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Abstract

Background—Molecular epidemiologic evaluation of HIV-1 transmission networks can 

elucidate behavioral components of transmission that can be targets for intervention.

Methods—We combined phylogenetic and statistical approaches using pol sequences from 

patients diagnosed 2004-2011 at a large HIV center in Rhode Island, following 75% of the state’s 

HIV population. Phylogenetic trees were constructed using maximum likelihood and putative 

transmission clusters were evaluated using latent class analyses (LCA) to determine association of 

cluster size with underlying demographic/behavioral characteristics. A logistic growth model was 

used to assess intra-cluster dynamics over time and predict “active” clusters that were more likely 

to harbor undiagnosed infections.

Results—Of 1,166 HIV-1 subtype B sequences, 31% were distributed among 114 statistically-

supported, monophyletic clusters (range: 2-15 sequences/cluster). Sequences from men who have 

sex with men (MSM) formed 52% of clusters. LCA demonstrated that sequences from recently 

diagnosed (2008-2011) MSM with primary HIV infection (PHI) and other sexually transmitted 

infections (STIs) were more likely to form larger clusters (Odds Ratio 1.62-11.25, p<0.01). MSM 

in clusters were more likely to have anonymous partners and meet partners at sex clubs and 

pornographic stores. Four large clusters with 38 sequences (100% male, 89% MSM) had a high-

probability of harboring undiagnosed infections and included younger MSM with PHI and STIs.
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Conclusions—In this first large-scale molecular epidemiologic investigation of HIV-1 

transmission in New England, sexual networks among recently diagnosed MSM with PHI and 

concomitant STIs contributed to ongoing transmission. Characterization of transmission dynamics 

revealed actively growing clusters which may be targets for intervention.

INTRODUCTION

The HIV/AIDS epidemic in the United States (US) continues to affect diverse populations 

including men who have sex with men (MSM)1,2. Understanding HIV transmission patterns 

is important in the design and implementation of prevention interventions3. Transmission 

often occurs through local networks of individuals who are epidemiologically linked (e.g. 

sex partners), resulting in new infections and propagation of the epidemic4-11. Identification 

and characterization of local transmission networks can reveal important epidemiological 

information that can benefit outreach, testing programs, partner notification, and other 

public health interventions as recommended by the US Centers for Disease Control and 

Prevention (CDC)12-14. Disruption of local transmission networks is an important strategy 

for the prevention of HIV.

Phylogenetic analyses using HIV-1 pol sequences obtained as part of routine clinical 

care15-17 offer a unique opportunity to evaluate transmission networks18. HIV-1 pol 

genotyping at the initiation of care is typically used to evaluate for transmitted drug 

resistance (TDR), which in the US averages 10-15% of new infections19 and may also be 

transmitted through these networks20,21. Phylogenetic inference has been reliably used to 

define clusters of closely related sequences reflecting actual transmission networks through 

which propagation of the virus may be visualized and investigated4,7,8,22-26. Putative 

transmission clusters identified by phylogenetic analyses are dynamic entities that can be 

introduced at any time, actively grow, or become latent5,8,27,28. The size and dynamic nature 

of these clusters are representative of the extent of a transmission network. It has been 

shown, for example, that larger clusters tend to actively grow over time8 and to have more 

members with primary HIV-1 infections (PHI)27-29. PHI, defined as the first six months of 

HIV infection, is characterized by peak viremia, leading to a highly infectious state30-34 and 

frequent transmission within epidemiological networks4,5,7,9,24,35.

Evaluation of cluster dynamics (i.e. growing/active versus dormant/latent clusters) and 

behaviors associated with cluster members can provide important insight on local HIV 

transmission patterns. Previous investigations of cluster dynamics have examined how 

cluster sizes change over time27,29 and the duration that clusters tend to exist in a 

population8. Others have used logistic models to describe cluster growth and latency36. Such 

cross sectional analyses of longitudinally available data are essential to understand HIV 

transmission dynamics and are substantially affected by sampling density37.

The goal of the current study was to examine cluster dynamics over time in Rhode Island 

(RI), the smallest state in the US, where high sampling density can be achieved. We 

characterize local transmission clusters in the community using a comprehensive statewide 

dataset of HIV-1 pol sequences from 2004-2011, evaluate demographics and behaviors 

associated with larger clusters, and use logistic modeling as a novel approach to predict 
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active clusters which are likely to harbor undiagnosed infections. We discuss how this 

information enhances understanding of HIV-1 transmission in our community and will help 

guide interventions to disrupt active transmission clusters.

METHODS

Study Population

Data were retrospectively collected from the Lifespan Hospital System, a Brown University 

teaching affiliate, encompassing major hospitals and the largest outpatient HIV center in 

RI38. The Center provides care to >1,500 HIV-infected patients, with high sampling density 

of approximately 75% of the state’s HIV population39,40. Demographic, clinical and 

laboratory data were collected for all HIV-1 positive individuals with available pol 

sequences. Data included age, gender, biologic sex, race/ethnicity, risk factor(s) for HIV 

acquisition, date of diagnosis, antiretroviral treatment history, other sexually transmitted 

infections (STI) at the time of diagnosis (syphilis, gonorrhea, and chlamydia), current 

residence, and determination of PHI at diagnosis. PHI was defined by two different 

methods: 1) Clinical: Recent HIV infection as evident by a negative test or clinical scenario 

consistent with acute retroviral syndrome in the six months preceding diagnosis ; and 2) 

Molecular: Fraction of ambiguous nucleotides (e.g. R=A or G; Y=T or C) ≤0.5% in 

treatment-naïve individuals, suggesting infection <1 year 41. Risk factors for HIV 

acquisition included MSM, males who have sex with females (MSF), females who have sex 

with males (FSM), injection drug use (IDU), mother-to-child-transmission (MTCT). Men 

who identified as both MSM and MSF were categorized as MSM. IDUs who reported MSF 

or FSM were categorized as IDU. To evaluate trends in demographics and behaviors, three 

different time periods of HIV diagnoses were evaluated: 1) Before 2004; 2) 2004-2007; 3) 

2008-2011. This breakdown was based on the hypothesis that characteristics of recently 

diagnosed individuals may differ from earlier time periods. The study was approved by the 

Lifespan institutional review board.

Sequence and Phylogenetic Analyses

HIV-1 pol sequences obtained during routine clinical care were collected from January 2004 

to December 2011. Sequencing was performed at Quest Diagnostics (Chantilly, VA) and 

Viracor Laboratories (Lee’s Summit, MO). For individuals with multiple sequences, the 

earliest sequence was used. Sequence quality control was performed using the sequence 

quality analysis tool (SQUAT)42. HIV-1 subtypes were determined using REGA v3.043. 

Due to the similarity of subtypes B and D, sequences that were called B/D recombinants by 

REGA were designated as subtype B. TDR was evaluated with the World Health 

Organization (WHO) surveillance drug resistance mutation list (SDRM)44 using Stanford 

HIV Sequence Database tools (hivdb.stanford.edu).

Sequences were aligned by multiple sequence comparison by log-expectation (MUSCLE)45 

and manually edited to remove gaps and trimmed to identical lengths in BioEdit46. To 

identify putative transmission clusters, phylogenetic analyses were performed using 

Molecular Evolutionary Genetics Analysis (MEGA v5.05) software47. Trees were inferred 

using maximum likelihood and nearest neighbor interchange (NNI) and subtree pruning 
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regrafting (SPR) heuristics based on the general-time reversible (GTR) model of evolution 

with four discrete gamma categories, selected as the best fitting model with the Akaike 

information criterion (AIC). Branch supports were based on nonparametric bootstrapping 

with 1000 replicates. Sequence positions associated with drug resistance were removed to 

minimize convergent evolution. Trees were rooted using reference subtype C sequences 

(Genbank accession numbers U46016, U52953, AF067155, AY772699; www.hiv.lanl.gov). 

Putative transmission clusters were defined using PhyloPart48, as ≥2 sequences with >90% 

branch support and median genetic distances less than 15% of the entire sample distribution. 

Evolutionary p-distance was also calculated between each pair of sequences in the dataset 

using MEGA v5.05 given that this is a reliable distance assessment among closely, within 

cluster, related sequences. Median average pairwise distance was also calculated for 

sequences within and not within clusters. Bivariate analyses were performed to determine 

demographics and behaviors associated with cluster inclusion using the chi-square test. 

Significance was defined as p-values less than 0.05.

Characteristics of Transmission Clusters

To further characterize putative transmission clusters and examine cluster-size significance, 

a proportional odds regression model was first used to describe the relationship between 

cluster size (dependent variable) and demographic/behavioral profiles (independent 

variables) of cluster members. Cluster size was classified as 1 (not a cluster), 2, and ≥3. To 

construct the independent variables, latent class analyses (LCA)49,50 was applied to the 

following categorical covariates: HIV risk factor, year of diagnosis (<1990, 1990-2003, 

2004-2007, >2007, unknown), age at diagnosis (<30, 30-39, ≥40 years), another STI at 

diagnosis (yes/no), clinical PHI (yes/no), gender (male/female), and TDR (yes/no). LCA 

applies a maximum likelihood approach to generate subgroups (latent classes) based on 

patterns of data with the goal of grouping individuals with similar characteristics. The latent 

class model was fit using R version 2.14.2 and number of latent classes selected using AIC. 

Each individual’s covariate values were translated into class membership probabilities for 

each latent class. See the Supplemental Appendix for further details on LCA.

Second, to longitudinally examine cluster dynamics, a logistic growth model was used to 

evaluate clusters with >3 sequences and characterize the rate of new HIV diagnoses over 

time within individual clusters. The model assumed that in a given year, some individuals in 

a cluster were not yet infected, some were infected but not yet diagnosed, and some had 

already been infected and diagnosed. Over time, new diagnoses were observed in a cluster 

when infected individuals were diagnosed. We used the model to estimate the growth rate of 

HIV diagnoses in a given cluster at a fixed point in time, the year following data collection. 

Clusters with larger growth rates (still in the “active” phase of growing) were theorized to 

harbor more undiagnosed HIV-infected individuals. Clusters were classified based on the 

model as having a high-probability (≥15%), moderate-probability (5-15%) or low-

probability (≤5%) of harboring individuals with undiagnosed infections in the following 

year. An “active” cluster was defined as having a high-probability of harboring undiagnosed 

infections. Finally, we examined the association between growth rate and cluster-specific 

characteristics. See the Supplemental Appendix for additional details on the logistic growth 

modeling.
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Behaviors Associated with Belonging to Identified Clusters

Behaviors of MSM who were diagnosed with HIV from 2008-2011 were reviewed to 

evaluate behaviors that may be associated with HIV transmission such as use of drugs or 

alcohol during sex, exchange of drugs or money for sex, sex with anonymous partners, and 

venues where individuals met sexual partners. Venues included the internet, bathhouses, sex 

parties, pornographic video stores, rest areas, parks, bars/clubs, and telephone chat rooms. 

Behaviors were compared between MSM with sequences that formed putative transmission 

clusters and those that did not form clusters. MSM with sequences that had a high-

probability of being in an active cluster were compared to those in moderate- or low-

probability clusters. Finally, we compared MSM who were older (≥30 years) versus younger 

(<30 years), irrespective of cluster status, to examine behavioral differences between age 

groups51. Chi-square analyses were used to determine significant differences between 

categorical data.

RESULTS

Population Characteristics

Among the 1,277 patients who had at least one pol sequence available for analysis (Table 1), 

71% were male, the average age at diagnosis was 40 years (Range: birth to 79 years), and 

the year of HIV diagnosis ranged from 1980-2011 (Average 2001; Median 2003). Risk 

factors for HIV acquisition included 37% MSM, 19% IDU, 17% FSM, 13% MSF, 3% 

MSM/IDU, 2% MTCT, and 8% other/unknown. Ten percent presented with PHI at 

diagnosis by clinical history or recent negative HIV test. Forty-seven percent (596) of 

sequences were from patients who were treatment-naïve at the time of genotyping and 11% 

(66/596) of these had TDR. There was no significant difference in prevalence of TDR across 

the three time periods. Individuals diagnosed in the recent time period (2008-2011) were 

more likely to be male and to report same-sex behavior and less likely to report IDU as the 

likely risk factor for HIV acquisition compared to patients diagnosed in earlier time periods 

(p<0.01, Supplemental Figure 1).

Putative Transmission Clusters

The majority of patients (91%; 1,166/1,277) were infected with HIV-1 subtype B. Thirty-

one percent (358/1,166) of subtype B sequences formed 114 statistically supported 

(bootstrap >90%) phylogenetic clusters (Supplemental Figure 2). The average cluster size 

was 3.1 sequences (Range 2-15 sequences/cluster). The median average pairwise genetic 

distance of sequences within clusters was 0.71% (Range: 0-3.1%) and of sequences outside 

clusters 5.3% (Range: 2.6-8.4%). The median time between diagnosis and sequencing was 

4.6 years (range: 0.003-29.1 years). Of the 114 clusters, 37% included sequences only 

isolated from MSM, 18% only from heterosexuals and 7% only from IDUs. The remaining 

clusters included sequences with mixed risk factors: 18% with at least one MSM, 17% 

mixed without any MSM and 3% unknown.

Overall, 52% (59/114) of the clusters contained sequences from at least one MSM. Forty 

percent of sequences from MSM formed clusters, significantly higher compared to other risk 

groups including FSM (29%, p=0.02), IDU (17%, p<0.01) and MSM/IDU (8%, p<0.01) 
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(Table 2). There was no difference between sequences from MSM and MSF and cluster 

association. Compared to individuals whose sequences were not in clusters, those in clusters 

were more likely to be male (80% versus 69%, p<0.01), have PHI (both by clinical and 

ambiguous nucleotide criteria, p<0.01 for each) and have an STI at HIV diagnosis (6% 

versus 3%, p<0.01; Table 2). Sixty-four percent (73/114) of individuals with PHI by clinical 

criteria and who were treatment-naïve during sequencing also had a fraction of ambiguous 

nucleotides consistent with PHI. Compared to MSM with sequences that did not form 

clusters, those that did form clusters were more likely to be diagnosed with PHI (40% versus 

16% by clinical criterion, 31% versus 11% by ambiguous nucleotide criterion, p<0.01), 

present with an STI (12% versus 5%, p=0.01), and live in Providence compared to another 

city (47% versus 32%, p<0.01). MSM in clusters were less likely to have TDR than those 

not in clusters (10% versus 21%, p<0.01).

Putative Transmission Cluster Dynamics

LCA identified four classes based on lowest AIC criterion that were associated with cluster 

size (Figure 1). Classes 1 and 2 included a mix of MSM, IDU, and heterosexuals diagnosed 

prior to 2003; Class 3 was composed of heterosexuals and IDUs diagnosed from 1990-2011; 

and Class 4 was composed entirely of MSM primarily diagnosed from 2003-2011, evenly 

distributed across ages at time of diagnoses (30% <30 years, 31% 30-39 years, 39% ≥40 

years), 27% with PHI and 11% with another STI at the time of HIV diagnosis. Individuals in 

class 4 were more likely to be in a larger cluster compared to all other classes (class 4 versus 

1, Odds Ratio (OR) 7.5 [5.1-10.9 95% CI], p<0.01; 4 versus 2, OR 11.3 [6.6-19.2 95% CI], 

p<0.01; 4 versus 3, OR 1.6 [1.2-2.3 95% CI], p<0.01).

Twenty-four clusters had >3 sequences and were evaluated by logistic growth modeling. 

Four clusters were identified as having a high-probability of harboring undiagnosed 

infections in the following year, 10 with moderate-probability and 10 with low-probability 

(Figure 2). The 38 members with sequences of the high-probability clusters were more 

likely to be male (100%, p=0.06), MSM (89%, p=0.07), diagnosed in the latest time period 

2008-2011 (66%, p=0.02), 0-29 years of age (50%, p=0.04), and have PHI (45%, p=0.02) 

and another STI (16%, p<0.01) at diagnosis, compared to individuals in moderate- or low-

probability clusters (Table 3).

Behaviors Associated with Putative Transmission Clusters

Behavioral data were available for 34% (161/476) of MSM diagnosed in the recent time 

period (2008-2011; Supplemental Table 1). Compared to MSM with sequences who did not 

form clusters, MSM from this time period who were in clusters were more likely to have 

met sexual partners at pornographic video stores (17% versus 6%, p=0.04), telephone chat 

rooms (7% versus 1%, p=0.11), and sex parties (10% versus 3%, p=0.08), and have 

anonymous sexual partners (32% versus 17%, p=0.03).

Compared to MSM with a low/moderate probability of harboring undiagnosed infections, 

MSM in high-probability active clusters were more likely to be in a younger age group 

18-29 years (56% versus 27%, p<0.01), present with clinically defined PHI (47% versus 
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24%, p=0.016), and meet partners at either bars/clubs (32% versus 12%, p=0.11) or online 

(41% versus 12%, p>0.01).

MSM who were less than 30 years at HIV-1 diagnosis were more likely to have met sexual 

partners at bars/clubs (41% versus 24%, p=0.03) and less likely to have met sexual partners 

at bathhouses (27% versus 9%, p<0.01) and video stores (17% versus 2%, p<0.01) 

compared to MSM who were age 30 or greater, irrespective of cluster status.

DISCUSSION

This is the first large scale molecular epidemiologic investigation of HIV-1 transmission 

networks in New England, performed at the major HIV center in RI which cares for the 

majority (75%) of the state’s HIV-infected population. At the end of 2011, approximately 

2,046 individuals in RI were living with HIV/AIDS which included those who were 

unaware of their status, estimated at 20%52. The 1,277 sequences collected as part of this 

study represented approximately 78% of the total diagnosed HIV positive population in the 

state. Thirty-one percent of 1,166 individuals diagnosed with HIV-1 subtype B between 

1980-2011 had sequences which belonged to putative transmission clusters, comprised 

primarily of MSM who were more likely to have PHI at diagnosis. Sequences from MSM 

were more likely than those from other risk groups to belong to transmission clusters with 

the exception of MSF. Using LCA, we found that recently diagnosed MSM, evenly 

distributed across ages and with higher STI and PHI rates at HIV diagnosis, had sequences 

which were more likely to form larger transmission clusters, suggesting a major contribution 

to new infections. Longitudinal examination of large transmission cluster dynamics using 

logistic growth modeling identified actively growing clusters that had a high probability of 

harboring undiagnosed infections, composed mainly of sequences from recently diagnosed, 

younger MSM, with higher STI and PHI rates at diagnosis. Behavioral practices of MSM in 

active clusters included meeting partners at local bars, clubs and online. Older MSM tended 

to meet partners at bathhouses and pornographic video stores. These comprehensive 

analyses provide unique insights into local transmission dynamics with implications for 

cluster disruption and prevention interventions.

Our study parallels trends in HIV-1 transmission at the national US level including a 

majority of new diagnoses among MSM. Our previous work in RI demonstrated the 

presence of small-scale transmission clusters among sequences from MSM11,53 which were 

associated with local sex club venues54. In this study, evaluation of putative transmission 

clusters using a comprehensive set of HIV-1 pol sequences in the entire state, identified 

significant local sexual transmission patterns among MSM. This study expands on available 

evidence in the US demonstrating increasingly widespread and enlarging HIV transmission 

among MSM associated with recent infection and other STIs at HIV diagnosis22,23,55.

Two analytic approaches, LCA and logistic growth modeling, were incorporated into this 

molecular epidemiological study to evaluate the dynamics and characteristics of HIV 

transmission clusters. LCA, used mostly in behavioral studies56-67, was recently used in 

association with phylogeny in the Swiss HIV Cohort, linking demographics and behaviors 

with clusters of MSM and heterosexuals68. We extend the use of LCA to evaluate the 
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significance of HIV transmission cluster size, and demonstrate that MSM with PHI and 

other STIs comprise a significant proportion of those who are recently diagnosed and are 

associated with belonging to larger clusters. This lends further evidence that identification 

and disruption of large clusters may impact viral transmission, especially among MSM with 

these characteristics.

Logistic growth modeling, used here to characterize cluster growth rates over time and 

identify active clusters, has been used to study HIV transmission phylodynamics at the 

population level69-73. Only one study evaluated cluster dynamics over time using this model, 

but on a national level (United Kingdom)36. The UK analysis demonstrated multiple HIV-1 

subtype B subepidemics within MSM with diverse patterns of growth and latency that 

follow a logistic growth curve. The logistic growth model assumes an initial period of rapid 

growth followed by a period of slower growth. This pattern accurately depicts HIV 

transmission within clusters with an initial period of increasing infections attributed to PHI 

when viral loads peak32,33,35, followed by a slower phase as individuals are identified and 

treated36. We expand the function of this model by using growth rates to identify clusters 

that may still be in the rapid phase of growth and likely to harbor undiagnosed infections. 

Members of these high-yield clusters are important targets for interventions such as partner 

notification and contact tracing, early treatment, and evaluation of associated behaviors (e.g. 

settings for meeting partners).

Original data presented here from Southern New England, supported by LCA and the 

logistic growth model, strengthen the need to further identify large, active, regional clusters 

through expanded contact tracing and testing, to identify infected unaware individuals as 

soon as possible. These findings also suggest that increasing capacity to diagnose acute HIV 

infection74 and aggressive diagnosis/treatment of other STIs which contribute to HIV 

transmission may help attenuate new HIV infections among MSM.

We did not find an association between local HIV-1 transmission clusters and TDR in 

contrast to previous studies7,75. The prevalence of TDR in our community (11%) is stable 

and slightly lower than other areas of the US19,76-80, which may be due to the lack of 

circulation of TDR within local networks and the aggressive care of patients once they 

become aware of infection. However, as antiretrovirals continue to be widely used, 

continued close monitoring of TDR is warranted81.

Although molecular epidemiology approaches can provide important insights on 

characteristics of the HIV epidemic in a community, such population-based analyses should 

not be used to infer direct transmission between two or more individuals or others within 

transmission clusters. Although we assume high sampling density in our study, the statistical 

inference we used to assess phylogenetic relationships among pol sequences represents a 

subset of the overall network given only those with available sequences from 2004-2011 

were included, with an increasing use of genotyping during those years, and only a portion 

of the HIV-1 genome was evaluated. Determination of PHI in this study was limited by the 

lack of laboratory verification, unexamined dual infection and delay from diagnosis to viral 

sequencing. Demographic and behavioral data was also not available for all individuals, 

limiting our ability to characterize all network participants.
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In conclusion, we used sequence and behavioral data with phylogenetic and statistical 

analyses to investigate HIV-1 transmission in our community, identify transmission clusters, 

demonstrate their dynamic and changing epidemiology and evaluate their potential impact 

on prevention strategies. Detailed characterization of clusters can identify trends in their 

growth over time, leading to discovery of actively growing clusters, which may be targeted 

for intervention. The contribution of PHI and other STIs at HIV diagnosis among MSM to 

local transmission in our community suggests the need for targeted interventions in this risk 

group. Future work should focus on exploring how real-time phylogenetic identification of 

transmission clusters can be used to inform public health prevention interventions, including 

pre-exposure prophylaxis (PREP).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Latent Class Analysis (LCA) of HIV-1 infected individuals
The distribution of participant characteristics within latent class and predicted proportions in 

each cluster size by latent class are shown. Darker colors represent higher proportion as 

shown in the legend. MSM=men who have sex with men; Hetero includes both males who 

have sex with females and females who have sex with males; IDU=Injection drug use; 

TDR=transmitted drug resistance; PHI = primary HIV-1 infection.
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Figure 2. Estimated probabilities of transmission clusters harboring undiagnosed infections in 
the year following data collection based on a logistic growth model
Bars demonstrate the 24 large clusters, ranked in descending order according to the highest 

probability of including an undiagnosed infection. Clusters with a high-probability (≥15%) 

of harboring undiagnosed infections in the following year are A-D; moderate-probability 

(5-15%) E-N; and low-probability (≤5%) O-X. Examples of high (Cluster B) and low 

(Cluster Q) probability clusters are shown at the bottom of the figure, demonstrating 

differing growth rates as represented by the slope of the line.
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