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Abstract

Background—Angiogenesis is the process of neovascularization from pre-existing vasculature 

and is involved in various physiological and pathological processes. Inhibitors of angiogenesis, 

administered either as individual drugs or in combination with other chemotherapy, have been 

shown to benefit patients with various cancers. Endostatin, a 20-kDa C-terminal fragment of type 

XVIII collagen, is one of the most potent inhibitors of angiogenesis.

Scope of review—We discuss the biology behind endostatin in the context of its endogenous 

production, the various receptors to which it binds, and the mechanisms by which it acts. We focus 

on its inhibitory role in angiogenesis, lymphangiogenesis, and cancer metastasis. We also present 

emerging clinical applications for endostatin and its potential as a therapeutic agent in the form a 

short peptide.

Major conclusions—The delicate balance between pro- and anti-angiogenic factors can be 

modulated to result in physiological wound healing or pathological tumor metastasis. Research in 

the last decade has emphasized an emerging clinical potential for endostatin as a biomarker and as 

a therapeutic short peptide. Moreover, elevated or depressed endostatin levels in diseased states 

may help explain the pathophysiological mechanisms of the particular disease.

General significance—Endostatin was once sought after as the ‘be all and end all’ for cancer 

treatment; however, research throughout the last decade has made it apparent that endostatin’s 

effects are complex and involve multiple mechanisms. A better understanding of newly discovered 

mechanisms and clinical applications still has the potential to lead to future advances in the use of 

endostatin in the clinic.
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1. INTRODUCTION

Research over the last three decades has greatly clarified the process of angiogenesis and its 

role in cancer, with more than 78,000 articles published on this concept. Angiogenesis is the 

process of neovascularization from pre-existing vasculature and is involved in various basic 

physiological and pathological processes [1–4]. The discovery of endostatin in a murine 

hemangioendothelioma cell line in 1997 was a major breakthrough in our understanding of 

angiogenesis [5]. Endostatin, a 20-kDa C-terminal fragment of type XVIII collagen, is one 

of the most potent endogenously produced inhibitors of angiogenesis [5]. After 18 years of 

research on endostatin, the paradigm of bench-to-bedside research has not culminated in an 

effective FDA-approved drug. However, the State Food and Drug Administration of China 

did approve Endostar, a modified recombinant human endostatin, in 2005 for the treatment 

of non-small-cell lung carcinoma [6]. Since then, phase II studies of recombinant endostatin 

in the United States have failed to show any activity related to the inhibition of angiogenesis 

[7]. The evidence is inconclusive and circumstantial regarding why Endostar failed in 

clinical trials in the United States, but was approved quickly in China. Despite extensive 

preclinical and clinical studies on endostatin therapy, the specific mechanisms responsible 

for its anti-angiogenic and anti-tumoral activities are far from completely understood. 

Originally, endostatin was thought to only block new blood vessel growth, but emerging 

data suggests that various mechanisms and roles account for the efficacy of endostatin in in 

vitro and in vivo models. Greater insight into the mechanisms and physiological roles 

associated with the anti-angiogenic activity of endostatin may help improve the current 

treatments, uncover other factors with similar activities, identify predictive markers for 

therapy, and potentially help with the discovery of novel therapeutics. In this review, we will 

present the various receptors to which endostatin binds and the related mechanisms of 

action. We will discuss the biological actions and production of endostatin and briefly 

mention other peptides with activity similar to that of endostatin. Other anti-angiogenic 

peptides derived from collagen include arresten, canstatin, tumstatin, and restin, which were 

recently reviewed [8] and will therefore not be the focus of this review. Endostatin and the 

fragments of collagen IV are referred to as matrikines [8] or as matricryptins [9, 10]. After 

establishing a framework for endostatin biology, we present current in vitro and in vivo 

models for studying angiogenesis and the potential that endostatin has for clinical 

application. Understandably, the hype surrounding endostatin in the early 2000s as the cure-

all for various cancers is gone [11], but several research groups have persisted in their 

efforts to achieve a better understanding of endostatin. The scope of this review is to discuss 

endostatin’s role in regulating angiogenesis, lymphangiogenesis, and cancer metastasis in 

the hopes of better explaining why continued research into the application of endostatin is 

worthwhile.

2. THE ROLES OF VARIOUS COLLAGEN TYPES IN ANGIOGENESIS

The basement membrane (BM), a specialized form of the extracellular matrix (ECM), has 

been recognized for its multi-faceted functions as a regulator of cell interactions, cell 

structure, and cell assembly. For example, specific components of the vascular BM have 

been found to regulate angiogenesis. The vascular BM contains collagens, a heterogeneous 
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family of proteins, which contain at least one triple-helical domain made of the repeating 

Gly-X-Y sequence with the presence of a glycine residue as every third residue [12]. To 

date, 28 different collagen types have been identified and described in mammalian species, 

and six of these, type I, type IV, type VIII, type XV, type XVIII, and type XIX, have been 

implicated in the regulation of angiogenesis.

2.1. COLLAGEN TYPES INVOLVED IN REGULATION OF ANGIOGENESIS

In 1994, O’Reilly et al. discovered the first anti-angiogenic peptide, angiostatin [13]. 

Angiostatin is a 38-kDa fragment from plasminogen that was first extracted from murine 

urine and shown to mediate the suppression of murine tumor metastasis by inhibiting 

endothelial cell proliferation [13]. Since the discovery of angiostatin, other anti-angiogenic 

peptides associated with collagen have been found and are the topic of this section. 

Collagens can be categorized as fibrillar or nonfibrillar. Fibrillar collagens form collagen 

fibrils and are composed of an uninterrupted collagenous domain. Collagen fibrils contribute 

to the structure, strength, and tensile properties of tissues. This is in contrast to nonfibrillar 

collagens, which have interruptions in their collagenous domain and structurally do not form 

fibril bundles. The three primary collagens that have been implicated in the regulation of 

angiogenesis (type IV, type XV, and type XVIII collagen) are non-fibrillar collagens. In 

addition, type XV and type XVIII collagens form the multiplexin subfamily of nonfibrillar 

collagens because both contain multiple alternating collagenous (COL) and noncollagenous 

(NC) domains [14]. Type I collagen, a fibrillar collagen, has been shown to stimulate 

angiogenesis in vivo and in vitro [15–17]. Type VIII collagen, a network-forming collagen 

that forms hexagonal networks, releases vastatin, an anti-angiogenic fragment located at its 

C-terminus NC1 domain [18]. Type XIX collagen, a member of the fibril-associated 

collagens with interrupted helices (FACIT) family, also possesses anti-angiogenic properties 

at its C-terminus NC1 domain [19].

2.1.1. TYPE IV COLLAGEN—Type IV collagen is the most abundant component of the 

BM and serves as the scaffold that binds to laminin, fibronectin, entactin, and proteoglycans 

to form the mesh-like structure of the BM [20, 21]. Type IV collagen is composed of six 

different α chains (α1–α6) that are encoded on six different genes (COL4A1-COL4A6) 

[22]. The three primary anti-angiogenic fragments released from the α1, α2, and α3 chains 

of type IV collagen are arresten, canstatin, and tumstatin, respectively. Further information 

on matrikines released from type IV collagen can be found in a review published by 

Monboisse et al. [8].

2.1.2. TYPE XV COLLAGEN—Type XV collagen is classified as a chondroitin sulfate 

proteoglycan and a member of the multiplexin and non-fibrillar collagen subgroups [23]. 

Type XV is highly homologous to type XVIII collagen; the two share homology in seven of 

their COL domains, in their NC11 domains, and in their NC1 domains [24–28]. Cleavage of 

the C-terminal NC1 domain of type XV collagen on its α1 chain results in the production of 

restin, a 22-kDa anti-angiogenic factor similar to endostatin [28]. Similar to endostatin, 

restin inhibits bFGF-induced endothelial cell migration in vitro and exhibits anti-angiogenic 

properties in vivo in xenograft carcinoma mouse models [28, 29]. Endostatin and restin are 
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both capable of suppressing tumor growth, but endostatin has a stronger antitumorigenic 

effect [28].

2.1.3. TYPE XVIII COLLAGEN—Type XVIII collagen is the only heparan sulfate 

proteoglycan collagen and is found in various epithelial and vascular BMs. Type XVIII 

collagen is a non-fibrillar collagen and a member of the multiplexin subfamily [30]. Type 

XVIII collagen contains 10 collagenous domains interspersed in 11 non-collagenous 

domains as shown in Figure 1 [31]. Overall, this structure is flanked by a N-terminal NC11 

domain and a C-terminal NC1 domain [31]. The NC1 domain is composed of an association 

domain involved in oligomerization of three α1 chains to form a homotrimeric type XVIII 

collagen, a hinge domain that serves as a protease target, and a 20-kDa anti-angiogenic 

endostatin domain [32]. Three tissue-specific variants are found in mice and two variants in 

humans, located specifically within the NC1 domain [30, 33]. The two different human 

variants of type XVIII collagen are the short isoform and the long isoform. The short 

isoform is found in the human heart, kidney, placenta, ovary, skeletal muscle, and small 

intestine, whereas the long isoform is highly specific to the liver [33]. Type XVIII collagen 

has a significant presence in the BM of various components of the eye, which explains some 

of the pathologies and in vitro and in vivo models used to study endostatin. Overall, type 

XVIII collagen is primarily localized in epithelial and endothelial BMs as the short isoform 

[34–36].

2.2. DISCOVERIES MADE IN COLLAGEN KNOCKOUTS

In this section, we will discuss the different mouse models that have been created via 

knockout of the α1 chain of type XVIII collagen, the α1 chain of type XV collagen, and the 

α1, α2, and α3 chains of type IV collagen. The physiological changes in these knockout mice 

provide insight on the specific functions of these collagens and their anti-angiogenic 

components.

2.2.1. TYPE IV COLLAGEN KNOCKOUT MODEL—Because type IV collagen 

contains three unique anti-angiogenic fragments on separate α chains, three separate 

knockout murine models have been created and observed. The six different α chains (α1–

α6) of type IV collagen are encoded on six different genes (COL4A1–COL4A6).[22] 

Homozygous knockout of either COL4A1 or COL4A2 is lethal, with death occurring 

approximately 11 days into embryonic development [45]. This suggests that the α1 and α2 

chains of type IV collagen, the main components of BMs, are not required for early BM 

development, but become essential later on [45, 46]. Col4a3−/− mice have thickened 

glomerulus BMs and are used as a model of Alport’s syndrome [47]. Additionally, Hamano 

et al. reported that Col IVα3/tumstatin-deficient mice had accelerated tumor growth 

associated with enhanced pathological angiogenesis, while angiogenesis associated with 

development and tissue repair were unaffected [48].

2.2.2. TYPE XV COLLAGEN KNOCKOUT MODEL—Col15a1−/− mice are viable and 

fertile and present with normal development [49]. The most prominent abnormalities are 

seen in the heart and skeletal muscle and are first detected at three months of age [49]. 

Histological observations of the skeletal muscles of Col15a1−/− mice show muscle cell 
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degeneration and atrophy, macrophage infiltration, increased muscle cell regeneration, and 

varied muscle fiber lengths [49]. In addition to these findings, Col15a1−/− mice are more 

prone to exercise-induced muscle injury than their wild-type counterparts [49]. Despite the 

anti-angiogenic properties of restin, which is encoded in a region of the COL15A1 gene, 

Col15a1−/− mice display overall normal vascular development; however, there is an 

increase in vascular permeability and extravascular extracellular space in their striated 

muscles [49, 50]. Col15a1−/− mice present with significant cardiac defects, because type 

XV collagen is normally highly expressed in the heart. Specifically, the capillaries in the 

heart are irregularly shaped and show evidence of endothelial cell degeneration and swelling 

[49]. This suggests that type XV collagen plays a larger role in impacting the 

microvasculature instead of overall vascular development [49]. Furthermore, cardiac 

hypotrophy is observed in older Col15a1−/− mice and increased myocardial stiffness is 

present independent of age [49]. Col15a1−/− mice also display impaired peripheral nerve 

maturation, which can be attributed to the presence of type XV collagen in the BM of 

peripheral nerves [51, 52].

2.2.3. TYPE XVIII COLLAGEN KNOCKOUT MODEL—The closest natural human 

representation of type XVIII collagen knockout is Knobloch syndrome [53]. Knobloch 

syndrome is caused by a DNA mutation in COL18A1, the gene that encodes the α1 chain of 

type XVIII collagen, and is characterized phenotypically by severe myopia, vitreoretinal 

degeneration, retinal detachment, early-onset cataracts, and occipital encephalocele [53–61]. 

Due to the prevalence of type XVIII collagen in a variety of organs, Col18a1−/− mice 

present with a diverse set of abnormalities [62]. In the human eye, type XVIII collagen is 

located in the retina, lens capsule, corneal epithelium, epithelial BM, and Descemet’s 

membrane [63, 64]. The hyaloid artery is a branch off the ophthalmic artery that provides 

nutrients to the lens in the developing human fetus and typically regresses naturally by the 

10th week of development [65]. Without the anti-angiogenic effects of endostatin, 

Col18a1−/− mice have delayed hyaloid vessel regression after birth and subsequent 

abnormal retinal vasculature growth [66–68]. Furthermore, ocular defects, anterior eye 

abnormalities, ciliary body atrophy, weakened irises, and an abnormal retinal pigment 

epithelium are detected [68–71]. All of these defects contribute to an abnormal loss in visual 

function with age [71]. Col18a1−/− mice also present with hyperlipidemia due to a decrease 

in plasma lipoprotein lipase levels, suggesting that type XVIII collagen plays a role in 

triglyceride metabolism in vivo [72]. Also, both short and long isoforms of type XVIII 

collagen are located in distinct regions of the kidney [73]. Col18a1−/− mice display 

decreased proximal tubule integrity, softened glomeruli, and effacement of their podocytes 

[73]. Overall, the vascular effects of the lack of type XVIII collagen are increases in blood 

flow and vessel permeability [50].

2.2.4. TYPE XVIII COLLAGEN AND TYPE XV COLLAGEN DOUBLE KNOCKOUT 
MODEL—To determine whether type XVIII collagen and type XV collagen have 

compensatory functions, Rasi et al. created Col15a1−/− × Col18a1−/− double null mice, 

which are viable and present with no gross abnormalities [74]. The double null mice present 

with muscle atrophy similar to the Col15a1−/− mice, suggesting that type XVIII collagen 

does not compensate for type XV collagen’s role in muscles [74]. Both type XV and type 
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XVIII collagens are involved in the normal regression of the vasa hyloid propria (VHP), the 

embryonic vasculature serving the vitreous humor, in mice between postnatal days 6–10 [74, 

75]. The amount of VHP regression was similar in wild-type and Col15a1−/− mice, but 

significantly increased in comparison to Col18a1−/− and double null mice, suggesting that 

type XVIII collagen can compensate for type XV collagen to some extent [74]. Overall, the 

separate biological roles of these two types of collagen indicate that compensation between 

them is only minor [74]. The biological roles of type XV collagen and type XVIII collagen 

are separate, with type XV collagen functioning primarily in muscles and type XVIII in the 

eye [74].

3. ENDOGENOUS FORMATION OF ENDOSTATIN

Endostatin is a 20-kDa fragment located at the C-terminal of the NC1 domain of the type 

XVIII collagen α1 chain. Many different proteases are able to cleave the 34-kDa NC1 

domain to produce endostatin or endostatin-containing fragments [76]. The efficiencies of 

these proteases are evaluated based on their ability to both generate and degrade endostatin. 

Various cathepsins [76] (a family of lysosomal endopeptidases) and elastase [77] (a family 

of proteases that break down connective tissue) cleave the Ala-His linkage in the NC1 hinge 

region of type XVIII collagen to release endostatin (Figure 2). The three specific types of 

cathepsins that are capable of generating endostatin are L, B, and K; and of these, cathepsin 

L is the most efficient and cathepsin K is the least efficient [76]. Tumor cells secrete 

cathepsin L, which degrades the ECM and BM of tissues to create the ideal environment for 

tumor invasion and metastasis [78]. With this known role in metastasis, cathepsin L levels 

have been shown to have potential as a prognostic marker for hepatocellular carcinoma [79], 

breast cancer [80], colorectal cancer [81], nasopharyngeal carcinoma [82], oral squamous 

cell carcinoma [83], gastrointestinal stromal tumors [84], bladder urothelial carcinoma [85], 

and pancreatic adenocarcinoma [86].

To date, 23 vertebrate members of the matrixin family, zinc-dependent proteases known to 

be involved in tissue remodeling and ECM degradation, have been identified [87]. There are 

two forms of MMPs: a secreted form and a membrane-type form (abbreviated as MT-

MMP). Secreted MMPs, including collagenases, gelatinases, and stromelysins, are tightly 

regulated and secreted as zymogens [88]. MT-MMPs are transmembrane enzymes that 

specialize in cleaving ECM components and are important in cell migration due to their 

location close to the cell surface [89]. MMPs have been shown to also cleave the NC1 hinge 

region of type XVIII collagen to produce endostatin-containing fragments and other anti-

angiogenic fragments [90]. Recent studies have shown that interruption in MMP activity 

does not affect the amount of endostatin produced by cathepsin L, indicating that cathepsin 

L’s actions are likely independent of MMP [91]. Some members of the MMP family exhibit 

pro-angiogenic properties, whereas others exhibit anti-angiogenic properties [91]. MMP-3, 

-9, -12, -13, and -20 are capable but inefficient at cleaving the NC1 hinge region to produce 

endostatin-containing fragments [76]. MMP-2 and MMP-14 are even less effective at 

cleaving the NC1 hinge region than the aforementioned 7 MMP enzymes and produce a 

lower amount of endostatin-like fragments [76].

Walia et al. Page 6

Biochim Biophys Acta. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



On the other hand, MMP-7 (also known as matrilysin and a secreted MMP) can efficiently 

cleave NC1 in vitro to form neostatin-7 (28-kDa) (Figure 2) [63, 92]. Aside from cleaving 

type XVIII collagen, MMP-7 also cleaves various ECM components during matrix 

remodeling in the wound healing process. Research has shown that MMP-7 is upregulated in 

the corneal epithelium and basement membrane in corneal wound-healing process after 

excimer laser keratectomy in vivo [93]. Another substrate of MMP-7 is plasminogen, which 

is cleaved into angiostatin, another anti-angiogenic factor. MMP-2 and MMP-9, integral 

proteases for ECM degradation, produce fragments with pro-angiogenic activity and are 

upregulated in angiogenesis [94, 95]. Endothelial cells bearing MMP-2 or MMP-9 also have 

the ability to degrade the type IV collagen and laminin components of the ECM to allow for 

blood vessel invasion [96]. Endostatin partly exerts its anti-angiogenic effects by inhibiting 

the enzymatic activity of MMP-2 [97], MMP-9 [98], and MT1-MMP [97] and by blocking 

the activation of MMP-2, -9, and -13[98], illustrating the complex interplay between 

endostatin and the proteases that release it.

4. ENDOSTATIN RECEPTORS

Endostatin has been shown to bind to a variety of receptors (Table 3). In this section, we will 

summarize the endostatin’s physiological effects and mechanisms upon binding to 

VEGFR-2, VEGFR-2, members of the integrin family, glypican-1, and glypican-4.

4.1. VEGFR-1, VEGFR-2, AND VEGFR-3

VEGF exerts pro-angiogenic effects by binding to several endothelial cell surface receptors, 

most notably, VEGF receptor (VEGFR)-1 (also known as flt-1) and VEGFR-2 (also known 

as flk-1/KDR). Generally, VEGF ligand binding to the VEGF receptor tyrosine kinases 

activates a distinct network of downstream signaling pathways [100]. More specifically, 

once VEGF binds to VEGFR-2, it immediately activates an ERK/p38/MAPK signaling 

cascade [101]. VEGFR-2 expression is restricted to the vasculature and is a key mediator of 

angiogenesis. VEGFR-1 is also present on cells of the vasculature; however, its role is 

unclear, and VEGFR-1 may serve as a VEGF trap and negatively regulate angiogenesis. 

Endostatin inhibits angiogenesis by directly binding to both VEGFR-1 and VEGFR-2 and 

blocking VEGF interaction with Flt-1 and Flk-1 to prevent VEGF-induced tyrosine 

phosphorylation of VEGFR-1 and VEGFR-2 and all downstream signaling events [102]. 

VEGFR-3 (also known as flt-4), another receptor tyrosine kinase, is expressed primarily on 

lymphatic endothelial cell surfaces [103]. Endostatin competitively inhibits VEGF binding 

to VEGFR-3 in vitro [104]. Once bound, endostatin serves as an anti-lymphangiogenic 

factor by inhibiting VEGF-stimulated lymphatic endothelial cell proliferation and migration 

[104].

4.2. INTEGRIN α5β1 AND αVβ3

Integrins are a family of transmembrane cell surface receptors that aid in cell–cell or cell–

ECM interactions. Each integrin is composed of an α and a β subunit, and the combination 

of the two determines the specificity and signaling properties of each integrin. Humans have 

18 different α subunits and 8 different β subunits [105]. Endostatin has been shown to 

associate with various different surface integrins: α3β1 [106], α5β1 [107–109], αvβ3 [108, 
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109], αvβ5 [108, 109]. α5β1 primarily binds to endothelial cell fibronectin [108, 110], but 

also binds to other ECM components. Endostatin competes with fibronectin, pro-angiogenic 

ligand, to bind to integrin α5β1 in order to disrupt cell migration [107]. Once bound, 

endostatin causes α5β1 integrins to cluster and co-localize with endothelial caveolin-1 [111]. 

Caveolin-1 is a transmembrane anchor protein that couples integrins to signaling cascades 

and has been found to be an essential regulator of angiogenesis [112, 113]. Another 

consequence of endostatin binding to α5β1 is the initiation of the tyrosine phosphorylation 

cascade, which activates cytoplasmic Src [111]. Phosphorylated Src then directly associates 

with caveolin-1 [111]. This phosphorylated Src plays a role in disassembling focal adhesion 

fibers and actin stress fibers to disrupt fibronectin matrix deposition, resulting in inhibition 

of cell migration [111]. Endostatin binds to both αVβ3 and α5β1 integrins with similar 

affinities (KD = 17.5 nM and 18.3 nM, respectively) [109]. When VEGF binds to endothelial 

cell surface VEGFR-2, it can induce VEGFR-2 association with αVβ3 and lead to 

downstream events that stimulate angiogenesis. Tumstatin, an anti-angiogenic factor from 

type IV collagen, also binds to integrin αVβ3 to inhibit cell proliferation, but does not 

displace fibronectin in the process [107]. This suggests that the anti-angiogenic effects of 

endostatin and tumstatin are achieved via different mechanisms [107]. Figure 3 summarizes 

the downstream signaling effects of these anti-angiogenic factors binding to their respective 

integrins.

4.3. GLYPICAN-1 AND -4

Glypicans are a family of glycosylphosphatidylinositol (GPI)-anchored heparan sulfate 

proteoglycans located on the endothelial cell surface. Karumanchi et al. discovered that 

endostatin binds weakly to the heparan sulfate region of both glypican-1 and glypican-4 

(two endothelial cell surface receptors) and strongly to an ‘unknown receptor’ [114]. Their 

study showed that endostatin binding to glypicans is necessary for endostatin to bind to its 

‘unknown receptor’ and proposed that binding of endostatin to glypican induces a 

conformational change in endostatin to bind strongly with its ‘unknown receptor’ [114].

The heparan sulfate domain is likely important for endostatin’s anti-angiogenic activity 

because recombinant endostatin that is unable to bind to heparan sulfate is also unable to 

inhibit VEGF- and bFGF-induced angiogenesis [115]. Interestingly, the heparan sulfate 

domain of glypican binds both pro-angiogenic factors (e.g., VEGF and bFGF) and anti-

angiogenic factors (e.g. endostatin). Endostatin competes with bFGF to bind to heparan 

sulfate in vivo, though endostatin has a greater affinity for heparan sulfate than bFGF [116].

5. ENDOSTATIN CELL SURFACE-ASSOCIATED PROTEINS

5.1. THROMBOSPONDIN-1 AND SPARC

Thrombospondin-1 and SPARC (secreted protein acidic and rich in cysteine) are 

matricellular proteins, which serve as endogenous inhibitors of angiogenesis [117]. 

Matricellular proteins are ECM proteins that regulate cell function without contributing to 

the structural integrity of the ECM [118]. Endostatin binds to both thrombospondin-1 and 

SPARC and has also been shown to upregulate thrombospondin-1 gene expression [117, 

119].
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5.2. ENDOREPELLIN

Perlecan is a BM-specific heparan sulfate proteoglycan that contains an endorepellin 

fragment at its C-terminal end in domain V [120]. Endostatin binds to endorepellin and 

approximately half of endogenously produced endostatin has been found to be co-localized 

with perlecan in vivo [121]. Endorepellin’s actions are complicated because it exhibits anti-

angiogenic properties while also indirectly exhibiting pro-angiogenic properties [120]. Four 

direct mechanisms to inhibit angiogenesis via endorepellin have been described thus far: (1) 

inhibition of endothelial cell migration, (2) inhibition of collagen-induced endothelial tube 

morphogenesis, and (3) inhibition of blood vessel growth in both Matrigel plugs in vitro and 

(4) in chorioallantoic membranes [120]. When endostatin binds to endorepellin, endorepellin 

inhibits endostatin’s anti-angiogenic properties by preventing endothelial cells from 

attaching to the ECM fibronectin and type I collagen [120]. While inhibiting endostatin’s 

anti-angiogenic properties via an indirect mechanism, endorepellin is simultaneously 

carrying out its own four anti-angiogenic properties via direct mechanisms [120]. In 

comparison to the anti-angiogenic potency of endostatin and endorepellin individually, the 

overall anti-angiogenic capabilities of combined endostatin and endorepellin were found to 

be decreased when endostatin is bound to endorepellin [120].

5.3. TRANSGLUTAMINASE-2

Transglutaminase-2 (TG-2) is an enzyme located on the endothelial cell surface and is 

responsible for the multimerization of proteins and the stabilization of the BM [122]. TG-2 

is co-localized with endostatin in the ECM secreted by endothelial cells in vitro [123]. 

Endothelial cells serve as a large source of tissue TG-2 [124]. Research suggests that TG-2 

binds to VEGFR-2 at the endothelial cell surface and in the cytoplasm; and in the presence 

of VEGF, TG-2 helps translocate VEGFR-2 to the nucleus [125]. Although the downstream 

effects of the interaction between endostatin and TG-2 have not been delineated, endostatin 

binds strongly to TG-2 in vitro [117, 123].

5.4. BIGLYCAN AND LOW-DENSITY LIPOPROTEIN

Biglycan is a dermatan sulfate proteoglycan associated with the ECM and is implicated in 

the initiation of atheroma, which is an accumulation of fat in the intima layer of blood 

vessels that can result in atherosclerosis [126]. In atherosclerosis-prone mice models, 

biglycan levels are elevated, and the increased biglycan binds to and retains low-density 

lipoprotein (LDL) in the intima layer of the blood vessel [126]. Zeng et al. found that 

endostatin binds to biglycan in vitro and serves as an anti-atherosclerotic agent by 

preventing biglycan from retaining LDL [127]. In addition to binding biglycan, endostatin 

also directly binds to LDL, but the resulting effects have not been entirely identified [127]. 

Both in vivo and in vitro experiments with endostatin, LDL, and LDL-retaining matrix 

molecules (e.g. biglycan) show that endostatin is anti-atherosclerotic [127]. The mechanism 

by which endostatin can suppress atheroma initiation through binding to LDL is unclear, and 

the current hypothesis is that endostatin can change the conformation of LDL to decrease its 

affinity for biglycan [127].
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5.5. AMYLOID PEPTIDE Aβ-(1–42)

Deininger et al. found that the amyloid plaques found in Alzheimer’s disease patients are co-

localized with insoluble endostatin that forms amyloid fibrils in vitro [117, 128]. When 

endostatin is partially denatured, cross-linking of its secondary structure of β-sheets tends to 

occur, forming an overall insoluble endostatin protein [129]. The insoluble form of 

endostatin, along with other proteins that form cross-β-sheets, has a tendency to aggregate 

with itself to form a fibrillar structure [129, 130]. This fibrillar endostatin can bind to 

neuronal cells and induce neuronal death, similar to the effects of β-amyloid on neuronal 

cells in Alzheimer’s patients [129].

5.6. NUCLEOLIN

Nucleolin is a protein with angiogenic activity, that is found primarily in the nucleolus and 

possesses the ability to interact with many other proteins and RNA [131]. During 

angiogenesis, when endothelial cells adhere to ECM components, VEGF mobilizes 

nucleolin from the nucleus to the endothelial cell surface [132]. Nucleolin has been found in 

the nucleus, cytoplasm, and on the cell surface of angiogenic endothelial cells [133]. 

Nucleolin only appears on the cell surface of tumor-induced angiogenic endothelial cells and 

not on cells of mature endothelial vessels [133]. When nucleolin is inhibited by anti-

angiogenic factors, endothelial cell migration and tube formation are suppressed [132]. 

Nucleolin internalizes and transports endostatin into the endothelial cell nuclei [134].

6. SHORT ENDOSTATIN PEPTIDES

Although endostatin has proven to be an important endogenous inhibitor of angiogenesis, its 

therapeutic use has been limited by several factors. The production of endostatin has been 

challenging due to the high costs associated with synthesis and difficulty in storage and 

handling [138]. Endostatin has a remarkable secondary structure that requires the correct 

pairing of two disulfide bonds in a nested pattern [139]. This secondary structure is very 

stable and requires a very low pH to induce unfolding. However, once endostatin is 

synthesized, it is rather difficult to promote the ideal conditions for proper folding [140]. 

The shortcomings of using native peptides as therapeutics have been long known and 

include limited oral bioavailability, short half-lives, and limited selectivity [141].

Recently, several research groups have attempted to determine the structural basis for the 

activity of endostatin in the hopes of discovering a short peptide that may be able to 

overcome the challenges of using a large protein. The general approach has involved 

synthesizing different internal fragments of endostatin and evaluating their specificity for 

anti-tumoral activity in vitro and in vivo. Table 4 shows some of the most significant studies 

that have helped determine the function of some sequences of endostatin. Because the 

endostatin peptide is large, it has various sequences with distinct activities [142]. The 

current hypothesis is that two important functional sequences of endostatin, an angio-

stimulatory sequence and an angio-suppressive sequence, have opposing activities [143]. 

Depending on the disease process in question and the pathophysiology involved, inhibitors 

and stimulators of angiogenesis could be developed for therapeutic applications.
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Zinc binds to endogenously produced endostatin at its N-terminus via three histidine 

residues [144]. The importance of zinc binding for endostatin’s function as an anti-

angiogenic factor is highly debated [144–147]. Cho et al. synthesized endostatin mutant H5, 

from which the N- and C-terminal pentapeptide sequences are removed, and showed that 

this mutant retains its anti-angiogenic activity in vitro and in vivo [146]. Figure 4 shows the 

entire sequence of recombinant human endostatin with some of the sequences that had 

improved activity highlighted. Because the zinc-binding domain is on the N-terminus of 

endostatin, zinc binding may not be required for endostatin’s anti-angiogenic properties 

[146]. However, zinc binding may improve endostatin’s structural stability by protecting it 

from rapid proteolysis, denaturants, and extreme temperature [148]. Using surface plasmon 

resonance (SPR) assays, molecular modeling, and an in vitro model of angiogenesis (i.e., 

embryonic stem cell-derived embryoid body secondary cultures in collagen I gel), Ricard-

Blum et al. found that zinc is crucial for the multimerization of endostatin and significantly 

contributes to the in vitro anti-angiogenic activity of endostatin on endothelial cells when 

they are activated by fibroblast growth factor-2 [149].

Cattaneo et al. and Chillemi et al. divided the full-length endostatin protein into four 

separate peptides, A-I through A-IV, each containing 40–50 amino acid residues to better 

elucidate the roles of the individual functional sequences of endostatin [150]. Two of the 

peptides, A-I and A-IV, showed greater potency and efficacy in inhibiting angiogenesis than 

the full-length endostatin protein [150]. Surprisingly, A-III had angiogenic activity similar to 

endogenously produced VEGF, suggesting a possible homology between the sequence of 

endostatin and VEGF [150].

Becker et al. randomly separated the endostatin protein sequence into eight fragments and 

synthesized eight distinct 27-amino acid peptides with some overlapping segments (mP-1 

through mP-8) [151]. They tested each peptide’s ability to inhibit angiogenesis during 

endometriosis in in vitro and in vivo models [151]. The criteria used to determine the 27 

amino acid as the ideal length for the potential therapeutic peptide included cost of 

production and storage, production time, ease of handling, and ease of potential delivery to 

patients by care providers [151]. The significant peptides included ones that had both strong 

activity and specificity in inhibiting VEGF-induced migration of endothelial cells and ones 

that had no activity [151]. mP-1 and mP-6 were the only peptides that had improved activity 

compared to endogenously produced endostatin. Becker et al. also synthesized a mutant of 

mP-1 by substituting the alanine residues in the 1 and 3 positions with histidine residues to 

determine specifically where the anti-angiogenic activity was located. They found that the 

alanine residues at the 1 and 3 position are critical for the anti-angiogenic activity [151]. 

Because mP-1 was one of the most active in Becker et al.’s analysis, Tanabe et al. measured 

its activity in a different in vivo model using peritoneal sclerosis secondary to injections, 

characterized primarily by angiogenesis and fibrosis, and found that these short peptides had 

significant anti-angiogenic activity, but did not compare the activity of the short peptide 

with the full-length endostatin protein [152].

Wickström et al. used surface-exposed sequences determined by the crystal structure of 

endostatin to design shorter peptides of 11–13 amino acid residues in length: ES-1, ES-2, 

ES-3, ES-4 and ES-5 [153]. ES-2 effectively inhibited angiogenesis and endothelial cell 
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migration at low concentrations, and when the arginine residues on ES-2 were substituted 

for alanine, the anti-angiogenic activity was eliminated, suggesting the importance of these 

basic arginine residues for endostatin’s activity [153]. Through the use of molecular 

dynamics and computational analysis, Pieraccini et al. determined an active epitope of six 

amino acid residues (R-R(G)-A-D-R-A) that may be important for endostatin’s anti-

angiogenic role [154]. The six-amino acid epitope was also present in both A-I and A-IV 

and may be useful in designing small therapeutic peptides [154]. Although the epitope is 

present within the primary sequence, the activity may be due to the manner in which the 

protein is folded so that residues far apart in the primary structure may be close together and 

form an active epitope upon folding [154].

Our research group has employed SPR assays to evaluate the activity of various short 

endostatin peptides and further characterize how endogenous endostatin binds to its receptor 

[104]. We evaluated four short endostatin peptides (mEP, mEP-CA, mEP-AC, and mEP-

AA), each 27 amino acids in length, and their specific affinity for the VEGFR-3 receptor in 

vitro [104]. The binding of short peptides to VEGFR-3 required two cysteine residues 

approximately seven amino acids apart, which are likely critical for both the structural and 

functional activity of the peptide [104]. Substitution of either of the two cysteine residues in 

the motif prevented peptide binding to VEGFR-3 [104]. Unsurprisingly, a similar cysteine 

motif is also present on VEGF-C, an endogenous agonist of VEGFR-3 [104]. Even though 

the roles of several domains within the endostatin protein have been determined, additional 

characterization of endostatin sequences that bind to its various receptors is required to 

synthesize novel therapeutics that effectively inhibit angiogenesis or lymphangiogenesis.

7. IN VITRO AND IN VIVO MODELS OF ENDOSTATIN’S ROLE IN 

ANGIOGENESIS AND LYMPHANGIOGENESIS

We have described the receptors to which endostatin binds, and in this section, we will 

outline the in vitro and in vivo effects of endostatin along with some of the assays used to 

determine the activity of endostatin.

7.1. IN VITRO ACTIVITIES OF ENDOSTATIN In vitro

pull down assays show that endostatin competes with VEGF-C to bind to VEGFR-2 on the 

endothelial cell surface. Once endostatin is bound to VEGFR-2, it prevents VEGF-C 

phosphorylation of VEGFR-2 and initiation of downstream signaling pathways that lead to 

angiogenesis [101, 102]. In vitro migration assays and cell proliferation evaluations have 

shown that full-length human endostatin inhibits bFGF- and VEGF-induced endothelial cell 

proliferation and migration [68]. When Endostar, a recombinant human endostatin with nine 

additional amino acids (MGGSHHHHH) added to its N-terminus, is added to cultured 

human umbilical vein endothelial cells (HUVEC) in vitro, VEGF-induced migration, 

proliferation, and tube formation is inhibited [156, 157]. These results were obtained 

through migration assays and tube formation assays [156]. The inhibition on aortic ring 

vessel branching was observed in vitro through an aortic ring assay [156].
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In addition to its anti-angiogenic activity, endostatin also exhibits anti-lymphangiogenic 

activities that are primarily executed through binding to VEGFR-3 [104]. An SPR assay was 

used to characterize the binding between endostatin and VEGFR-3 [104]. Endostatin 

competes with VEGF-C for binding to VEGFR-3 and was found to have a lower affinity for 

this receptor than VEGF-C [104]. By blocking VEGF-C binding to VEGFR-3, endostatin 

inhibits lymphatic endothelial cell proliferation and migration as seen through a scratch 

migration assay and Bromodeoxyuridine (BrdU) assay [104]. In general, research has shown 

that endostatin can inhibit endothelial cell proliferation and migration and can induce cell 

apoptosis in vitro and in vivo [158–160].

7.2. IN VIVO EFFECTS

Endostatin’s anti-angiogenic effects have been observed in vivo through a chick 

chorioallantoic membrane assay for neovascularization and through a Matrigel plug assay 

for tube formation [158, 161]. The Matrigel plug assay is a widely used technique for 

observing in vivo angiogenesis. In this assay, a pro-angiogenic factor, such as bFGF, is 

added to a Matrigel liquid, which solidifies after subcutaneous injection and allows for host 

cells to induce angiogenesis in the region of injection [162]. Both endogenously produced 

endostatin and Endostar, recombinant human endostatin, can inhibit angiogenesis in vivo 

[156]. In mouse models, endostatin has been shown to suppress and even completely inhibit 

the tumor mass growth rate though inhibition of angiogenesis [163, 164]. Although not 

extensively studied, the results of in vivo experiments support endostatin’s anti-

lymphangiogenic role based on its inhibition of bFGF-induced lymphangiogenesis [165]. 

Endostatin has recently been found to have intrinsic ATPase activity in vivo, which mediates 

its anti-angiogenic and anti-tumoral activities by further inhibiting endothelial cell 

proliferation, migration, tube formation, and adhesion [166].

8. ENDOSTATIN’S ROLE IN LYMPHANGIOGENESIS

The anti-lymphangiogenic action of endostatin has been widely accepted, yet largely 

understudied in terms of its clinical significance. Lymphangiogenesis involves the 

coordination of events that are similar to angiogenesis: cell proliferation, migration, 

sprouting, and tube formation [167]. However, the mechanism responsible for 

lymphangiogenesis is distinct from angiogenesis and depends upon the binding of VEGF-C 

[168] or VEGF-D [169] with VEGFR-2 or VEGFR-3 to activate extracellular-signal-

regulated kinases that induce phosphorylation of Akt (also known as protein kinase B) and 

ultimately lead to lymphangiogenesis [170, 171]. Although lymphatic endothelial cells 

(LECs) share many characteristics with blood vascular endothelial cells, they differ in their 

gene expression and functional characteristics, which gives LECs distinct physiological and 

molecular behaviors [172–175]. With particular cancers, such as oral squamous cell 

carcinoma [176] and malignant pleural effusion [177], the generation of lymphatic 

vasculature and remodeling of the existing lymphatic vasculature may be critical to cancer 

metastasis. Fukumoto et al. first investigated the role of endostatin in lymphangiogenesis by 

examining the correlation between inhibition of lymph node metastasis and the 

administration of endostatin in vivo and in vitro [176]. They found that a crucial mechanism 

for endostatin’s anti-lymphangiogenic activity is the downregulation of VEGF-C expression, 
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which subsequently leads to a reduction in lymph node metastasis [176]. Brideau et al. 

attempted to clarify the mechanism of endostatin inhibition and identified tumor-associated 

inflammatory mast cells as the primary source of VEGF-C expression [136]. Elevated 

endostatin levels are correlated with a reduction in the number of VEGF-C–producing 

inflammatory mast cells, which ultimately leads to the inhibition of lymphangiogenesis 

[136]. Human mast cells have been found both to express functional β1 integrin and to 

adhere to vitronectin via its αVβ3 integrin receptor [178, 179]. As discussed in an earlier 

section of this review, endostatin binds to integrins α5β1 and αVβ3 to inhibit angiogenesis 

[106, 108, 109, 142]. When endostatin is bound to integrins α5β1 and αVβ3, it serves as an 

inhibitor of mast cell adhesion and migration to prevent release of VEGF-C, an endogenous 

agonist of lymphangiogenesis [136]. Elevated endostatin levels are also correlated with 

reduced VEGFR-3 levels, suggesting that endostatin inhibits the gene expression of 

VEGFR-3, the primary receptor located on LECs for regulating lymphangiogenesis [136]. 

Although there have been no clinical trials of endostatin treatment for any diseases 

associated with lymphangiogenesis, the efficacy of endostatin for the diseases for which its 

use is approved may be due to unknown anti-lymphangiogenic mechanisms. We are only 

beginning to understand how endostatin employs various coordinated mechanisms unique to 

its anti-lymphangiogenic role.

9. DISEASES ASSOCIATED WITH ALTERED ENDOSTATIN LEVELS

Elevated levels of endostatin have been associated with several diseases, some of which are 

discussed here. A comprehensive list of these diseases is provided in Table 5. Because 

endostatin is one of the most potent anti-angiogenic factors, a thorough understanding of its 

involvement in the pathology of the diseases discussed in this section can support the 

development of novel therapeutics. It is not possible to incorporate every study reporting a 

role for endostatin in a disease in the present review, and thus, we focused on diseases that 

help explain some of the mechanisms by which endostatin functions and the diseases that 

have not been emphasized in previous reviews.

9.1. CANCER METASTASIS

Because endostatin in an inhibitor of angiogenesis and lymphangiogenesis, it may initially 

seem counterintuitive that levels of endostatin are elevated in cancer, given that 

tumorigenesis requires pro-angiogenic factors [5]. O’Reilly et al. hypothesized in 1997 that 

endostatin is a “left-over” byproduct created during the transformation of a phenotypically 

normal cell into its angiogenic phenotype [5]. They also provided a second hypothesis that 

elevated endostatin levels may be due to random, nonspecific proteolytic activity of 

enzymes necessary to mobilize promoters of angiogenesis [5]. In contrast, the currently 

accepted hypothesis emphasizes the regulatory role of endostatin in tumorigenesis [180]. 

During tumor metastases, the balance between angiogenic factors and anti-angiogenic 

factors is disrupted and shifted towards the production of angiogenic factors to favor the 

growth of the primary tumor [158] Because inhibitors of angiogenesis have longer half-lives 

than angiogenic proteins, they tend to circulate in the bloodstream longer than pro-

angiogenic factors [13, 181, 182]. Furthermore, surgeons have found that plasma levels of 

endostatin are reduced upon removal of the primary tumor, which facilitates angiogenesis in 
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secondary tumors [183]. Thus, the primary tumor may actually maintain the dormant state of 

secondary tumors by secreting angiogenic inhibitors such as endostatin [184]. Elevated 

levels of endostatin have been implicated in several cancer types as shown in Table 5.

9.2. DIABETES MELLITUS AND CORONARY ARTERY DISEASE

Sodha et al. reported that coronary artery disease patients with diabetes have greater levels 

of myocardial endostatin than coronary artery disease patients without diabetes [185]. 

Endostatin levels are positively correlated with hyperglycemia (measured by HgbA1c 

levels) and negatively correlated with coronary collateralization, the body’s natural 

formation of blood vessels to bypass ischemic areas and provide an alternative blood supply 

[185]. During chronic myocardial ischemia, coronary collateralization is upregulated to limit 

the size of the infarct region [186– 189]. Cathepsin L, the protease that cleaves endostatin 

from type XVIII collagen, was also found to be elevated in the myocardium of diabetes 

patients [185, 190]. By inhibiting endostatin production, pharmaceuticals may be developed 

to improve outcomes in patients with diabetes and coronary artery disease [185].

9.3. ALZHEIMER’S DISEASE

Deininger et al. determined that endostatin accumulation occurs in the brains of patients 

with Alzheimer’s disease [128]. One hypothesis for the etiology of Alzheimer’s disease 

focuses on chronic cerebral hypoperfusion and endothelial cell abnormalities as important 

components that lead to the progressive nature of the disease [191, 192]. Endostatin 

accumulates in the cortical and perivascular plaques to disrupt endothelial vessel migration 

and growth [128]. Hypoxia likely induces the release of endostatin and its accumulation in 

amyloid plaques, and therefore, inhibition of endostatin release may be a potential avenue 

for novel treatment approaches for Alzheimer’s disease [128].

9.4. CHRONIC KIDNEY DISEASE (CKD)

The balance between pro-angiogenic factors and anti-angiogenic factors determines the 

properties of the filtration barrier and glomerular capillary structure. If there is an insult to 

either the filtration barrier or the glomerulus, Lerman et al. found the balance between pro- 

and antiangiogenic factors to be disturbed [43, 193]. CKD results from the progressive 

deterioration of renal microvasculature that leads to tubulointerstitial fibrosis and 

glomerulosclerosis [43, 193]. Both in vivo and in vitro studies have shown that endostatin 

expression may result in the rarefaction of renal microvasculature [194, 195]. In addition, 

Chen et al. found increased plasma levels of endostatin in patients with CKD and 

demonstrated a concentration-dependent relationship between the severity of CKD and 

plasma endostatin levels [196]. Although the causal relationship between endostatin levels 

and the risk of CKD is unknown, novel therapeutics that target endostatin may reduce the 

risk of developing CKD [196].

10. CONCLUSIONS AND PERSPECTIVES

10.1. CLINICAL APPLICATIONS OF ENDOSTATIN

Despite all the funding that has been allocated to studying endostatin in recent decades, we 

are still at the initial stages of determining potential clinical uses for endostatin in a variety 
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of diseases and disorders. Significant progress has been made in recent years to determine 

the important binding sequences of endostatin, and several research groups appear to be 

close to identifying the ideal small peptide with the greatest activity towards inhibiting 

angiogenesis. Understandably, the next step in endostatin-related research will focus on drug 

delivery and determining whether combinatory therapies can be more efficacious than 

endostatin monotherapy [227, 228].

10.1.1. ENDOSTATIN THERAPY AS AN INTERVENTION AGAINST 
ANGIOGENESIS—Almost two decades of research on endostatin has unraveled only 

some of its basic physiological functions in the regulation of different organ systems. Soon 

after the discovery of endostatin’s critical role in inhibiting angiogenesis, the pharmaceutical 

development of endostatin became the focus of much research [229]. However, the reality is 

that drug design for clinical use is not as simple and predictable as in vitro and in vivo 

research in the laboratory. We have also come to learn that endostatin’s role is more 

complex than we initially believed [230].

Endostatin, under the trade name Endostar, was approved for clinical use in China for the 

treatment of non-small-cell lung carcinoma in 2005, but unfortunately, human recombinant 

endostatin largely failed phase II clinical trials in the United States due to significantly low 

potency [7, 231]. One hypothesis to explain this failure in clinical trials in the United States 

is that the recombinant human endostatin (as shown in Figure 4) used in these trials did not 

contain the additional nine amino acids (MGGSHHHHH) present at the N-terminus of 

Endostar [157]. The His-tag added to the N-terminus of recombinant human endostatin 

increases its zinc-binding and may explain the improved stability achieved with Endostar 

[147].

A significant issue with Endostar in China has been compliance with the necessary dosage 

of intravenous therapy for 3–4 hours daily during a 14-day cycle [232]. More recently, 

combinatory therapy using standard chemotherapy and endostatin has shown better 

preliminary clinical outcomes with reduced side effects compared to endostatin or 

chemotherapy alone [233]. A short endostatin peptide that can overcome some of the issues 

of Endostar may have significant potential for treating angiogenesis- and 

lymphangiogenesis-related disorders when combined with current treatment plans. Although 

Endostar has not been approved in China for most of the cancers presented in Table 5, it has 

shown efficacy in clinical trials for breast cancer [234], prostate cancer [235], colorectal 

cancer [210], cervical cancer [205], and nasopharyngeal carcinoma [212].

Endostatin’s antitumorigenic effects vary depending on the dosage and target endothelial 

cell type. It demonstrates a biphasic antitumor dose-response, where high and low dosages 

are less effective than the established ideal dosage [236]. This behavior is common among 

many antiangiogenic agents, and the reduced effectiveness of antiangiogenic agents at high 

doses may be due to the suppression of new vessel growth that would potentially carry the 

agent to the critical region surrounding the tumor [236]. Endostatin has also been found to 

have different and sometimes opposite effects depending upon which cell type it is acting 

upon [237]. For example, Schmidt et al. reported that endostatin decreased proliferation of 

HUVEC, but increased proliferation in differentiated embryonic stem cells (eESC) with the 
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same dosage [237]. Thus, determining both the ideal dosage of endostatin and cell type that 

it will act on is crucial in improving clinical applications of endostatin.

Recently, Wang et al. found that endostatin may be used to reduce obesity and metabolic 

syndrome. From both in vitro and in vivo experiments, they concluded that that endostatin 

may be able to effectively reduce the risk of developing insulin resistance, hepatic steatosis, 

and glucose intolerance by inhibiting the pathway of adipogenesis [238]. Adipogenesis plays 

a crucial role in determining the metabolic profile, the number of adipocytes, and body 

weight in the homeostatic state [238].

Shariati et al. explored the therapeutic role of endostatin in a schistosomiasis murine model 

created through infection with the helminth Schistosoma mansoni [239]. Schistosomiasis is a 

disease associated with the formation of schisotosome granulomas that cause inflammation 

and induce angiogenesis in a wound healing response [239]. Mice infected with S. mansoni 

and subsequently treated with endostatin were examined and found to have a decreased 

number of adult worms, worm eggs in their livers, and granulomas present compared to 

infected mice that were not treated with endostatin [239]. These results indicate that 

endostatin is able to reduce the injury characteristic of schistosomiasis [239].

Because corneal transplantation is the most widely performed solid organ transplantation, 

developing a treatment to prevent graft rejection will be valuable [240]. Tan et al. found that 

endostatin can potentially be used to prevent corneal allograft rejection in vivo. They found 

that endostatin levels must remain elevated for either an allograft or syngeneic corneal graft 

to survive [221]. Hence, they recommend the possibility of monitoring endostatin levels to 

predict potential failure of corneal grafts [221]. Because the cornea is normally avascular, it 

is important to maintain the avascularity after transplant [241, 242]. Unfortunately, after 

transplantation, allospecific T cells enter the graft and destroy the endostatin-producing 

cells, resulting in the loss of immune privilege within the cornea and ultimately leading to 

corneal neovascularization [221, 243]. The loss of immune privilege and initiation of 

corneal neovascularization results in the infiltration of effector T cells and thus graft 

rejection [221]. By inhibiting both angiogenesis and maturation of T cells into effector T 

cells, immunological failure of transplantation may be prevented [221].

Although endostatin has not been approved for clinical use in the United States, there are a 

variety of diseases for which it has therapeutic potential based on in vivo models. Kojima et 

al. explained the potential of endostatin’s ability to treat disorders related to 

lymphangiogenesis, such as lymphedema [165]. Becker et al. and Zhang et al. used 

endostatin to treat endometriosis without affecting the estrous cycles in in vivo and in vitro 

models [151, 244]. Several disorders and diseases for which the therapeutic potential of 

endostatin has been demonstrated include melanoma [245], glioblastoma [246], 

fibroproliferative disorders [247], pancreatic cancer [248], non-Hodgkin’s lymphoma [249], 

retinoblastoma [250], hypertension [251], and renal cell carcinoma [252]; even more 

diseases are included in Table 5.

10.1.2. ENDOSTATIN MODIFICATION AND DELIVERY AS A DRUG—Endostatin’s 

anti-tumoral properties make it a very attractive therapeutic agent in the treatment of 
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cancers. The primary challenge in using endostatin as a drug is its short half-life in vivo, 

which makes it difficult and expensive to create large amounts of biologically active 

endostatin protein to maintain therapeutically active serum levels [253]. There are many 

different approaches used to improve the delivery of endostatin and its efficacy as a drug. N-

terminus PEGylation of endostatin, the covalent attachment of a polyethylene glycol (PEG) 

polymer, improves the half-life by 86% compared to non-PEGylated endostatin by 

protecting it from proteolysis and decreasing its renal excretion rate, which overall enhances 

its antitumor activity [254, 255]. To target endostatin to the tumor vascular endothelium, an 

RGD (Arg-Gly-Asp) sequence that is present in integrin ligands can be attached to the 

carboxy- or amino-terminus of endostatin [256]. When the RGD-motif is added to 

endostatin, there is an increase in the drug’s ability to attach to the endothelial cell surface 

and inhibit bFGF-induced endothelial cell proliferation and migration [256]. Another 

modification to endostatin is the addition of an iRGD (internalization RGD) sequence that 

allows endostatin to penetrate further into tumor tissue and increase its distribution volume 

in the tumor [257]. Fusing endostatin to the Fc region of IgG also increases its half-life from 

2 hours to more than 2 weeks, and the addition of zinc can even further decrease the Fc-

endostatin degradation [182, 258]. The use of nanoparticles for endostatin delivery allows 

for controlled drug release. Hu et al. attached Endostar to nanoparticles and observed an 

increase in Endostar’s half-life by 26 hours, decreased tumor growth rate and dosing 

requirements, and improved antitumor effects [259]. A limitation of many of these 

therapeutic strategies is that chronic treatment would require the administration and 

pharmaceutical production of large amounts of protein. Gene therapy offers an approach to 

overcome this obstacle by targeting endogenous long-term production and secretion of 

endostatin protein [260]. The endostatin DNA can be delivered through both viral and 

nonviral vectors. Previously employed viral vectors for endostatin gene therapy include 

adenovirus [261, 262], adeno-associated virus [164], lentivirus [263], retroviruses [264], and 

Semliki Forest virus [265]. Sauter et al. found that endostatin delivered through an 

adenovirus vector decreased Lewis lung carcinoma tumor volume by 78% [262]. Lee et al. 

reported a significant tumoricidal and anti-angiogenic activity with a nonviral Salmonella 

choleraesuis vector [266]. Two other nonviral vectors include polymerized plasmids and 

DNA cationic liposomes, which both inhibit the growth of primary tumors and metastatic 

lesions in mice [267–269].

10.1.3. ENDOSTATIN AS A BIOMARKER—Recent studies have proposed that 

endostatin may serve as a marker of prognostic value in some cancers. Because endostatin 

and VEGF are the primary regulators of angiogenesis, measurements of both may explain 

the balance between inhibition and stimulation of angiogenesis. Zhou et al. tested the utility 

of examining levels of endostatin to differentiate malignant pleural effusions from 

tuberculous pleural effusions, because both present with similar clinical manifestations that 

are difficult to distinguish [226]. Both endostatin and VEGF individually have particularly 

low sensitivities and specificities for diagnosing malignant pleural effusion, but 

measurement of the combination of VEGF and endostatin levels has a significantly greater 

sensitivity of 81% and specificity of 97% [226]. Thus, the diagnostic efficiency of using the 

combination of endostatin and VEGF may prove to be very valuable in clinical practice 

[225]. These studies further illustrate the roles and balance of both positive and negative 
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regulatory factors in tumor angiogenesis [5]. Studies have also indicated the potential of 

endostatin as a marker of prognostic value in hepatocellular carcinoma [197], bladder cancer 

[200], cervical cancer [204], colorectal cancer [208], nasopharyngeal carcinoma [211], 

bronchopulmonary dysplasia [219], pulmonary arterial hypertension [214], traumatic brain 

injury [217], intermittent claudication in peripheral vascular disease [270], benign vs. 

malignant ascites [271], Alzheimer’s disease [216], and chronic kidney disease [196].

10.2. FUTURE DIRECTIONS

A large number of preclinical studies using in vitro and in vivo models have produced 

several hypotheses to explain the relationship between the structure and activity of 

endostatin. Nonetheless, application of these mechanisms in the form of pharmaceuticals in 

clinical studies has proven difficult. We have outlined some of the shortcomings of using 

endostatin as a pharmaceutical in this review. Although endostatin’s functional role is no 

longer a ‘black box’, we are still only beginning to understand the plethora of receptors and 

mechanisms by which endostatin exerts its various activities. As discussed in this review, 

studies on endostatin’s role in lymphangiogenesis are limited, though we now understand 

that inhibiting lymphangiogenesis may be effective in the treatment of certain types of 

cancers. For the clinical use endostatin as a marker of prognostic value, we need to 

comprehensively explain and understand the mechanism of action of endostatin in the 

angiogenic or lymphangiogenic process of the particular disease. The only active study of 

clinical endostatin use in the United States is currently in phase I clinical trials for age-

related macular degeneration. Currently, most clinical trials of endostatin are being 

conducted in China. However, the single clinical trial on endostatin in the United States is 

not a reflection of our interest in targeting angiogenesis. In fact, more than 500 current 

clinical trials in the United States focus on targeting angiogenesis. Several research groups, 

including ours, believe that there still may be hope for the clinical utility of endostatin in the 

form of a short peptide, as a potential prognostic marker, or as part of combination regimens 

for the treatment of disease. A methodical approach to understanding the mechanisms by 

which endostatin inhibits angiogenesis and lymphangiogenesis will help identify the 

domains required for its activity.
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NC noncollagenous

COL collagenous

MMP matrix metalloproteinase

bFGF basic fibroblast growth factor

VEGF vascular endothelial growth factor

Walia et al. Page 19

Biochim Biophys Acta. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VEGFR vascular endothelial growth factor receptor

SPARC secreted protein acidic and rich in cysteine

TG-2 transglutaminase-2

mP mini peptide

ES endostatin

mEP mini endostatin peptide

HUVEC human umbilical vein endothelial cell
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Highlights

• Endostatin is located at the C-terminal end of type XVIII collagen

• Endostatin has anti-angiogenic, anti-lymphangiogenic and anti-tumorigenic 

activity.

• Other matrikines also exhibit anti-angiogenic and anti-tumorigenic activity.

• Various recently discovered receptors bind endostatin to induce widespread 

effects.

• Endostatin’s therapeutic potential as a short peptide or biomarker is promising.
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FIGURE 1. 
Schematic model of the α1 chain of human collagen XVIII. The human collagen XV α1 

chain is structurally homologous. They belong to a collagen subfamily, the multiplexins, on 

the basis of their central triple-helical domain (green boxes) interrupted by non-collagenous 

sequences. They contain an extended non-collagenous N-terminal domain, which, in 

collagen XVIII, can undergo alternative splicing (pale orange boxes), and a non-collagenous 

C-terminal domain (NC1; blue). The homotrimers (dark blue circles); a hinge domain (blue 

lines), which is highly susceptible to proteolytic processing; and a C-terminal endostatin 

domain (blue ovals), which has angiostatic properties. [Adapted from Iozzo [37] with 

permission from Nature Publishing Group.]
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FIGURE 2. 
The NC1 domain of type XVIII collagen can be cleaved into endostatin by cathepsin L, into 

neostatin-14 by MMP-14, and into neostatin-7 by MMP-7. [Adapted from Schenk et al. [99] 

with permission from Elsevier].
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FIGURE 3. 
Schematic illustration of distinct signaling pathways induced by rhTum and rhEndo. rhTum 

binds to αvβ3 integrin, whereas rhEndo binds to α5β1. Both rhEndo and rhTum inhibit 

phosphorylation of FAK (yellow). Downstream of FAK, rhTum inhibits PI3-K/Akt/mTor/

4EBP1 pathway, resulting in inhibition of endothelial protein synthesis and proliferation. 

MAP kinase pathways are not affected by rhTum. In contrast, inhibition of FAK activation 

by rhEndo binding to α5β1 integrin leads to inhibition of ERK1/p38 MAP kinase pathways 
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with no effect on PI3-K/Akt/mTOR/4EBP1 pathways, resulting in inhibition of endothelial 

cell migration. [Adapted from Sudhaker et al. [107]]
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FIGURE 4. 
Complete amino acid sequence of recombinant human endostatin. The sequences with 

improved activity compared to wild type, unmodified endostatin are highlighted and labeled 

according to the original study, as listed in Table 4.
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TABLE 1

Anti-angiogenic peptides released from collagen in basement membranes

Collagen
chain

C-terminal
domain

MW Function Reference

α1(IV) Arresten 26 kDa Inhibits endothelial cell proliferation and migration.
Suppresses tumor growth.
Stimulates apoptosis.

Colorado et al.[38]
Nyberg et al.[39]

α2(IV) Canstatin 24 kDa Inhibits endothelial cell proliferation and migration.
Suppresses tumor growth.
Stimulates apoptosis.

Kamphaus et al.[40]
Panka and Mier[41]

α3(IV) Tumstatin 28 kDa Inhibits endothelial cell proliferation.
Suppresses tumor growth.
Stimulates apoptosis.

Maeshima et al [42, 43].

α1(VIII) Vastatin 18 kDa Inhibits endothelial cell proliferation. Stimulates apoptosis. Xu et al [18].

α1(XV) Restin 22 kDa Inhibits endothelial cell migration. Suppresses tumor growth. Ramchandran et al [28].
John et al [29].

α1(XVIII) Endostatin 20 kDa Inhibits endothelial cell proliferation and migration.
Suppresses tumor growth.

Sasaki et al [32].

α1(XIX) NC1 domain 2 kDaa Inhibits endothelial cell migration. Suppresses tumor growth. Inhibits 
endothelial cell pseudotube formation.

Ramont et al [19].

a
Predicted using 19 amino acid sequence of type XIX collagen’s NC1 domain [19] with ProtParam [44]
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TABLE 2

Phenotypes of collagen knockout mouse models.

Collagen Knockout Model Phenotype References

Col4a1−/− Lethal by embryonic days 10.5–11.5. Poschl et al. [45]

Col4a2−/− Lethal by embryonic days 10.5–11.5. Poschl et al. [45]

Col4a3−/− A murine model for Alport’s syndrome. Cosgrove et al. [47]

Col15a1−/− Skeletal muscle degeneration, atrophy, and macrophage infiltration.
Increased vulnerability to exercise-induced injuries.
Irregularly shaped cardiac endothelial cells, cardiac hypotrophy, and increased 
myocardial stiffness.
Impaired peripheral nerve maturation.

Eklund et al. [49]
Rasi et al. [52]

Col18a1−/− Delayed hyaloid vessel regression with abnormal retinal vasculature.
Ocular defects, anterior eye abnormalities, ciliary body atrophy.
Abnormal loss in visual function with age.
Weakened kidney proximal tubule and podocyte effacement.
Hyperlipidemia.

Fukai et al. [66]
Hurskainen et al. [67]
Chang et al. [68]
Marneros and Olsen [69]
Ylikarppa et al. [70]
Marneros et al. [71]
Bishop et al. [72]
Kinnunen et al. [73]

Col15a1−/− × Col18a1−/− Phenotype similar to both Col15a1−/− and Col18a1−/− mice.
More severe hyaloid vessel detachment from retina than in either Col15a1−/− or 
Col18a1−/− mice.

Ylikarppa et al. [74]
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TABLE 3

A summary of the receptors that endostatin binds to and its subsequent effects.

Location Effects of Endostatin Binding References

Receptor

VEGFR-2 (flk-1/KDR) Blood vessel and lymphatic 
vessel surface

Inhibits angiogenesis by competitively inhibiting 
VEGFR-2.
Prevents VEGF-C induced ERK/p38/MAPK signaling 
cascade.

Pedram et al. [101]
Kim et al. [102]

VEGFR-3 (flt-4) Lymphatic vessel surface Inhibits lymphangiogenesis via direct and indirect 
mechanisms.

Han et al. [104]

Integrin α5β1 Cell surface Disrupts cell migration.
Causes integrin α5β1 to cluster and associate with 
caveolin-1.
Causes phosphorylated Src to associate with caveolin-1 
and disrupt focal adhesion factor and actin stress fibers.
Hypothesized to prevent mast cells from binding to 
fibronectin.

Wary et al. [113]
Gille et al. [135]
Rehn et al. [108]
Wickstrom et al. [111]
Sudhakar et al. [107]
Morais et al. [112]
Brideau et al. [136]

Integrin αVβ3 Cell surface Inhibits angiogenesis.
Hypothesized to prevent mast cell from binding to 
vitronectin.

Rehn et al. [108]
Brideau et al. [136]

Glypican-1 and -4 Blood vessel surface Binding is necessary for endostatin to bind to its high-
affinity receptor to elicit anti-angiogenic effects via 
unclear mechanism.

Karumanchi et al. [114]
Reis et al. [116]

Cell Surface-Associated Protein

Thrombospondin-1 ECM Upregulates thrombospondin-1 expression Abdollahi et al. [119]
Faye et al. [117]

SPARC ECM Unknown mechanism. Abdollahi et al. [119]
Faye et al. [117]

Endorepellin Blood vessel surface Endorepellin inhibits endostatin’s anti-angiogenic 
activities, but carries out its own anti-angiogenic 
properties.

Miosge et al. [121]
Mongiat et al. [120]

Transglutaminase-2 Blood vessel surface Unknown mechanism. Dardick [125]
Faye et al. [117]
Faye et al. [123]

Biglycan ECM Prevents biglycan LDL retention and atheroma formation. Zeng et al. [127]

Amyloid Peptide Brain Implicated in Alzheimer’s disease. Deininger et al. [128]
Kranenburg et al. [129]
Faye et al. [117]

Nucleolin Nucleolus Inhibits cell migration and tube formation. Srivastava et al. [137]
Huang et al. [132]
Shi et al. [134]
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TABLE 4

Activity and origin of short endostatin peptide fragments.

Peptide Name Endostatin
Residuesa

Activity 
compared
to wild type,
unmodified
endostatinb

Origin Reference

H5 31–140 +14% C- and N-terminal ends removed from human endostatin. Cho et al. [146]

A-I 6–49 +24% Human endostatin protein divided into 4 synthetic peptides. Cattaneo et al. [150]
Chillemi et al. [155]

A-II 50–92 No activity

A-III 93–133 No activity

A-IV 134–178 +16%

mP-1 1–27 +27% Murine endostatin sequence was used to split the endostatin 
protein into 8 synthetic peptides with overlapping segments of 
the sequence.

Becker et al. [151]
Tanabe et al. [152]

mP-2 23–47 −59%

mP-3 45–69 −43%

mP-4 67–91 −31%

mP-5 89–113 −55%

mP-6 11–134 +19%

mP-7 135–159 −12%

mP-8 157–184 −48%

ES-1 23–34 −44% Crystal structure of human endostatin protein was used to 
divide the sequence into 5 synthetic peptide fragments.

Wickström et al. [153]

ES-2 60–70 +8.7%

ES-3 99–111 −56%

ES-4 127–139 −27%

ES-5 171–183 −56%

mEP N/A +55% 27 amino acid endostatin peptide from C-terminal endostatin 
sequence.

Han et al. [104]

mEP-CA N/A No activity Cysteine residue on mEP is substituted for alanine.

mEP-AC N/A No activity Different cysteine residue from mEP-CA is substituted for 
alanine in mEP.

mEP-AA N/A No activity Both cysteine residues are substituted with alanine on mEP.

a
The endostatin residues are numbered from N-terminus to C-terminus in human endostatin,

b
Activity reported when available as percentage change from wild type, unmodified endostatin where a positive value is improvement in activity 

and a negative value is a reduction in activity
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