on to 

become the most cited in the history of the Journal of the American Chemical Society.

The Lineweaver-Burk reciprocal plot presents some problems due to the unequal weighting 

of errors as illustrated in Figure 1. Figures 1A, B and C show the same data set fit by 

nonlinear regression to a hyperbola (Figure 1A) compared to fits derived by linear 

regression using a Lineweaver-Burk plot (Figure 1B) and an Eadie-Hofstee plot (Figure 1C). 

In the reciprocal plot, the least accurate data, obtained at the lowest substrate concentrations, 

alter the slope of the line because of the long lever arm effect on the reciprocal plot, leading 

to overestimation of kcat and Km. Of course, this data set was selected to illustrate the 

problems and proper weighting of errors based upon the measured standard deviation can 

rectify the unequal weighting of errors in the reciprocal plot, but that is rarely done. These 

considerations led to the generation of another transform of the Michaelis-Menten equation, 

known as the Eadie-Hofstee plot as shown in Figure 1C (9). Arguments have tended to favor 

the reciprocal plot because it separates the two primary kinetic constants, kcat/Km and kcat as 

1/slope and intercept, respectively. Although the Eadie-Hofstee plot produces more reliable 

estimates (10), the presence of the dependent variable, v, in both axes makes rigorous error 

analysis difficult. Fortunately, now with the advent of fast personal computers and readily 

available software for nonlinear regression, these arguments can be relegated to history. 

Today, there is no reason for fitting data using either linear transformation of the Michaelis-

Menten equation in analyzing the concentration dependence of the initial velocity.

Michaelis-Menten Progress Curve Analysis

Although largely forgotten in the past century, Michaelis and Menten were the first to fit full 

time course kinetic data and compute a fitted parameter by averaging over all of the data to 

provide a kind of global analysis. They derived an equation that predicted a constant term 

that could be calculated from the product formed at each time point as the reaction 

progressed toward completion, including data obtained at several starting sucrose 

concentrations and accounting for product inhibition.

Eqn 2

where S0 is the starting concentration of sucrose, t is time, P is the time-dependent 

concentration of product (fructose or glucose), and KS, KF and KG are the dissociation 

constants for sucrose, fructose and glucose, respectively. This analysis required prior 

estimates for each of the dissociation constants derived from initial velocity measurements. 

The rigorous test of their model was based upon calculating the value of this constant for 

each data point and then examining whether there were any systematic deviations of the 

value of the constant as a function of starting substrate concentration or time of reaction. 

They stated, “The value of the constant is very similar in all experiments and despite small 
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variation shows no tendency for systematic deviation neither with time nor with sugar 

concentration, so that we can conclude that the value is reliably constant.” The average 

value of this constant then represents a kind of global data fitting since it was calculated 

from fitting all of the data. Interestingly, the constant they derived was Vmax/Km, not the 

Michaelis constant.

It is quite satisfying to note that modern computational methods of data fitting produce 

essentially the same value for Vmax/Km as that derived by Michaelis and Menten with pen 

and paper 100 years ago. Michaelis and Menten presented an average value of Vmax/Km = 

0.045 ± 0.003 m−1, whereas our global analysis of their data gives a value of 0.046 ± 0.001 

m−1. Figure 2A shows the original Michaelis-Menten full progress curve data fit by 

nonlinear regression analysis based upon numerical integration of rate equations for the 

complete model (Scheme 1) along with confidence contour analysis using KinTek Explorer 

software (11, 12). An example file (Michaelis-Menten_1913.mec) showing these data is 

available with the free student version of KinTek Explorer available for both Mac and 

Windows PCs at www.kintek-corp.com.

During the past century, fitting full time course kinetic data has not gained the wide 

acceptance of initial velocity measurements, in part, because there is no universal equation 

describing the approach to equilibrium. Derivations usually rely upon the approximation that 

the substrate remains in excess over enzyme even as the reaction approaches equilibrium, a 

requirement that may not always be met. New approaches to deriving an analytical 

expression for full time course kinetics have been presented (13), but even these require 

complex mathematical functions. Recently there has been increased interest in fitting full 

time course kinetic data brought on by the ease of fitting based upon numerical integration 

of rate equations without simplifying approximations (12, 14, 15). Indeed, as shown in 

Figure 2A, global fitting of the original Michaelis-Menten data easily reproduces in seconds 

what must have taken months of computation by hand. It is a tribute to their skill and 

diligence that modern computer based analysis provides essentially the same value for their 

constant as Michaelis and Menten calculated a century ago.

Fitting Data based on Computer Simulation

In the traditional data fitting protocol, a model is proposed and equations are derived to 

account for the time dependence of the reaction. One then derives another equation to fit the 

substrate concentration dependence of the fitted parameters to extract primary kinetic 

constants. For example, in the case of steady state kinetic data, the time dependence is fit to 

a straight line, based upon the steady-state approximation. The rate is then plotted as a 

function of substrate concentration and fit to a hyperbola to derive estimates of kcat and Km. 

To study the effect of an inhibitor, the whole process is repeated and then the apparent kcat 

and Km values are plotted against the inhibitor concentration to ultimately derive estimates 

of the true kcat and Km values and KI for the inhibitor. Accordingly, one can describe this 

process as a kind of parsing of the kinetic data to separate the complex terms to ultimately 

derive the primary kinetic parameters. Proper error analysis requires propagation of 

measurement errors through each step of analysis.
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Data fitting based upon computer simulation represents a major paradigm shift requiring 

new insights. Data are fit to a chosen model using numerical integration of the rate equations 

so that no approximations or simplifying assumptions are required (12, 15). Moreover, in the 

process of finding an optimal fit, the intrinsic rate constants are varied in seeking a function 

that mimics the time course of the reaction. Thus, the rate constants are derived directly, not 

indirectly through complex functions of rate constants. Like other regression analysis, the 

best fit base upon seeking a minimum χ2 value (16):

Eqn 3

where yi represents the data as a vector of N points, y(ti) is the computed value at time ti, and 

σi (sigma) is the standard deviation of the measurement. If sigma is not known, it generally 

is assumed to be identical for all data or set to unity. An optimal fit is derived by analysis of 

successive trials to converge on a best fit defined by a minimum χ2. However, in fitting 

based upon simulation, the y(ti) values are computed by numerical integration of the rate 

equations rather than from a defined equation.

Fitting to derive rate constants directly based upon a model bypasses the need to 

subsequently fit the concentration dependence of the measured rate after fitting the primary 

kinetic data to a simplified function. This represents a major paradigm shift in the way in 

which we design and interpret experiments. For example, rather than conducting a series of 

measurements restricted to the first 10–20% of reaction at various substrate concentrations, 

one can monitor a single reaction allowing the reaction to run to completion, which provides 

data sufficient to define kcat and Km if there is no product inhibition. As described in more 

detail below, the full time course contains within it the concentration dependence of the 

reaction rate as the substrate is consumed over time.

Fitting the original Michaelis-Menten data by computer simulation illustrates the methods 

involved. First we enter the complete model as given in Scheme 1. We then enter starting 

concentrations of enzyme and sucrose. The enzyme concentration was not known by 

Michaelis and Menten, but we can estimate an enzyme concentration of 25 nM in their 

assays based on modern estimates of kcat = 500 s−1 (4) and the Vmax value reported by 

Michaelis and Menten (0.75 m−1). Although the simulation requires an enzyme 

concentration, any arbitrarily small enzyme concentration would suffice, and it is only used 

in our analysis to convert kcat/Km to Vmax/Km values for comparison with the Michaelis-

Menten analysis. Nonetheless, this estimate provides anecdotal insight into how the original 

experiments may have been performed.

The complete model requires values for 12 rate constants, which far exceeds the information 

content of the data. One could allow all 12 rate constants to vary in fitting and then use a 

complete expression for calculation of kcat and Km values, but the apparent errors on the rate 

constants would be large because there are multiple sets of parameters that could account for 

the data. Therefore this approach would not allow estimation of errors on kcat and Km. A 

given set of kinetic data will only suffice to define a limited number of kinetic parameters. 

Thus, in order to obtain accurate error estimates, modeling based upon numerical integration 
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of rate equations requires some rate constants to be fixed at arbitrary values to reduce the 

number of variables. For example for a simple enzyme-catalyzed reaction, one can use either 

of the following scenarios to obtain estimates of kcat and Km.

In each case, the rate constants in parentheses are held fixed at the designated values so that 

there are only two variable parameters during the data fitting. In Case 1, we use irreversible 

binding and chemistry to directly estimate kcat/Km = k1 and kcat = k2. This method has the 

advantage of establishing the specificity constant directly and is preferred if there are large 

errors in estimating kcat and Km, for example if the Km is larger than the highest substrate 

concentration achievable experimentally. However, Case 1 cannot be used if the reaction is 

fully reversible. Cases 2 and 3 both represent a rapid equilibrium binding assumption for 

calculating Km, but with either k1 or k−1 fixed so that only one parameter is varied in 

computing Km = k−1/k1. Case 3 has the advantage in that it guards against modeling with 

second order rate constants exceeding the theoretical diffusion limit of approximately 109 

M−1s−1. Of course, the actual mechanism may not involve a rapid equilibrium binding, but 

since the steady state measurements are not able to define the individual rate constants, 

either of these methods can be used to calculate kcat and Km. As long as appropriate 

equations are used to calculate kcat and Km values, the values chosen for the fixed constants 

do not affect the outcome of the calculation, and it is easy to show that multiple fits using 

various combinations of parameters all produce the same kcat and Km values. This analysis 

quickly illustrates that the information content of steady state kinetic data, whether based on 

initial velocity or full progress curve kinetic measurements, is only sufficient to derive two 

parameters, kcat and Km (or kcat/Km). However, if the reaction is reversible, or if there is 

significant product inhibition, then the data can provide additional information to define one 

or two additional parameters; namely, kcat and Km values for the reverse reaction (from k−3 

and k−2) as described in detail below.

A common misconception is that it is better to fit steady state data by traditional initial 

velocity methods to derive estimates for kcat and Km because fitting by simulation is model-

dependent and therefore the parameters will be invalid if the model is incorrect. However, 

one should note that derivation of the equations for steady state kinetic parameters is also 

based upon a model, albeit a simple one. In fitting by simulation, one can derive estimates 

for kcat and Km from any minimal model that adequately accounts for the data while 

satisfying criteria for goodness of fit. One could always use a more complex model and the 

resulting kcat and Km values would be the same in either case, independent of the model 

chosen. Like two sides of the same coin, since steady state kinetics cannot distinguish 
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alternative models, any model providing a good fit is sufficient for computing kcat and Km 

values.

Michaelis and Menten noted significant product inhibition and estimated the dissociation 

constants for both fructose and glucose based upon competitive inhibition of the initial 

velocity. In fact, the full time course kinetic data published by Michaelis and Menten cannot 

be adequately fit without including product inhibition (2). To fit the Michaelis-Menten data, 

we can assume rapid equilibrium binding of sucrose, irreversible chemistry, and fast, but 

reversible product release to account for product inhibition. Accordingly, we can directly 

calculate kcat = k2, KS = k−1/k1 and KP = k3/k−3. The “global fit” based upon Equation 2 only 

allowed Michaelis and Menten to test the ability of their model to account for the full 

progress curves using their prior estimates of Kd values for sucrose, fructose and glucose, 

but they could not use their analysis of full time course kinetics to obtain independent 

estimates of KS, KF and KG. However, fitting the same data set by simulation affords 

estimates of Km and Vmax/Km and an average Kd for product inhibition. Michaelis and 

Menten suggested that the ternary E.F.G complex did not accumulate to a significant extent 

based upon the weak binding of glucose and fructose. Therefore to simplify the modeling of 

the kinetics, we employ a fast, irreversible release of the first product from the E.F.G 

complex. Accordingly, we can model the data using Scheme 1 and the rate constants 

summarized in Table 1. Again, it is important to emphasize that the intrinsic rate constants 

need not be correct since they are unknown; rather, they are only used to calculate the steady 

state kinetic parameters that are defined by the data.

Globally fitting the original Michaelis-Menten data using computer simulation affords 

values for Km and Vmax/Km comparable to the values derived by Michaelis and Menten (2). 

It is interesting extend this analysis to ask whether the full time course data are also 

sufficient to define product dissociation constants, KF and KG. First, one must note that 

fructose and glucose are produced in equal quantities during the reaction; therefore, there 

can be no information in the data to distinguish the two. Accordingly, the only reasonable 

questions to ask are whether the data are sufficient to define an average dissociation 

constant, or whether one could derive reasonable estimates of the two constants if the ratio 

of their two values were known. Using the latter approach, we fit the data globally keeping 

KF/KG = 1.53, based upon the measurements of Michaelis and Menten. We fit the data set 

globally to derive three constants, kcat, Km and KF to get the results shown in Figure 2A.

Confidence contour analysis

Using computer simulation it is simply too easy to employ an overly complex model, and 

indeed, as described above the method requires a complete model with more unknowns than 

can be defined by the data in many cases. Therefore, a significant challenge in data fitting is 

to avoid over-interpretation by understanding the inherent information content of a given set 

of data and adjusting the model or restricting the range of fitted parameters accordingly. 

This problem is evidenced by attempts to extract free energy profiles involving eight rate 

constants from full time course kinetic data on alanine racemase (17), when the data are only 

sufficient to define kcat and Km values in forward and reverse directions (11). Thus, one 

must have a firm grasp of the information content of the kinetic data in order to derive fits 

Johnson Page 7

FEBS Lett. Author manuscript; available in PMC 2015 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based upon a minimal model and a well-constrained set of rate constants. Moreover, one 

needs tools to assess the extent to which kinetic parameters are defined by the data. To this 

end, we added confidence contour analysis to the KinTek Explorer software, where one rate 

constant at a time is varied systematically and the data are then fit, allowing all other 

variable parameters to be adjusted in seeking the minimal χ2 value. Examining the variation 

in χ2 as a function of each variable then provides a realistic assessment of the extent to 

which the data constrain each parameter, independent of the values of all other fitted 

parameters. This is fundamentally different from typical nonlinear regression covariance 

analysis, which is based upon analysis of the variation in χ2 for each parameter at the best fit 

values of all other parameters. Accordingly, typical standard error values derived from 

nonlinear regression grossly underestimate the error range of each parameter when the 

parameters are seriously under-constrained and/or they are correlated by nonlinear functions 

(11).

It is important to note that evaluation of the quality of a given data fit is composed of two 

parts. First, goodness of fit can be evaluated based upon visual inspection to ensure that the 

fitted curve tracks the centerline of the scatter in the data without systematic deviations. 

Although this “chi by eye” is somewhat subjective, it provides a good indication as to 

whether the model is adequate to account for the data and a trained eye can discover 

systematic deviations better than any algorithm. If the standard deviation (sigma) of the 

original data is known, goodness-of-fit can be quantitatively evaluated based upon the 

expectation that χ2, when normalized by the known sigma values as in Equation 3, should 

equal the degrees of freedom, defined as the number of data points minus the number of 

independent variables (18). Once a good fit is achieved, the second and equally important 

part of evaluating a data fit is to determine whether the parameters are well constrained by 

the data. An overly complex model can provide a good fit, but with ill-defined extraneous 

parameters. Confidence contour analysis addresses the extent to which parameters are 

defined by the data once a good fit is achieved.

Results of two-dimensional confidence contour analysis of the Michaelis-Menten data are 

shown in Figure 2B, demonstrating that estimates for three kinetic parameters can be 

derived from these data by global fitting. Each pair-wise combination of parameters 

produces a well-defined local minimum in χ2 as evidenced by the areas shown in red. There 

are two methods of estimating errors on parameters. First nonlinear regression analysis 

returns a standard error, which can be reliable if the parameters are well constrained, but can 

be grossly misleading if they are not (11). Secondly, we can use a set threshold increase in 

χ2 to set upper and lower confidence limits on each parameter, which has the advantage of 

allowing for asymmetric error limits; for example, in some cases, data may define a lower 

limit on a given rate constant, but no upper limit. The set threshold is calculated based upon 

the number of data points and number of fitted parameters (11). In this case, a threshold of 

1.3x the minimum χ2 value is appropriate. From the analysis shown in Figure 2, KS ranges 

from 13 to 20 mM (16.5 ± 3 mM), which agrees with the estimate of 16.7 mM reported by 

Michaelis and Menten. The value for KF (calculated from k5/k−5) shows a wider margin of 

error (58.8 ± 20, upper and lower limits of 36 and 104 mM) indicating the data are not 

sufficient to define this value with precision, but do afford a reasonable estimate. Data 
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collected at longer times or after the addition of product at the start of the reaction would 

have provided a more refined value. Indeed, the values for KS and KF reported by Michaelis 

and Menten were based upon much more data than contained in Figure 2A.

We obtained a value of Vmax = 0.76 ± 0.06 mM/m (upper and lower limits of 0.7 and 0.84 

mM/m). To get error estimates on Vmax/Km, one could propagate error estimates on Vmax and 

Km to compute the ratio, Vmax/Km = 0.046 ± 0.008 m−1. However, the apparent second order 

rate constant, Vmax/Km is known with greater certainty than either Vmax or Km individually, 

as indicated by the oblong shape of the confidence contour in the inset to Figure 2A. Thus to 

get error estimates on Vmax/Km directly, one needs to restrict the fitting to a single parameter 

defining Vmax/Km. Applying this analysis to the data in Figure 2A provides Vmax/Km = 0.046 

± 0.001 m−1, which compares remarkably well with the value of 0.045 ± 0.003 m−1 reported 

by Michaelis and Menten. In addition, our analysis shows that this limited data set was 

sufficient to provide estimates for each of the three kinetic parameters based upon global 

data fitting (Vmax/Km, KS and KF), although additional data would have allowed resolution 

of the dissociation constants for each product and increased the precision of each estimate.

Understanding the information content of full time course kinetic data

Figure 3 illustrates an approach toward understanding full progress curve kinetics, taking 

advantage of the utility of the simulation software to generate synthetic data. First, we show 

a graphical deconvolution of the full time course kinetic data to develop an understanding of 

the method and the information content of the data. Figure 3A shows the simulation of the 

kinetics of substrate depletion for an irreversible reaction, using Scheme 2 and rate constants 

summarized in Table 2. The data illustrate the decrease in rate as the substrate is depleted 

and the reaction approaches the endpoint. The instantaneous rate, obtained as the negative of 

the slope (-d[S]/dt) at each time point can be plotted as a function of the remaining substrate 

concentration, revealing a hyperbolic relationship (Figure 3B). Graphing of the rate versus 

concentration on a Lineweaver-Burke plot demonstrates the linear relationship in the 

reciprocal plot (Figure 3C). Since the data can be reduced to a straight line, it is clear that 

the information content of the data can be represented sufficiently by only two parameters, 

kcat and Km. Thus, there is nothing magical about full progress curves, and they represent 

essentially steady state information because they are based upon multiple enzyme turnovers.

Figures 3D–F show the same analysis for an enzyme where the reaction is readily reversible. 

In this case, as the substrate is depleted, product builds up and rebinds to the enzyme, 

leading to product inhibition and reversal of chemistry. Attempts to transform the data by 

analysis of the rate as a function of concentration (Figure 3E) and on a Lineweaver-Burke 

plot (Figure 3F), show that the data can no longer be represented by two parameters. More 

complex modeling is required. Indeed, fitting the data by nonlinear regression based upon 

numerical integration of rate equations for a fully reversible model affords resolution of four 

rate constants sufficient to define kcat and Km in each direction. The important question is to 

ask whether each of the rate constants is well constrained in fitting the synthetic data. 

Keeping in mind that these are synthetic data generated with a relatively small standard 

deviation and a normal distribution of errors, this test represents the best possible scenario 

for defining the information content of kinetic data. Accordingly, this protocol of generating 
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synthetic data with a standard deviation that mimics experimental data provides a standard 

for defining the maximum number of parameters that could be obtained from a given 

experiment.

Synthetic data were generated using both an irreversible kinetic model (Figure 4A) and one 

where chemistry and product dissociation are readily reversible (Figure 4C) according to the 

rate constants listed in Table 2. Figure 4B shows the confidence contour analysis resulting 

from an attempt to fit four constants to the irreversible kinetic data set. It is apparent that k+1 

(defining Km = k−1/k+1) and k2 (defining kcat) are well constrained. However, k−2 and k−3 

are not well defined. Interestingly, although there is no lower limit, there is an upper limit on 

k−3 (the rate of product rebinding) leading to the conclusion that the Kd for product binding 

must be greater than 20 mM (k3/k−3 = 10000/0.5). This is based upon the observation that 

there was no detectable deviation in the shape of the curves that might have indicated 

product inhibition, and accordingly it sets a lower limit on the magnitude of the Kd for 

product. Also note that there is no upper limit on the magnitude of k−2 over the range of the 

search, but this is dependent on the value chosen for k3 (10,000 s−1). As shown in the inset 

to Figure 4A, when only two constants are allowed to vary (k−2 and k−3 are held fixed at 

zero), the confidence contour shows that k1 (Km) and k2 (kcat) are well constrained. 

Moreover, the long shape of the range of acceptable fits (red area) indicate that the product 

k1*k2 (defining kcat/Km = k1k2/k−1) is better defined than either individual parameter.

In the case of a reversible reaction as shown in Figures 4C–D the identical experiment 

provided well constrained estimates for four kinetic parameters, thereby defining kcat and 

Km in both the forward and reverse directions. Thus, when the reverse rate constants (k−2 

and k−3) are significant relative to the forward rate constants, the shape of full time course 

curves are perturbed sufficiently for the values of the reverse kinetic parameters to be 

derived from the data. This analysis demonstrates that the same experiment, performed 

under identical conditions can yield 2, 3 or 4 kinetic parameters, depending on the relative 

magnitudes of the underlying rate constants. Accordingly, comprehensive global data fitting 

is essential for evaluating the information content of the data and the confidence contour 

analysis provides an important check to establish upper and lower limits for each constant. If 

we had attempted to fit the data in Figure 4C using a model with all 6 rate constants (not 

shown), the confidence contour analysis would have revealed the expected limits; namely, 

that k1 ≥ kcat/Km, k2, k3 ≥ kcat for the forward reaction and k-3 ≥ (kcat/Km)rev and k−2, k−1 ≥ 

kcat,rev for the reverse reaction. Although confidence contour patterns can be somewhat 

complex, they reveal accurate details regarding the contributions of individual rate constants 

to the measurable kcat and Km values and the information content of the data. They provide a 

clear visual indicator when parameters are well constrained, and even when a given 

parameter is not well constrained, the confidence contour analysis accurately reveals upper 

or lower limits that are important mechanistically.

Beyond the Steady-State

For the past century, the analysis of enzyme kinetics has been dominated by the use of initial 

velocity measurements because of the practical simplicity of the methods. Large volumes 

have been published full of equations for different enzyme pathways, providing boilerplates 
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for kinetic analysis to establish the orders of substrate binding and product release (19, 20), 

although some texts also include a brief introduction to transient-state kinetics (21). 

Emphasis has often been placed on measurement of the Michaelis constant, Km, because it 

can be measured without knowing the enzyme concentration, as was the case for Michaelis 

and Menten, and can be obtained even without knowing the absolute rate of reaction. 

Although most enzymologists acknowledge that the Km is not necessarily equal to the 

substrate dissociation constant, the undercurrent of that thought still permeates the 

interpretation of kinetic data today.

Modern enzymology is focused on understanding the structure/function relationships 

governing catalysis. Based upon structures derived by x-ray crystallography or NMR, 

models are proposed for how the substrate binds at the active site, what residues come into 

contact with the substrate(s) and how they bring about a chemical transformation and finally 

release products. The focus is on the events following substrate binding and preceding 

product release, and accordingly, steady state kinetic studies to establish the order of 

substrate binding and the order of product release are of minimal utility. To address the 

pertinent questions of today, we must go beyond the steady state to observe reactions 

occurring at the enzymes’ active sites. Accordingly, modern kinetic analysis requires the 

application of fast kinetic methods sufficient to resolve events on the time scale of a single 

enzyme cycle, and demands rigorous, quantitative data analysis to interpret those results in a 

manner consistent with steady state turnover.

The methods of analysis and equations governing presteady state kinetics have been 

reviewed previously (22, 23). Analytical integration of rate equations yields a sum of 

exponential terms with one exponential for each kinetically significant step in the pathway:

where c is the endpoint of the reaction with n exponential terms, each with a defined rate (λi) 

and amplitude (Ai). For a one-step reaction, the observed rate of the exponential decay (λ) is 

the sum of the forward and reverse rate constants. For a two-step reaction, the two 

exponential decay rates are the roots of a quadratic equation, while for a three-step reaction, 

the three exponential terms are the roots of a cubic equation, and so on. Thus the math soon 

becomes intractable for any realistic model. Moreover, fitting kinetic data to multiple 

exponentials is error prone because of the arbitrary rates and amplitudes. In reality, rates and 

amplitudes are related and this interdependence is lost when fitting to sums of exponentials. 

After fitting the primary data, one still has to analyze the concentration dependence of the 

observed rates and amplitudes in attempting to extract the underlying intrinsic rate constants. 

Thus, the fitting of transient state kinetic data is best accomplished by global data fitting, 

relying on fast computers to do numerical integration of rate equations to simulate each 

experiment where the primary fitted parameters extracted from the data are the rate 

constants. Moreover, multiple experiments can be fitted simultaneously in order to obtain a 

single comprehensive model that accounts for all of the data (12, 24). Thus modern 

computational methods bypass the difficult, often impossible step of deriving equations for 
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fitting data and avoid the requisite simplification of complex reaction schemes, thereby 

affording a comprehensive analysis without simplifying approximations. It is also important 

to note that fitting based upon simulation uses information derived from both the rate and 

the amplitude of the observed reactions.

Information content of steady-state and transient-state kinetic data

In order to illustrate the typical evolving information as research progresses, three 

experiments were simulated to generate synthetic data for a simple enzyme catalyzed 

reaction according to Scheme 2 and the rate constants given in Table 3 (last row). For each 

of the three experiments, conventional fitting will be described revealing the information 

content of the data and the patterns indicative of the underlying mechanism. Then the results 

of global fitting will be shown, with each experiment contributing additional information to 

the growing body of knowledge.

This exercise also illustrates another important use of computer simulation. Experiments can 

be simulated and synthetic data generated in planning experiments or comparing models to 

published data. In addition it provides an ideal method for teaching kinetics using “dry labs” 

and problem solving through data fitting. The free student version of KinTek Explorer 

allows synthetic data to be generated and given to students in the form of a blank 

mechanism file that can opened with the student version of KinTek Explorer or exported as a 

text file for fitting using other programs. The file used to generate and fit the data given in 

Figure 5 are available in the “3-experiments.mec” file that is among the examples provided 

with the software.

Experiment A (Figure 5A) is a simple steady state kinetic experiment observed by 

monitoring an absorbance change due to formation of product. The data over the first 20 

seconds of reaction were fit to a straight line and the rate was plotted versus substrate 

concentration to obtain kcat and kcat/Km values of 6.3 s−1 and 2.6 μM−1s−1, respectively 

(Table 3). If care is not taken to restrict the data fitting to the initial linear portion, the 

kcat/Km values are underestimated due to curvature at longer times. In this exercise, after 

fitting by the traditional initial velocity approach, the full reaction time course at each 

concentration was then fit globally by simulation. The fitted curves superimpose on the data 

and are difficult to distinguish at the magnification shown in this figure. Fitting according to 

Case 1 described above gives estimates of k1 ≥ kcat/Km = 2.6 μM−1s−1 and k2, k3 ≥ kcat = 6.3 

s−1. We chose to fit to derive estimates for kcat and kcat/Km (as in Case 1) rather than kcat and 

Km because kcat/Km provides a lower limit on the magnitude of k1 (Table 3).

Experiment B (Figure 5B) shows the results of a presteady-state burst of product formation 

measured using rapid chemical quench-flow methods. The time dependence of product 

formation can be fit to a burst equation to derive estimates of the rates of chemistry and 

product release.

Eqn 4
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This equation assumes that there is a single step limiting the rate of formation of product at 

the active site, which could be achieved at sufficiently high substrate concentration. In 

practice, the burst experiment is initially performed at a substrate concentration much 

greater than the Km, based upon steady state measurements, but additional data may be 

needed to establish that binding is faster than chemistry, as described below. Fitting by 

nonlinear regression, provides estimates of the rate and amplitude of the exponential burst 

phase and kcat from the linear phase. Each variable in the burst equation is a function of all 

three rate constants:

Simultaneous solution of these three equations affords estimates for each of the three rate 

constants: k2= 71.5 s−1, k−2= 13.7 s−1 and k4= 7.5 s−1. The presteady state burst experiment 

provides a wealth of new information. It shows that product release is rate-limiting and 

provides estimates for the rate of the forward and reverse rates of the chemistry step, and its 

equilibrium constant. If product release had been faster than chemistry, there would have 

been no burst of product formation, and accordingly, the data would have supported the 

conclusion that kcat provided a measure of the rate of chemistry or a step before chemistry. 

Thus the presteady-state burst experiment provides valuable additional information beyond 

what can be determined by steady state methods and directly addresses questions pertaining 

to events occurring at the active site of the enzyme.

Data fitting based upon simulation circumvents the convoluted analysis to resolve the three 

rate constants from the amplitude and rate of the burst. Moreover, by simultaneously fitting 

the data in experiments A and B, one can derive estimates for each of the rate constants that 

are consistent with both the steady state and presteady-state data. However, there is still 

some ambiguity in the parameters governing substrate binding versus chemistry in that two 

local minima in χ2 could be found in different areas of parameter space. In one set of 

parameters, if substrate binding was assumed to be defined by kcat/Km, then the rate of 

chemistry must be fast; otherwise one would see a lag in the formation of product due to the 

slow rate of substrate binding (Table 3, row 2). Alternatively, one could fit the data with 

rapid equilibrium substrate binding followed by slower chemistry (Table 3, row 3). The 

number of data points and signal:noise ratio of rapid quench data generally do not allow 

resolution of a lag phase, so one must rely upon other methods to monitor the rate of 

substrate binding. Note that in fitting the data to the burst equation (Eqn 4), we assumed that 

substrate binding was faster than chemistry. Fitting by simulation revealed that the burst 

data could be explained by rate-limiting substrate binding or chemistry. One could 

distinguish the two models by performing a series of burst experiments at various substrate 

concentrations, or by pulse chase experiments (25, 26). Alternatively, one might be able to 

monitor substrate binding kinetics by stopped-flow fluorescence methods, if there is a 

change in protein fluorescence occurring naturally, or by the addition of a label to the 

enzyme, or a label in the substrate (24, 27–30). Here we show the hypothetical results of a 

protein fluorescence change.
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Figure 5C shows the simulated results of a stopped-flow fluorescence experiment perform 

over a series of substrate concentrations. The fluorescence time dependence can be fit to a 

single exponential:

Eqn 5

The absence of a detectable lag in the traces suggests that substrate binding is a rapid 

equilibrium reaction preceding chemistry. The concentration dependence of the rate fits a 

hyperbola providing estimates for the Kd (1/K1) for substrate binding and the maximum rate 

of the fluorescence change, which is defined by the sum of k2 + k−2 + k3 (Scheme 2). In 

addition, the intercept provides an estimate of the net dissociation rate (koff = k−2 + k3) and 

the initial slope defines the apparent second order rate constant for substrate binding (kon = 

K1k2).

These data can be fit globally by simulation by defining the output signal to be a function of 

changes in fluorescence occurring upon or after substrate binding by the general formula: 

signal = f1*(E + f2*ES + f3*EP). Moreover, these data can be fit globally along with 

experiments A and B to achieve a final set of parameters that are consistent will all three 

experiments. This global fitting defines a correlation between the rate of chemistry and the 

maximum rate of the protein fluorescence change indicating that the fluorescence change is 

attributable to change occurring coincident with the chemistry step, and not during substrate 

binding (f2 = 1, f3 = 1.26). Thus, one does not assume which step leads to a change in 

fluorescence; rather, proper fitting reveals the step. Moreover, the concentration dependence 

of the rate of the fluorescence change resolves the alternative models in favor of the rapid 

equilibrium substrate binding followed by chemistry.

The final global fitting of the three experiments simultaneously provides reliable estimates 

for all six rate constants in the pathway and reproduces the constants that were used to 

simulate the data. Moreover, the fitted parameters yield steady state kinetic parameters 

consistent with those obtained by the original fitting of the steady state data.

The rate of product rebinding is defined largely by the approach to equilibrium at the lower 

concentrations of substrate in Figure 5A, and confidence contour analysis (not shown) 

indicate that its value is not as well determined as implied by the standard error analysis. 
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Full time course kinetic analysis over a range of substrate concentrations, or after the 

addition of fixed concentrations of product would better define k−3.

This analysis shows that three straightforward experiments are sufficient to resolve the rates 

of substrate binding, chemistry and product release. Accordingly, this subset of experiments 

allows questions to be addressed regarding the binding of substrates at the active site of an 

enzyme and mechanisms of catalysis proposed by examination of the structure. This 

protocol overcomes the common, but ambiguous interpretation of changes in kcat and Km 

due to active site mutations, for example.

Single turnover kinetics

One of the first applications of computer simulation to derive a complete reaction sequence 

was in studies on EPSP (5-enoylpyruvoylshikimate-3-phosphate) synthase (EC 2.5.1.19) 

leading to the identification and isolation of a non-covalent tetrahedral intermediate and 

estimates for all 12 rate constants in the pathway (31–36). The reaction catalyzed by EPSP 

synthase is a simple addition/elimination reaction shown in Figure 6. The enzyme catalyzes 

both the formation and the breakdown of the intermediate with rate constants summarized in 

Scheme 3. Numerous experiments were conducted in order to establish the enzyme reaction 

pathway, including steady state kinetic studies to show ordered substrate binding and 

product release, isotope exchange kinetics, stopped-flow fluorescence studies on the binding 

of S3P (shikimate 3-phosphate) and the herbicide, glyphosate (reviewed in (32)). However, 

the most informative studies were conducted using rapid-chemical quench methods to study 

the presteady-state burst, and single turnover experiments of the reaction in the forward and 

reverse directions (Figure 7). In addition, the overall equilibrium constant and the internal 

equilibrium constants for the chemical transformations at the active site of the enzyme (K3 

and K4) were determined by quantification of products resolved by ion exchange 

chromatography using radiolabeled substrates. All of this information was combined in 

globally fitting the entire data set based upon computer simulation (34).

Figures 7B and D show the kinetics of a presteady state burst of product formation for the 

reaction in the forward and reverse directions, respectively. In each case, the data 

demonstrate that a reaction after chemistry is at least partially rate limiting, but the 

amplitude of the burst was small, approximately 40% of the enzyme concentration. The 

most informative are single turnover experiments shown in Figures 7A and C, in which the 

radiolabeled substrate was mixed with an excess of enzyme. These single turnover rapid-

quench kinetic experiments revealed the formation and decay of the intermediate, leading to 

its isolation and identification. Moreover, the data establish the kinetic competence of the 

intermediate by showing that it is formed and decays at a rate sufficient to account for the 

depletion of the substrate and formation of the product. Single turnover kinetic experiments 

provide such rich information content because kinetically significant steps are revealed as 

100% of the substrate binds to the enzyme and reacts to form intermediates and then product 

all in a single enzyme cycle. It is important to note that conventional fitting of these data 

would have been un-interpretable because the observed rates of formation and decay of the 

intermediate are complex functions of multiple rate constants and the amplitude provides 

essential information to resolve the rates. Analysis of these reaction kinetics by computer 
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simulation resulted in a solution that accounts for both the rate and amplitude of each 

reaction, as well as equilibrium and the steady state kinetic measurements.

Enzyme Structure and Dynamics

The ultimate goal of modern kinetic analysis is to understand the role of enzyme structure in 

activity. This review ends with a brief summary of our recent work to address the role of 

substrate-induced conformational changes in enzyme specificity. We address this question 

using DNA polymerases as a model system because the alternative substrates are well 

known and specificity is of paramount importance. In addition, DNA polymerases allow 

single turnover kinetic studies to be performed with ease. In mixing an enzyme-DNA 

complex with a single nucleoside triphosphate (dNTP), only one reaction occurs because the 

next templating base will code for a mismatch, which binds weakly and reacts slowly.

The role of induced-fit in enzyme specificity has been controversial, including suggestions 

that a two-step binding sequence cannot contribute to specificity more than onestep binding 

(37), but that conclusion was based upon the assumption that initial binding and the 

conformational change step were in rapid equilibrium and faster than chemistry. We sought 

to address this question by attaching an environmentally sensitive fluorophore to the 

nucleotide recognition domain of HIV reverse transcriptase (HIVRT, EC 2.7.7.49) as shown 

in Figure 8 (24, 38). Positioned on the surface of the protein, the fluorescent label does not 

perturb the kinetics of the reaction, but provides a signal to monitor changes in protein 

structure from open to closed states after binding nucleotide.

The results of one experiment are shown in Figure 9A. After mixing TTP with an HIVRT-

DNA complex, there is a decrease in fluorescence followed by an increase, representing a 

single turnover in which the enzyme binds substrate, closes, catalyzes chemistry and then 

opens. Figure 9B shows the results of a rapid-quench flow experiment to monitor the time 

dependence of the chemical reaction. Fitting both curves simultaneously demonstrates that 

the slow rise of the fluorescence transient is coincident with the rate of the chemical 

reaction, implying fast opening after chemistry. In studies not shown, the binding of TTP to 

an enzyme- DNAdd complex (where the DNA was terminated by a dideoxynucleotide to 

prevent chemistry) the fluorescence decreased rapidly in forming the closed E-DNAdd-TTP 

complex, corresponding to that seen by crystallography (24, 39). Finally, an experiment was 

done to measure the release of bound TTP from a pre-formed E-DNAdd-TTP complex 

(Figure 9C). After mixing with an excess of unlabeled E-DNA complex, there is an increase 

in fluorescence providing a measurement of the rate of enzyme opening to release TTP. 

These three experiments were fit globally to derive the pathway shown in Scheme 4, where 

ED and FD represent the open and closed states of the enzyme-DNA complex, respectively.

Surprisingly, because the rate of TTP release is slow relative to chemistry, the specificity 

constant for the enzyme is equal to the second order rate constant for substrate binding, 

determined by the initial weak substrate binding and the rate of the conformational change.
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The rate of chemistry cancels from the expression for kcat/Km because k3 is in both the 

numerator and denominator. Moreover, Km is determined by the ratio of kcat and the 

substrate binding rate (K1k2). Contrary to previous theories, these results indicate that the 

substrate-induced conformational change is a major determinant of enzyme specificity. The 

specificity constant for correct nucleotide incorporation is governed by the nucleotide 

affinity in the initial weak binding to the open state and the rate of the conformational 

change to form the closed state. This unexpected result implies that specificity is determined 

by the most ephemeral of states that are most difficult to study directly, the initial weak 

binding and the rate of the conformational change. Therefore, in order to understand the 

molecular details underlying the substrate-induced conformational change, we have 

followed up these studies by extensive molecular dynamics simulations (40). These 

simulations accurately predict the rates of the conformational change in the forward and 

reverse directions and reveal new details at atomic resolution.

Much of the debate regarding the role of induced fit in enzyme specificity over the past few 

decades was due to the lack of definitive data. Steady state kinetic analysis could not resolve 

the issue and so theoretical arguments abounded. Single turnover kinetic studies provided 

the direct measurement of events that dictate the fate of substrate after the initial binding 

step and thereby define the molecular events that determine specificity.

Summary

Here I have provided a brief history of enzyme kinetics from its beginnings a century ago to 

modern applications of kinetic analysis of enzyme reaction pathways that are made possible 

by the use of transient-state kinetic methods and computer-based data fitting routines. I have 

only hit some of the highlights of advances in kinetic data analysis over the last few decades 

using examples from my own lab. Certainly many others have contributed important, 

insightful and instructive examples that could have easily illustrated major advances in 

methods of analysis and information to define enzyme catalysis. For example, I have not 

discussed the use of singular value decomposition (SVD) to deconvolute time-resolved 

spectra, which is certainly an important technical advance (41). In recent collaborative work, 

we have simultaneously fit, stopped-flow fluorescence transients, rapid-quench-flow data, 

and SVD analysis of time resolve absorbance measurements to deduce a unique branched 

enzyme pathway (42).

It is interesting to note that the constant derived by Michaelis and Menten in the analysis of 

the full time course kinetics was not the Michaelis constant, but rather, Vmax/Km. In some 

sense it was a historical accident to define the steady state equation in terms of kcat and Km 

values, resulting in confusion over the interpretation of Km. Because of the importance of 

kcat/Km in determining enzyme specificity, efficiency and proficiency (43), it would have 
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been better if the equation had been defined in terms of the two primary constants, kcat and 

“ kcat/Km”, such that Km was simply the ratio of the two.

Scientists and historians often dream of time travel. In this brief review of the history of 

enzyme kinetic data analysis, it is amusing to think of what Leonor Michaelis and Maud 

Menten would think of our current methods of data analysis. No doubt they would be 

astounded at how the click of a computer mouse can trigger millions of calculations to be 

completed in seconds to find an optimal global fit involving a rather complex kinetic model 

and multiple data sets, or that molecular dynamics simulations of the motions of atoms could 

predict the molecular details of reactions governing enzyme specificity. Nonetheless, they 

would be justifiably proud of their accomplishments and pleased at how their work has 

stood the test of such advanced computational analysis. It is now our turn to ponder the new 

discoveries of the next century and wonder whether our work will stand the test of new 

scientific advances.
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Figure 1. Comparison of three methods of fitting data to the Michaelis-Menten equation
A. Data fit by nonlinear regression to a hyperbola. B. Data fit to a Lineweaver-Burk 

reciprocal plot. The gray line shows the fit obtained after omitting the point at the lowest 

substrate concentration. C. Data fit using the Eadie-Hofstee equation. In each figure, the 

equation and the resulting kcat and Km values are displayed.
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Figure 2. Global analysis of Michaelis-Menten 1913 data
A: the original Michaelis-Menten data are shown with the results of global fitting. The ratio 

of product formed (fructose or glucose ) divided by the starting substrate concentration is 

shown as a function of time for various starting sucrose concentrations (20.8, 41.6, 83, 167 

and 333 mM). The smooth lines are drawn based on numerical integration of rate equations 

derived from Scheme 1 using the rate constants summarized in Table 1 and an enzyme 

concentration of 25 nM. The Inset shows the confidence contours for a fit involving only 

two variables to define Vmax and KS. B: Confidence contour analysis showing the 

dependence of χ2 on each pair-wise combination of three constants (KS, Vmax, and KF, 

defined by k−1, k+2 and k+5 respectively, according to Scheme 1). The index for the color 
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coded display of χ2 values relative to the minimum are given by the inset. The central red 

area defines parameters yielding an acceptable fit. Upper and lower error limits for each 

parameter are obtained from a threshold defined by a 1.3-fold increase in χ2 over the 

minimum (11), and are designated by the thin black lines and the values listed on each axis.
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Figure 3. Simulation and deconvolution of progress curves
A. Progress curves calculated at three starting substrate concentrations (5000, 3000 and 

1000 μM) for a simple irreversible enzyme catalyzed reaction (Scheme 2) and showing the 

decrease in substrate concentration over time. B. The first derivative was calculated from the 

slope at each time in A, and plotted as a function of the remaining substrate concentration in 

B, where the data fit a hyperbola. C. The data shown in B are graphed as a Lineweaver-

Burke plot, showing a straight line dependence, and demonstrating reduction of the data to a 

function of only two parameters. D. A set of progress curves for a fully reversible enzyme-

catalyzed reaction. E. Analysis of the instantaneous rate as a function of remaining substrate 
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concentration from D shows deviation from a simple hyperbolic relationship. F. Attempts 

analyze the substrate concentration dependence of the rate on a Lineweaver-Burke plot show 

deviations from linearity. Simulations were performed using the rate constants summarized 

in Table 2 according to Scheme 2 and an enzyme concentration of 1 μM.
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Figure 4. Understanding progress curve kinetics
A. Synthetic data were generated according to Scheme 2 using the rate constants in Table 2 

for an irreversible model. The data were then fit by nonlinear regression to the model with 

four variable rate constants to get the confidence contours shown in B. The inset to figure A 

shows the confidence contour obtained with only two variable parameters. C. Synthetic data 

were generated using the rate constants in Table 2 for a fully reversible model and then fit to 

generate the confidence contours shown in D. All synthetic data were generated with 

random error following a normal distribution with a sigma value of 50 (1% of the maximum 

signal), and using an enzyme concentration of 1 μM. The axes labels on the confidence 

contour plots show the upper and lower limits for each rate constant defined by a 1.05 

threshold in χ2 as described (11). All computations were performed using KinTek Explorer 

(12).
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Figure 5. Information content of kinetic data
This figure shows synthetic data designed to illustrate the information content of various 

kinetic experiments. A. Steady state kinetics with 0.5 μM enzyme reacting with 0.2, 0.5, 1, 2, 

5, 10, 20, and 50 μM substrate. The signal was observed as absorbance due to product with 

an extinction coefficient of 0.04 μM−1, such that the observable signal is equal to 0.04*[P]. 

B. Presteady state burst experiment simulated with 2 μM enzyme mixed with 50 μM 

substrate. The observable signal is the sum of [EP] + [P]. C. A stopped-flow fluorescence 

signal was simulated with 1 μM enzyme mixed with 2, 5, 10, 20, 50, 100, 200, and 500 μM 

substrate. The signal, as simulated and derived independently during data fitting was defined 

by f1*([E] + f2*[ES] + f3*[EP]), indicated that the protein fluorescence change was due to 
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conformational changes occurring with the formation of product. The fluorescence scaling 

factors derived to be: f1 = 0.55 and f2 = 1 and f3 = 1.26, indicating a 26% increase in 

fluorescence with chemistry, but no change upon substrate binding. The smooth curves 

through the data were calculated by simulation from the global fit to the data according to 

Scheme 2 and the rate constants listed in Table 3. Individual fits to experiments A and B 

were indistinguishable visually from the global fits shown here and are not shown. Data and 

simulation are available in the “3_experiments.mec” file in the examples folder of the free 

student version of KinTek Explorer that can be downloaded at www.kintek-corp.com.
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Figure 6. Reaction catalyzed by EPSP synthase
The reaction is shown in which S3P (shikimate 3-phosphate) reacts with PEP 

(phosphoenolpyruvate) to form EPSP (5-enoylpyruvoylshikimate-3-phosphate) and 

phosphate.
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Figure 7. EPSP presteady-state and single turnover kinetics
A. Single turnover in the forward direction. B. Presteady state burst in the forward direction. 

C. Single turnover of the reaction in the reverse direction. D. Presteady state burst in the 

reverse direction. The inset to each figure gives the starting concentration of reach reactant, 

and the species shown in red contains the radiolabel. Redrawn with permission from (34). 

The smooth lines were calculated by simulation according to the pathway and rate constants 

given in Scheme 3. Data and simulations are available in the “EPSP.mec” KinTek Explorer 

example file.
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Figure 8. Structure of fluorescently labeled HIVRT
The structure of HIVRT was rendered in pymol from 1rtd.pdb (39). The position of the 

fluorescent label (magenta spheres) was docked at the position of the E36C substitution 

(24). Duplex DNA is in blue (template) and green (primer), while the incoming nucleotide is 

magenta (sticks).
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Figure 9. HIVRT kinetics
A. Fluorescently labeled HIVRT in complex with duplex DNA (200nM MDCC-labeled 

HIVRT with 300 nM DNA) was mixed with various concentrations of TTP (2, 4, 10, 20, 40, 

60, 80, and 100 μM) in a stopped-flow and the time course of fluorescence was recorded. B. 

Rapid quench-flow methods were used to measure the time dependence of the chemical 

reaction after mixing the HIVRT-DNA complex (150nMMDCC-labeled HIVRT with 

100nM DNA) with various concentrations of TTP (0.25, 0.5, 2, 10, 25, and 100 μM). 

Redrawn with permission from (38). Smooth curves show the global fit to all of the date 

according to Scheme 4.
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Scheme 1. 
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Scheme 2. 
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Scheme 3. 
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Scheme 4. 
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Table 1

Invertase kinetic parametersa

Rate constant Value Parameter

k1 (1e+06 mM−1m−1)
KS = 16.5 mM

k−1 1.65e+07 m−1

k2 30600 m−1 Vmax = k2[E]0

k−2 (0) = 0.76 mM/m

k3 (5e+07 m−1)

Assumed fast, irreversible product release
k−3 (0)

k4 (5e+07 m−1)

k−4 (0)

k5 5.88e+07 m−1

KF = 58.8 mM
k−5 (1e+06 mM−1m−1)

k6 9.1e+07 m−1

KG = 91 mM
k−6 (1e+06 mM−1m−1)

a
Kinetic parameters used to model the original Michaelis-Menten data are summarized. Modeling was based upon a nominal enzyme concentration 

of 25 nM, in order to mimic the Vmax/KS value of 0.045 m−1 reported by Michaelis and Menten (1–3) and the recent estimate of kcat = 500 s−1 

(4). The values reported here for k−1 and k2 were derived by global fitting using KinTek Explorer and gave Vmax/KS = 0.046 m−1. Values in 

parentheses were held constant during fitting. The values of k5 and k6 were held in a constant ratio of k6/k5 = 1.55.
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Table 2

Kinetic parameters used for synthetic full time course kineticsa

Rate constant Figure 2A, 3A Figure 2D, 3C

k1 10 μM−1s−1 10 μM−1s−1

k−1 (10000 s−1) (10000 s−1)

k2 140 s−1 140 s−1

k−2 0 s−1 10 s−1

k3 (10000 s−1) (10000 s−1)

k−3 0 s−1 5 s−1

a
The rate constants used to generate synthetic data according to Scheme 2 and shown in Figures 2A, 3A, 2D, and 3C are summarized. Normally 

distributed random noise was added to the synthetic data (sigma = 50, 1% of the maximum signal). Values in parentheses were held fixed in 
subsequent data fitting.
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