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Abstract

Although most decision research concerns choice between simultaneously presented options, in 

many situations options are encountered serially and the decision is whether to exploit an option or 

search for a better one. Such problems have a rich history in animal foraging but we know little 

about the psychological processes involved. In particular, it is unknown whether learning in these 

problems is supported by the well studied neurocomputational mechanisms involved in more 

conventional tasks.

We investigated how humans learn in a foraging task, which requires deciding whether to harvest 

a depleting resource or switch to a replenished one. The optimal choice (given by the Marginal 

Value Theorem; MVT) requires comparing the immediate return from harvesting to the 

opportunity cost of time, which is given by the long-run average reward. In two experiments, we 

varied opportunity cost across blocks. Subjects adjusted their behavior to blockwise changes in 

environmental characteristics. We examined how subjects learned their choice strategies by 

comparing choice adjustments to a learning rule suggested by the MVT (where the opportunity 

cost threshold is estimated as an average over previous rewards) and to the predominant 

incremental learning theory in neuroscience, temporal-difference learning (TD). Trial-by-trial 

decisions were better explained by the MVT threshold learning rule.

These findings expand on the foraging literature, which has focused on steady-state behavior, by 

elucidating a computational mechanism for learning in switching tasks that is distinct from those 

used in traditional tasks, and suggest connections to research on average reward rates in other 

domains of neuroscience.

Introduction

Extensive research in neuroscience, psychology, and economics concerns choice between a 

number of simultaneously presented alternatives, as in economic lotteries, “bandit” 

problems, and choice between concurrent schedules in operant conditioning (Krajbich et al., 

2010; Tom et al., 2007; Hampton et al., 2006; Frank et al., 2004; Behrens et al., 2007; Hare 

et al., 2011; Barraclough et al., 2004; Herrnstein, 1961; Baum, 1974; Herrnstein, 1991; 

Sugrue et al., 2004). In such problems, attention has centered on a hypothesized neural 

mechanism for learning an estimate of the value of different options (Schultz et al., 1997). 
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More recently, there has been increased interest in neuroscience in a different class of 

decision problems, in which alternatives are not compared simultaneously but are instead 

considered serially (Hayden et al., 2011; Hutchinson et al., 2008; Jacobs and Hackenberg, 

1996; Wikenheiser et al., 2013; Kolling et al., 2012; Cain et al., 2012). The relevant decision 

in this class of problems is whether to engage with a current option or search for a better 

one. Such switching or stopping problems arise in many real-world settings, such as 

employment (whether to accept a job offer or candidate), internet search, mate selection and 

foraging, and have a rich theoretical and experimental history in ethology, ecology and 

economics (Charnov, 1976; Kacelnik, 1984; Freidin and Kacelnik, 2011; McCall, 1970; 

McNickle and Cahill, 2009; Smith and Winterhalder, 1992; Stephens and Krebs, 1986).

Decisions of this sort pose a dilemma for the widely studied neurocomputational 

mechanisms of choice, which largely center on comparing estimated values across available 

alternatives (Rangel et al., 2008; Rustichini et al., 2008), as well as for the related 

psychological mechanisms of matching and melioration in operant choice (Herrnstein, 1961; 

Baum, 1974; Herrnstein, 1991), which also require balancing time among multiple 

alternatives. If the alternatives are not directly known at choice time, to what alternative 

value should the current option be compared when deciding whether to accept it or when to 

leave it? And how is this more nebulous expected value or aspiration level learned, adjusted, 

or optimized from previous experience? Predominant theories of choice in the ethological 

foraging literature suggest quite different answers to this learning question (McNamara and 

Houston, 1985; Bernstein et al., 1988; Charnov, 1976; Stephens and Krebs, 1986) than 

would be provided by standard neurocomputational theories of learning (Sutton, 1988; 

Sutton and Barto, 1998).

The ethology literature has considered a class of stylized switching tasks modeling foraging 

problems, in which an animal encounters a series of depleting “patches” of resources and 

must decide whether to spend time exploiting the current patch or instead allocate that time 

towards seeking a new, replenished one. In such tasks, it has been proved (the Marginal 

Value Theorem; MVT; Charnov, 1976) that the reward rate-maximizing choice of whether 

to stay or search at each step simply requires comparing the current option’s immediate 

reward to a threshold given by the opportunity cost of the time spent engaging with it. The 

opportunity cost of time is given by the long-run average reward per timestep – a measure of 

the overall environmental richness that is foregone by harvesting. Whenever you expect to 

earn less than this quantity, you would be better off doing something else. The MVT thus 

poses an answer to the question of how to value the nebulous alternative of searching: 

equate it with the overall average reward rate.

Although the MVT concerns a steady-state choice policy, at the trial-by-trial level it 

suggests an extremely simple learning rule for deriving that policy by trial and error: 

estimate the long-run reward rate by a recency weighted average of received rewards over 

time and use this quantity as a dynamic aspiration level against which to accept or reject the 

current option (Charnov, 1976; McNamara and Houston, 1985; Krebs and Inman, 1992; 

Ollason, 1980; Stephens and Krebs, 1986). Variants of this simple model have been 

suggested in the ethological foraging literature, which finds that bees and starlings use 

dynamically adjusting threshold estimates to inform their search decisions (Cuthill et al., 
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1990; McNamara and Houston, 1985; Krebs and Inman, 1992; Hodges, 1985; Ollason, 

1980). Although, as discussed below, this model is quite distinct from common theories of 

reinforcement learning in the brain, it suggests close connections with a number of other 

disjoint phenomena in neuroscience, which also turn on the average reward as the 

opportunity cost of time, including response vigor (Niv et al., 2006; Niv et al., 2007; 

Guitart-Masip et al., 2011; Beierholm et al., 2013) and temporal discounting (Cools et al., 

2011; Daw and Touretzky, 2002; Kacelnik, 1997). These connections relate the simple 

average reward rate learning in foraging to the suggestion that this rate may be tracked and 

signaled by tonic levels of the neuromodulator dopamine (Niv et al., 2007; Niv et al., 2006).

An alternative hypothetical approach to learning in the foraging problem is to ignore its 

special structural features and instead treat the problem of learning the value of searching for 

a new option as equivalent to any other case of action value learning. This requires 

extending the notion of an action’s value to encompass the (non-immediate) value of 

seeking new, sequentially encountered options. Accordingly, much research in neuroscience 

has focused on the temporal difference (TD) learning algorithm, an incremental update rule 

that learns, via a series of recursive backups “chaining” rewards to earlier predictors, to 

estimate the cumulative future reward associated with different actions in different 

circumstances (Sutton, 1988; Sutton and Barto, 1998).

There is considerable neural and behavioral support for TD learning in humans and other 

animals, notably in recordings from midbrain dopaminergic neurons, whose phasic 

responses quantitatively match the prediction error signal used in TD learning (Schultz et al., 

1997; Montague et al., 1996; Houk et al., 1995). A key feature of the TD rule is that it 

assigns value to the different options; however, unlike in the classic operant conditioning 

theories, this value is defined as cumulative future return following a choice. In this way, 

these models extend choice among options to sequential decision tasks, in which current 

choices affect future choices and the optimal solution requires considering the 

interdependent consequences of a series of decisions on the cumulative reward ultimately 

achieved. Importantly for the foraging task – since the value of switching is the deferred 

consequences of harvesting at subsequent patches – this feature allows treating the nebulous 

expected value of switching to an unknown option in the same way one learns the value of 

known options. TD learning applied to these problems incrementally updates estimates of 

the cumulative expected future reward associated with each local stay or switch option and 

compares these estimates to choose an action.

In this article we investigate these hypothesized learning rules for serial decision problems 

by examining human behavior in two sequential patch-foraging experiments. By varying the 

characteristics of the reward environment (and thus the opportunity cost of time) across 

blocks, we were able to compare these different accounts of how organisms learn in such 

tasks. We started by considering the asymptotic strategies. These two learning approaches 

arrive at the same optimal policy (assuming equivalent choices about parameters such as 

time discounting or risk sensitivity) and thus make equivalent predictions about asymptotic 

switching behavior in the different environments. These predictions have been tested 

extensively in animals (Charnov, 1976; Kacelnik, 1984; Freidin and Kacelnik, 2011; 

McNickle and Cahill, 2009; Stephens and Krebs, 1986) and more rarely in humans (Kolling 
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et al., 2012; Hutchinson et al., 2008; Jacobs and Hackenberg, 1996). Next, we examined the 

choice adjustments visible in the trial-by-trial dynamics. Because these approaches learn 

different decision variables (average one-step rewards vs expected cumulative rewards) by 

different learning rules, they predict different path dynamics to reach the same asymptotic 

strategy.

For instance, according to the MVT strategy, an unusually large reward (e.g., a lucky 

harvest) increases the estimated average reward rate, and thus should directly and 

immediately raise the leaving threshold, favoring exit. In contrast, TD learns about the value 

of actions when they are chosen. Here, the long-run value of exiting is estimated indirectly, 

via chaining. When exit is chosen, the value of exiting is updated according to the expected 

value of the new tree one encounters; this value was in turn learned from the rewards 

received from previous stay decisions. The effect of an individual lucky harvest, on this 

theory, thus first affects the vaue of “stay” – increasing the chance of staying the next time 

the same tree state is encountered – and only later, through a series of further updates, 

propagates to increase the value of exiting. Differences of this sort capture the two distinct 

strategies for how the models search for the optimal policy - by estimating the local cost of 

time vs. the long-run value of switching - and allow us to compare the two learning models 

(and some plausible variants) in terms of how well they fit the trial-by-trial fluctuations in 

choice behavior.

The results suggest that learning in patch-foraging problems implicates a distinct 

computational mechanism from those that have been successful in more traditional choice 

problems. This additional mechanism may be broadly applicable to many decisions that can 

be framed as switching or stopping problems, and suggests links between choice and other 

behavioral phenomena such as response vigor.

Methods

Subjects

52 healthy subjects (age 19–35; 33 female) participated in the study: 11 in experiment 1a, 11 

in 1b and 30 in experiment 2. Subjects were paid based on performance in the task ($15–

$22). The study was approved by the Institutional Review Board of New York University.

A small number of subjects showed a qualitatively different response strategy (nearly 

always choosing the “harvest” option, even down to zero apples), and were excluded from 

all analyses. Specifically, we excluded subjects who had a mean number of harvests per tree 

that fell more than 2.3 standard deviations (99% quantile) above the group mean; this 

included one subject from experiment 1B and 3 subjects from experiment 2. Although these 

subjects were excluded out of caution, their inclusion or exclusion does not appreciably 

affect the learning analyses depicted in Figure 3. One subject was additionally excluded 

from experiment 2 due to a problem with the instructions. Thus, all results reported here 

concern 11, 10, and 26 subjects from Experiments 1A, 1B and 2, respectively.
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Experimental Design and Task

Subjects performed a virtual patch-foraging task: a discrete-trial adaptation of a class of 

tasks from the ecology literature (Cuthill et al., 1990; Hayden et al., 2011; Charnov, 1976; 

Stephens and Krebs, 1986). On each trial, subjects were presented with a tree and had to 

decide whether to harvest it for apples or go to a new tree. Subjects indicated their choice by 

one of two key presses when prompted by a response cue. If they decided to harvest the tree 

they incurred a short harvest time delay, during which the tree shook and the harvested 

apples were displayed (as an integer number of apple icons plus a fractional apple icon for 

the remainder), followed by a response cue. As the subject continued to harvest apples at the 

same tree, the apples returned were exponentially depleted.

If the subject chose to go to a new, replenished tree, they incurred a travel time delay, during 

which the old tree faded and moved off the screen while a new tree moved on to the screen, 

followed by a response cue. Trees were never revisited; each new tree had never been 

harvested and its starting quality was correlated with subsequent outcomes (and thus 

signaled the quality of the overall tree) in experiment 2 and uncorrelated in experiment 1. 

The total time in the game was fixed and each choice’s reaction time was counted toward 

the ensuing harvest or travel delay. (Subjects who responded too slowly were penalized by a 

timeout lasting the length of a single harvest trial.) Thus, subjects visited a different number 

of trees depending on their harvest decisions, but apart from timeouts (which occurred on a 

negligible 1.7% of trials) they were able to influence the reward rate only through their 

harvest or leave choices, not their reaction times. This design ensured that the optimal 

choice policy was invariant to the speed of responding.

Subjects experienced four foraging environments in a counterbalanced block design. The 

decision-relevant parameters that define an environment are the harvest time, the travel time, 

the rate at which apples were depleted and the tree quality distribution. By varying travel 

time and depletion rate across blocks, we produced environments that differed in terms of 

richness, with some having a higher achievable average reward rate than others.

The environment changed every 14 minutes and this was signaled by a change in 

background color and a short message. Subjects were not instructed about the type of 

environment they were entering or what aspects of the environment had changed. They were 

also not told the form or rate of the depletion or the exact duration of a foraging environment 

but were informed that they would have a fixed and equal time in all four environments and 

that the experiment would last approximately one hour, that trees could never be revisited, 

that new trees had never been harvested and were a priori identical, and that harvesting a 

tree would tend to return fewer apples over time. They were told that they would be paid a 

half-cent for every apple collected and that they should try to collect as many apples as 

possible.

Experimental parameters—Each foraging environment is defined by the average initial 

tree richness S0, the average depletion rate per harvest κ, the travel time d and the harvest 

time h. We denote the state (current expected harvest) of a tree at trial i as si.
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In experiments 1A and 1B, each travel decision led to a new tree that was initialized to the 

same value, si = S0. Each harvest decision depleted the tree’s state by a fixed multiplicative 

decay κ, such that si+1 = κsi. The reward ri returned for harvesting a tree with state si was 

distributed as (si, si · σr). Across environments, the proportional variance of the rewards 

was chosen such that the probability of the next observed reward falling more than one 

depletion rate from the current reward was 20 percent (P(ri < κsi) = 0.2). We varied travel 

time d or depletion rate κ across blocks in experiment 1A and 1B, respectively, to create 

high and low average reward rate foraging environments. Subjects encountered both 

environments twice in alternation, with counterbalanced orders ABAB or BABA.

The noise process in experiment 2 was changed in order to decorrelate a counting based 

policy rule from one explicitly based on observed rewards. In this setup, new trees were 

initialized with a state of variable quality: si ~ (S0, σs) and the decay factor applied after 

each harvest was stochastically drawn, κi ~ (κ, σκ). This creates an effective distribution 

of different quality trees with different possible reward paths through the trees. The reward 

for each harvest was a noiseless reflection of the state of the tree, ri = si. We crossed two 

levels of depletion rate with two levels of travel time, resulting in four environment types. 

Subjects encountered each environment type once and the orders were counterbalanced in 

order to achieve an approximately equal number of subjects encountering short or long 

travel delays and steep and shallow depletion rates in the first block.

The parameters for the experiments are shown in Table 1.

The Marginal Value Theorem & optimal behavior

Charnov (1976) proved that the long run reward-rate optimizing policy for this class of tasks 

is given by a simple threshold rule. In the context of our discrete-trial version of the task, the 

optimal policy is to exit a tree when the expected reward from one more harvest, κsi, drops 

below the opportunity cost of the time that would be spent harvesting it. The opportunity 

cost of harvesting is the time it takes to harvest, h, times the long-run average reward rate, ρ. 

Note that in both experiments, the state si of a tree is observable: in experiments 1A and 1B 

it depends only on the number of times the current tree has been harvested (for a tree 

harvested n times si = κn−1S0) and in experiment 2 it is equal to the received reward (si = ri).

A sketch of the MVT proof for our setting is to consider the differential (average reward) 

Bellman equation for the task (Puterman, 2009). The future value of exiting, Q*(si, exit) = 

Q*(exit), is independent of the state; the value of harvesting is

where si+1 is the state produced by harvesting in state si. One should exit when Q*(si, 

harvest) < Q*(exit). Substituting the value of Q*(si, harvest) into this inequality and noting 

that if exit is optimal at t (i.e. if the inequality is satisfied), then the action ai+1 that 

maximizes the continuation value Q* at the next state will also be exit (this is because trees 

decay monotonically1), results in the following exit rule:
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which can be simplified to [ri+1] < ρh, where [ri+1] = κsi

Dependent variable & threshold estimates

Gross, tree-level threshold estimates—In experiments 1A and 1B, the trees’ state is 

discretized and the optimal decision rule can be expressed equivalently as a threshold on the 

integral number of harvests or on the (real-valued but still quantized) expected reward. To 

examine behavior and its optimality in units of reward, we estimated a subject’s leaving 

threshold per block as the across-tree average number of expected apples at exit, i.e. κn−1S0, 

for a tree exited after n harvests. The optimal threshold to which we compare these 

blockwise estimates is given by the expected number of apples received after n* harvests, 

where n* is the number of harvests that optimizes the total average reward rate.

In experiment 2, the trees’ state is not discretized, so we estimate the subject’s exit threshold 

as the average of the last two rewards ri and ri−1 received before an exit decision. These 

rewards represent an upper and lower bound on the (continuously valued) threshold, 

respectively, since exiting at i implies that κri is lower than the subject’s threshold and not 

exiting in the preceding decision implies that κri−1 was greater. The corresponding optimal 

threshold is ρh/κ, since [ri+1] = κsi.

For Figures 2c and 2f (the scatterplots), to visualize compliance with the MVT threshold 

condition κsi = ρh, we plotted for each subject and block the total number of apples obtained 

in the block divided by the total length of the block in periods h(ρh), against the expected 

next reward at exit (κ times si, where the threshold si was taken as the average of rewards 

ri−1 and ri preceding each exit, further averaged over all trees in the block, since the MVT is 

expressed for both experiments in terms of the continuously valued threshold).

Trial-by-trial choices—We can also model the trial-by-trial decisions using a logistic 

regression. In particular, we assume subjects make noisy harvest-or-exit choices ai 

according to a logistic choice rule of the form:

for some block-specific threshold (intercept) ck, trial and block specific explanatory variable 

κksi, and logistic weight (akin to a softmax inverse temperature) β. For a given environment 

with average reward rate ρk, the MVT predicts that ck = −βρkh, resulting in a stochastic 

(logistic decision noise) version of the optimal policy. We estimated the parameters of this 

model (the thresholds ck and temperature β) for each subject. The dependent variable was 

the binary choice ai on each trial and the explanatory variables were the reward expected 

1This is not strictly true in Experiment 2, where there is a small chance that κi > 1; however this does not appreciably impact the 
optimal policy.
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from harvesting on each trial, computed using the block-specific depletion rate, κksi, and 

four block-specific indicators corresponding to ck.

This model defines a likelihood function over the sequence of choices, allowing us to use 

Bayesian model comparison to contrast different explanatory variables corresponding to 

different rules for estimating the state si of the tree. In particular, to compare counting-and 

reward-based strategies in experiment 2, we tested whether the choices were better fit by 

assuming  (the number of harvests, expressed in units of reward) or si = ri (the 

most recent received reward, which is the actual state of the tree in experiment 2). We used 

the Bayesian information criterion (BIC) to estimate the marginal likelihood of each model 

given the data and submitted these values to the SPM_BMS function from SPM version 8 to 

compute exceedance probabilities (Stephan et al., 2009).

Learning

MVT Learning Model—The optimal policy from the MVT is to harvest whenever the 

immediate expected reward is greater than the average reward: κsi ≥ ρh. Note that the 

appearance of the fixed harvest time h and the expected depletion rate κ in this equation are 

artifacts of the discrete-trial/discrete-time structure of our task; they do not appear in the 

MVT for a more classic continuous-time foraging task, like fishing, in which the agent can 

exit a patch at any instant. Thus, to execute this policy exactly, the subject must have an 

estimate of both quantities. We assume the fixed harvest time h (which is easily observed) is 

known, or equivalently that subjects learn ρ in units of reward per harvest period and that 

subjects estimate κ with a simple within-block running average of experienced depletion 

rates over adjacent harvests.

The MVT motivates a simple threshold learning model that requires specifying a learning 

rule for ρ and deciding whether to harvest by comparing the two sides of the MVT equation, 

κsi and ρh (Table 2). We implement this comparison stochastically using a logistic 

(softmax) rule on the difference κsi − ρh, with inverse temperature β and intercept c. The 

decision maker’s trial-by-trial estimate of ρ is constructed by a standard delta rule with 

learning rate α, taking into account the time τi = h or d of each choice step.

At the beginning of the experiment, the depletion rate was initialized to 1 and the average 

reward rate ρinit to the average across the experiments of the reward rates attained by an 

ideal observer. Fitting the initial condition as an additional free parameter, in both the MVT 

and TD models, did not appreciably affect the results; results not shown. In subsequent 

environments, the initial average reward rate estimate was taken as the last ρ estimate in the 

previous environment.

TD Learning Model—The TD algorithm learns the expected future discounted reward of 

continuing at each state Q(s, harvest) and a value of exiting Q(s, exit) = Q(exit) that is not 

state specific (Table 3). (Note that maintaining separate, state-specific values for exiting 
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would only slow the learning of the task and accentuate the underperformance of TD. 

Furthermore, this assumption seems natural since subjects are told they can exit a tree on 

any trial and that this will lead to a new, randomly drawn tree.) The choice is taken to be 

logistic (softmax) in the difference between these values, with inverse temperature β and 

intercept c. The action values are incrementally updated by temporal-difference learning.

This model has four parameters – the same three as MVT and an additional discount factor 

γ, which ensures that the infinite horizon cumulative future rewards are finite. For states si 

we use the actual state of the tree as defined by the experiment specifications. Thus, the state 

si is discrete in experiment 1 and is given by the number n of previous harvests at the current 

tree, whereas the state in experiment 2 is the most recently observed reward ri, a continuous 

variable. In order to implement the update rule in this case, we approximate the value 

function by a linear combination of functions that are constant over predefined bins. To 

match the discretization of the state to the true exponentially depleting dynamics of the trees, 

the bins were logarithmically spaced and the width was chosen so that on average each 

subsequent harvest falls in a subsequent bin. More precisely, if bj, bj+1 are the lower and 

upper bounds of the jth bin, respectively, and κ̄ is the average depletion across the 

environments, the bins were spaced according to log(bj+1) − log(bj) = −logκ̄. At the 

beginning of the experiment, the starting values for Q(s, harvest) and Q(exit) were initialized 

with a constant for all s, equal to the discounted sum of rewards associated with earning ρinit 

on average, . This starts the algorithm in the approximate range of the correct Q values, 

given a discount factor of γ and the same initial guess for the long-run reward rate as the 

MVT learning algorithm. In subsequent environments, the Q values are initialized to the Q 

values at the end of the previous block.

Note that both models were given explicit knowledge of the delays (h, t).

We fit the free parameters to each subject’s choices separately using maximum likelihood, 

and used these likelihoods to compute per-subject BIC scores as a measure of model fit. We 

used SPM_BMS to compare the models.

Variants of TD—In addition to the standard TD learning algorithm, we also compared the 

performance of two TD variants: TD(λ), which improves the efficiency of the algorithm by 

allowing faster back propagation, and R-learning, an undiscounted, average reward 

reinforcement learning model (Sutton, 1998; Schwartz, 1993). TD(λ) allows learning to 

immediately back propagate not just one step but through many preceding states by the 

introduction of an exponentially decaying eligibility trace (Table 4). The decay rate of the 

eligibility trace is governed by an additional free parameter λ, where λ = 0 is the one-step 

back up of the standard TD model presented above.

R-learning aims to optimize the average reward per time step rather than the cumulative 

discounted reward, and so asymptotically it implements the same strategy as MVT. It 

produces this behavior in a different manner, however, as it uses a TD algorithm to learn a 

different notion of state-action value appropriate to this goal: the expected undiscounted 

cumulative average-adjusted reward. In this model, rewards are measured relative to the 

long-run average reward per timestep, a stateless quantity that is separately learned 
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according to an additional learning rate parameter α2. The full R-learning algorithm is 

presented in Table 5.

In both of these variants, the state-space and initialization were the same as in standard TD. 

In R-learning, the average reward term was initialized as in MVT-learning.

Over-harvesting—The intercept in the learning models above can capture a fixed policy 

bias, early or late exiting relative to the optimal exit threshold. However, plausible factors 

that might underlie the observed tendency toward over-harvesting include temporal 

discounting and decreasing marginal utility for money (one way of parameterizing risk-

sensitive preferences). Decreasing marginal utility (sublinear increases in the value of each 

additional unit of money, which produce risk-averse choices in gambling tasks; Bernoulli, 

1954) results in increased harvesting relative to a linear utility, since the larger rewards at a 

replenished tree are worth proportionally less. To test whether decreasing marginal utility 

captured this tendency, we fit the MVT model with a power-function utility on rewards 

( ), which affects both the expected next reward and the average reward rate, and 

looked at the effect this had on the intercept term estimate using an across subjects t-test. To 

examine discounting, we were constrained to the TD algorithm since there is no discounted 

equivalent of the MVT model. We again ran an across-subjects t-test on the intercept 

estimate to test whether deviations from optimal were fully captured by the discount 

parameter.

Results

Across two experiments, we presented human subjects (n=47) with foraging environments 

that varied in richness, as measured by the maximally achievable average reward rate, across 

a series of blocks (see Figure 1 and Methods). At each step of the task, subjects were 

presented with apples earned from the last harvest at the current tree and had to decide 

whether to continue harvesting or switch to a new, randomly drawn tree. Harvesting caused 

trees to deplete — each successive harvest earned fewer apples, on average — but traveling 

to a new, replenished tree cost additional time. Apples were converted to money at the end 

of the experiment.

Environmental richness was manipulated by changing the travel delay between trees 

(experiment 1A), the tree depletion rate (experiment 1B) or both factors simultaneously 

(experiment 2). All else held constant, a longer travel delay or a steeper depletion rate 

reduces the rate at which apples can be earned. This reduces the opportunity cost of time 

spent harvesting and leads an ideal forager to harvest a tree down to a lower number of 

apples. Accordingly, the MVT states that the optimal policy for this class of tasks is to 

abandon a tree when the expected marginal intake from one more harvest falls below the 

overall average reward rate of the environment (see Methods; Charnov, 1976; Stephens and 

Krebs, 1986). The characteristics and richness of the environment were a priori unknown by 

the subject and had to be learned through experience.
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Experiment 1

Each subject completed four 14-minute task blocks that alternated between high and low 

travel delay (experiment 1A, n=11) or depletion rate (experiment 1B, n=10) in 

counterbalanced order. The number of apples earned for each harvest was drawn randomly 

around an underlying average, which decayed exponentially with harvests in a manner that 

was deterministic and identical across trees. Thus, the expected reward for a harvest was a 

function of the number of times the tree had already been harvested. Subjects made an 

average of 611 harvest-or-exit decisions and visited an average of 103 trees.

First, we asked whether subjects’ overall strategies were modulated by environmental 

richness in the manner predicted by the optimal analysis. The optimal rule compares the 

expected reward for a harvest to a threshold; in Experiments 1A and 1B, the expected 

reward from harvesting is a function of the number of times the current tree has been 

harvested. Therefore, as an indicator of subjects’ exit thresholds, we considered the number 

of times each tree was harvested and expressed this quantity in units of the equivalent 

expected apple reward at the final harvest (Figure 2b.). Comparing the empirical thresholds 

to the values predicted under optimal switching, we found a tendency across all conditions 

to harvest longer (i.e. exhibit a lower exit threshold) than optimal but this was only 

significant in the long travel time condition (t9 = −2.3, p = .045, all other environments p > .

1). Next, comparing thresholds within-subjects and across blocks to examine whether, 

notwithstanding any over- or under-harvesting, subjects adjusted to changing reward rates in 

the optimally predicted direction, we found that subjects indeed harvested to lower 

thresholds in lower-quality environments: (paired t-tests across subjects, t10 = 5.7, p < .001 

for travel delay; t9 = 5.1, p < .001 for depletion) with almost every subject adjusting in the 

predicted direction. These results suggest that subjects behave in a way qualitatively 

consistent with the MVT, though potentially with a slight bias to over-stay.

Another way to visualize compliance with the optimal policy is to consider overall earnings. 

The points in Figure 2c. show the obtained average reward for each subject and environment 

pair plotted against their empirical average exit thresholds. The dotted line shows the MVT 

prediction (where the threshold equals the average earnings), and the step function shows 

the achievable average reward per period as a function of different possible fixed exit 

thresholds in each environment. Subjects cluster around the MVT threshold, but with a 

tendency to lie to the left (reflecting overharvesting) and below the reward expected if the 

mean exit strategy had been executed consistently (implying variation in the strategy over 

the block, which is apparent in the individual subject data shown in Figure 2a.). 

Accordingly, subjects earned on average $17.9 ± 1.4 (mean ± SD), which represents a −10% 

loss on optimal earnings. In addition to comparing earnings to an upper bound given by the 

optimal strategy, it can be useful to situate them relative to a lower benchmark, given by 

random stay-or-exit responding according to a coin flip at each decision. To be conservative, 

we define this “random” policy generously by optimizing the weight on the coin to 

maximize earnings in each environment. The best such constant hazard rate policy deviates 

from optimal by −33%.
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Learning & trial-by-trial choices—Next, rather than considering overall blockwise 

measures of thresholds and earnings, we examined trial-by-trial choices using models to 

explain the series of stay-or-exit decisions in terms of time series of candidate decision 

variables. Since subjects were not explicitly informed about the parameters of the 

environments, their ability to systematically adjust their exit thresholds between 

environments must reflect learning. Choice adjustments due to learning may also help to 

explain the substantial within-block dynamics of the exit strategies (as in the individual raw 

data shown in Figure 2a.). We compared the fits of two qualitatively different candidate 

models.

The first is a learning rule that has been suggested in the foraging literature and is based 

directly on the MVT policy: a stateless model in which subjects simply estimate the long-

run average reward per timestep by taking a recency-weighted average over observed 

rewards. An exit decision occurs when the expected reward for harvesting drops below this 

opportunity cost estimate (McNamara and Houston, 1985; Krebs and Inman, 1992). An 

alternative model, the Q-learning algorithm, instead learns a state-action value function, 

which represents the cumulative future expected value of harvesting or leaving a tree at each 

state (where the state is given by the number of previous harvests on a tree). These action 

values are compared in each state to reach a decision (Watkins, 1989).

While TD methods like Q learning are more general and learn the full value function, which 

is required for optimal performance in many sequential decision tasks, MVT learns a 

summary variable that is sufficient for optimal choice in this class of tasks (see Methods). 

Learning these different decision variables results in different trial-by-trial choice 

adjustments. Generally, the two algorithms differ in how individual experiences affect future 

choices over the entire state space of the task. Whereas the MVT updates a single threshold 

(and the behavioral policy) at each observation, TD maintains a set of state-action values 

specifying the appropriate behavior for each step in the tree. These values are more difficult 

to learn, both because there are many of them and because they represent a prediction about 

long-run cumulative future reward, which is updated only locally via a process of chaining 

or “bootstrapping” of received rewards and value estimates across a series of successively 

encountered states (Sutton, 1988; Sutton and Barto, 1998).

Because both models specify different, complex trial-by-trial relationships between received 

rewards and subsequent choices, we used model comparison to determine which provided a 

better fit to the data. We computed the two learning models’ fit to each subject’s choice data 

using the Bayesian Information Criterion, having optimized the free parameters using 

maximum likelihood, and then compared the fits at the population level using (Stephan et 

al., 2009)’s group model comparison technique. This model comparison method allows for 

the possibility that the true model varies across subjects and estimates the proportion of 

subjects in the population expressing either model. This analysis showed overwhelming 

evidence in favor of the simpler MVT learning rule (Figure 3, left; with expected frequency 

0.83, and exceedance probability, or posterior probability, that it is the more common model 

of 0.999). Note that the MVT model optimizes undiscounted reward rate, whereas TD 

optimizes cumulative exponentially discounted reward with a free discount rate. However, 

the model fit difference is not simply due to the penalty for the inclusion of the additional 
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discount rate parameter in TD, since the BIC penalty for a single parameter is small with 

respect to the differences in model fit. Neglecting the penalty for the extra parameter still 

produces an exceedance probability of 0.999. The model differences remain significant even 

when the likelihood is computed without the initial 20% of observations, suggesting that the 

differences are not due to starting values (exceedence probability of 0.999); and when 

removing the first half of each block (exceedence probability of 0.993), suggesting that 

MVT does better not only at the environment transitions but also at explaining the within-

environment dynamics.

In order to assess the robustness of our results, we also compared the MVT threshold 

learning model to two other variants of TD learning. First, motivated by the possibility that 

TD’s poor performance was due to slow learning over the state space, we considered TD(λ), 

a generalization of the standard TD model that allows for faster, nonlocal back propagation 

of information across multiple states. Second, we considered R-learning (Schwartz, 1993), 

an average-reward RL algorithm that updates state-action values relative to a stateless 

average reward term that is updated at every step. We reasoned that R-learning might 

perform more similarly to the MVT rule because it optimizes the same objective as MVT 

and does so, in part, by learning an additional average reward rate term similar to the MVT’s 

decision variable. These analyses again found overwhelming evidence in favor of the 

simpler MVT learning rule as compared to TD(λ) (expected frequency of 0.78 and 

exceedence probability of 0.997) and R-learning (expected frequency of 0.87 and 

exceedence probability of 0.999), suggesting that the simple, stateless, threshold learning 

rule outperforms a broad class of TD models in this task.

Over-harvesting—The above learning models each contain an intercept parameter that 

encodes any constant bias toward or away from harvesting, in addition to the effect of the 

learned decision variables. A tendency toward overharvesting, which was noticeable but for 

the most part non-significant in the cruder blockwise analyses above, should be visible here 

as a negative estimate for the intercept term in the MVT learning model. Indeed, the 

estimated intercept was significantly negative in the MVT model (t20 = − 4.87, p < .001 

across subjects for MVT), demonstrating a bias toward overharvesting.

Several factors may jointly contribute to this over-harvesting tendency. First, any persistent 

behavioral variability or deviations from consistently executing the optimal policy will 

reduce the obtained average reward and imply a lower steady-state opportunity cost of time 

and exit threshold. In other words, to the extent a subject’s actual long-run earnings fall 

below the rewards expected for consistently executing a strategy (stepped functions in 

Figure 2c), that implies variability around her average strategy. Her best response to the 

resulting effective reward environment is to aim to harvest longer than otherwise would be 

optimal (dotted line). Two such sources of variability are already accounted for in the 

learning model estimated above: trial-to-trial threshold variation (due to learning) and 

additional decision stochasticity (captured by the logistic choice rule). The finding that the 

intercept is still significantly negative demonstrates residual over-harvesting even after 

taking these sources of variability into account.
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The MVT-predicted policy maximizes reward rate, but subjects may differ from this 

objective in their preferences over delay (time discount factor, as assumed in TD) or amount 

(nonlinear marginal utility of money, a standard way to parameterize risk sensitive 

preferences; (Bernoulli, 1954)), which would also contribute to over-harvesting. For a 

subject with decreasing marginal utility (one for whom $10 is worth less than twice $5, 

which in expected utility is functionally equivalent to risk aversion), exiting later is 

predicted because the marginal value of a replenished tree is reduced. The reverse pattern is 

predicted for subjects with increasing marginal utility (risk-seeking preferences). We re-

estimated the MVT model with an additional risk sensitivity parameter (curvature in the 

function mapping money to utility). With this parameter, the intercept was no longer 

significant (t20 = −1.33, p = .2 across subjects), suggesting that over-harvesting was 

substantially accounted for by risk aversion.

Additionally, a decision-maker who discounts future rewards will exit a patch later because 

the value of leaving is discounted by the travel delay, predicting discount-dependent over-

harvesting. Indeed, the TD model optimizes cumulative exponentially discounted reward, 

and included a free parameter controlling the sharpness of discounting. The intercept in the 

TD model was not significantly different from zero (t20 = − 1.03, p = .317 across subjects) 

indicating that exponential discounting can, on average, also account for over-harvesting. 

(However, note that some individual subjects under-harvest. Under-harvesting cannot be 

explained by conventional time discounting, though it could in principle be taken as a 

preference for later rewards, e.g. “savoring” delays. This is empirically unusual and also 

computationally problematic, since the infinite horizon value function then diverges. Such 

behavior can be explained more straightforwardly by convex utility curvature, which is less 

exotic.)

Experiment 2

A disadvantage of the design in Experiment 1 is that because the expected reward decayed 

deterministically with harvests, the reward-thresholding strategy predicted by the MVT is 

equivalent to a counting strategy: harvesting a fixed number of times. Therefore, we 

conducted an additional study, in which the initial qualities of new trees and the rates of 

depletion following each harvest were drawn randomly. These features require the ideal 

agent to monitor obtained rewards rather than simply count harvests. In this version, the 

obtained rewards at each step noiselessly reflected the current state of the tree and the 

expected reward from harvesting can thus be constructed by depleting the last observed 

reward. The optimal policy thus involves directly comparing the obtained reward to a 

threshold at which a tree should be exited, regardless of its starting quality or the number of 

preceding harvests.

In this experiment, we simultaneously varied both depletion rate and travel time within-

subjects, crossing two levels of each to create four environment types with three levels of 

achievable average reward rates: one high, two medium and one low. Subjects made an 

average of 913 harvest-or-exit decisions and visited an average of 95 trees over the 

experiment.
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The results of Experiment 2 echo those of Experiment 1 and verify that the behaviors 

studied there extend to this more complex setting. Exit thresholds were estimated as the 

average of rewards obtained before and at each exit in each condition, since these rewards 

should bracket the true threshold (Figure 2e.). These were significantly lower than optimal 

for three of the four conditions (t’s25 < 3.6, p’s < .002; with a trend in the long-steep block, 

t25 = −1.7, p = .09), again demonstrating an overharvesting tendency. Despite this tendency, 

most individual subjects adjusted their thresholds in the expected direction in response to 

blockwise changes in the average reward rate, a consistency that was reflected in a repeated-

measures ANOVA as main effects of depletion, F(1,25) = 82, p < .001, and travel time, 

F(1,25) = 42.1, p < .001.

A quantitative analysis of the deviations from optimal found that subjects earned on average 

$18.7 ± 1.4 (mean ± SD), which represents a −9% loss relative to optimal earnings. For 

comparison, the best constant hazard rate policy, optimized to each environment, deviates 

from optimal earnings by −25%. When earnings are plotted against thresholds, strategies 

again cluster around the MVT’s predictions (Figure 2f.), albeit with a tendency to fall to the 

left of the line, indicating over-harvesting.

Trial-by-trial choices—Unlike Experiment 1, this experiment allowed us to distinguish 

between an exit policy based on thresholding observed rewards, as the MVT predicts, and a 

simple count of the number of times a tree has been harvested. We investigated this question 

by fitting two logistic regression models to subjects’ trial-by-trial stay or exit decisions, 

differing only in whether the main explanatory variable was the preceding reward or the 

preceding number of harvests. The analysis showed strong evidence in favor of the optimal 

reward-based strategy (Stephan et al.’s, 2009, Bayesian model selection): expected 

frequency .93, exceedance probability .999).

Learning—Finally, individual behavioral traces again demonstrate rapid threshold 

adjustments between and within environments (Figure 2d.). We compared the TD and MVT 

incremental learning model fits to the trial by trial decisions and found evidence in favor of 

the simpler MVT learning rule (Figure 3, right; expected frequency 0.85, exceedance 

probability of 0.999). Robustness checks showed the MVT model was still favored even 

without including the initial 20% of observations, suggesting that the differences are not due 

to starting values (exceedence probability of 0.823); and when removing the first half of 

each block, suggesting that MVT does better not only at the environment transitions but also 

at explaining the within environment dynamics (exceedence probability of 0.999).

A comparison between MVT and the two TD variants mentioned above, suggests that this 

simple threshold learning model better describes decisions in this type of task than a broad 

class of reinforcement learning models. A Bayesian model comparison finds an expected 

frequency of .93 and an exceedence probability of 0.999 in favor of MVT over R-learning, 

and an expected frequency of .73 and exceedence probability of .9941 when compared to 

TD(λ).

Over-harvesting—The results of experiment 2 again reveal a tendency to over-harvest 

relative to the reward maximizing policy. This is reflected in the MVT learning model fits, 
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which include a negative intercept estimate (bias toward harvesting) that is significant across 

subjects (t20 = −7.48, p < .001). This result again suggests that the tendency toward 

overharvesting is not fully captured by decision noise or threshold variation (due to 

learning). We again investigated whether this tendency could be explained by delay 

discounting or decreasing marginal utility (e.g. risk sensitivity) by looking at the effect of 

these additional preference parameters in TD and MVT, respectively. As in Experiment 1, 

the TD model incorporates a free time discounting parameter, but in this case still has a 

significantly negative intercept, suggesting that time discounting cannot by itself explain the 

result (t20 = −4.47, p < .001 across subjects). However, when we added an additional 

parameter controlling risk sensitivity (value curvature) to the MVT model, the mean 

intercept was close to zero and no longer significant across subjects (t20 = −1.71, p = .10), 

suggesting that over-harvesting may be substantially accounted for by risk sensitivity.

Discussion

Following on a long tradition of work in neuroscience and psychology about decision 

making in tasks where multiple options are presented simultaneously, there has been a 

recent interest in a different class of tasks, largely inspired by the ethological foraging 

literature: switching or stopping tasks in which options are presented serially and the choice 

is whether to accept the current option or search for a better one (Hayden et al., 2011; 

Hutchinson et al., 2008; Jacobs and Hackenberg, 1996; Wikenheiser et al., 2013; Kolling et 

al., 2012; Cain et al., 2012). Although most previous work in this class of foraging task has 

considered steady-state choice, these tasks pose a particularly interesting problem for 

learning, which we consider here: how to learn the (deferred and implicit) value of the 

alternative option.

Consistent with a body of ethological work in animals (Charnov, 1976; Kacelnik, 1984; 

Freidin and Kacelnik, 2011; McNickle and Cahill, 2009; Hayden et al., 2011; Stephens and 

Krebs, 1986) and a smaller literature in humans (McCall, 1970; Smith and Winterhalder, 

1992; Jacobs and Hackenberg, 1996; Hutchinson et al., 2008; Kolling et al., 2012), we show 

across two experiments that humans consistently adjust their foraging choices to 

manipulations of the richness of the environment in the directions predicted by the optimal 

analysis. However, both experiments find a tendency to harvest a patch longer than would 

be optimal for maximizing reward rate, which is consistent with previous findings in patch 

foraging experiments (Hutchinson et al., 2008). In our data, this apparent suboptimality 

disappears if we assume that subjects optimize a currency with a nonlinear marginal utility 

for money (e.g., risk sensitivity). Thus, the choices are consistent with the MVT, when 

stated in terms of utility, rather than the raw monetary amount. A less satisfactory 

explanation for overharvesting (e.g., because it failed to fully account for overharvesting in 

Experiment 2) is that subjects discount delayed rewards. Had we needed to appeal to time 

discounting, this would have been harder to reconcile with the MVT, which concerns the 

undiscounted reward rate. A more direct test of either explanation would require assessing 

risk sensitivity (or time discounting) independently in order to investigate whether those 

estimates predict a subject’s overharvesting. It is also possible that many factors contribute 

jointly to this tendency.
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With respect to learning, subjects’ trial-by-trial choice adjustments are consistent with a 

simple learning rule in which they track the average reward per timestep and use it as a 

threshold or aspiration level against which to compare their immediate gains (McNamara 

and Houston, 1985; Krebs and Inman, 1992). This learning rule is notably different from the 

reinforcement learning rules more often studied in neuroscience, which solve sequential 

decision tasks by estimating cumulative long-term rewards (Schultz et al., 1997; Montague 

et al., 1996; Houk et al., 1995).

In analyzing learning, we relied on formal model comparison to examine which of the two 

learning accounts better explains the observed relationship between outcomes and choices. 

This was necessitated because the correlated structure of rewards over time in the task — 

especially in Experiment 2 — makes it difficult to find a simple, local feature of the reward-

choice relationship (such as the relationship between individual rewards and subsequent 

exits) that unambiguously captures the qualitative difference between the models. Thus, we 

compared how well each model explained the full joint probability of all the choices, 

conditional on all the rewards. However, disadvantages of this approach, interpretationally, 

are that it is relatively opaque as to what features of the data drive the difference in model 

fit, and that the conclusion is also specific to the particular models tested. The possibility 

therefore exists that some variant model not explored, and in particular some version of TD, 

might outperform the models considered here. We addressed this problem by considering 

what we take to be a canonical representative of the set of TD models, further improved with 

task-specific knowledge (e.g. a stateless value of exiting), and by additionally considering 

other TD variants, which together represent a reasonably large class of TD models. The 

magnitude of the difference in fit and its robustness to these algorithmic variations suggest 

that MVT learning is a better model of subjects’ trial-by-trial decisions than a broad range of 

plausible TD models.

One important dimension where there are many possible variants of TD learning is how the 

algorithm construes the space of possible states of the task. This is less of an issue in 

Experiment 1, where the objective state space of the task is small, discrete and well defined 

and does not require any generalizing function approximator. Two other TD variants that we 

considered were TD(λ), which increases the efficiency of the algorithm by introducing 

eligibility traces that allow for faster back propagation of information across states (making 

the particular representation of states less important); and R-learning, a TD algorithm that 

learns state-action values relative to an average reward term equivalent to that used in the 

MVT. Since this model maximizes the same currency as MVT learning, it rules out the 

possibility that the difference in fit between MVT and the other TD variants was driven by 

the slightly different objective (cumulative discounted reward) optimized by the latter.

Another difference between the models is that the MVT rule, as we have simulated it, relies 

on learning the depletion rate of the trees, and (unlike TD) is given the knowledge that this 

process takes an exponential form2. Although it is difficult to see how to imbue TD with 

2Note that this knowledge does not enter the estimation of the average reward threshold but only the decision rule or subjective value 
difference, where it multiplies the observed reward. This is required for strict optimality because of the discretization of the task, 
however, leaving out this term has a negligible effect on the fits.
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equivalent knowledge (since its action values are derived in a complex way from the one-

step rewards and continuation values), we believe that this disadvantage does not explain 

away the difference in fit between the models. In particular, although we have included this 

factor in the MVT for consistency with the ideal observer (where this term occurs as an 

algebraic infelicity owing to the discrete trial setup of our task), leaving it out altogether 

(i.e., omitting κ) from the modeled MVT choice rule, and thus removing any built in 

knowledge about the form of the depletion, results only in a slight decision bias relative to 

optimal and does not change the dynamics of the algorithm. Accordingly, repeating the 

model comparison analyses omitting the depletion rate term from the decision rule does not 

appreciably change the model comparison (results not presented).

Our results suggest an important role for the average reward rate in guiding choice in serial 

switching or stopping tasks. These results tie decision-making in this class of tasks to a 

diverse set of behavioral phenomena and neural mechanisms that have been previously 

associated with average reward rates. Notably, the average reward rate has arisen in the 

analysis of a number of other seemingly disparate behaviors, including behavioral vigor, risk 

sensitivity, labor-leisure tradeoffs, self-control, and time discounting (Niv et al., 2006; Niv 

et al., 2007; Cools et al., 2011; Kacelnik, 1997; Niyogi et al., 2014; Keramati et al., 2011; 

Kurzban et al., 2012; Gallistel and Gibbon, 2000; Daw and Touretzky, 2002; Guitart-Masip 

et al., 2011). The notion of the average reward rate as the opportunity cost of time links 

these seemingly disparate domains: it indicates, for instance, the potential reward foregone 

by behaving less vigorously, by waiting for a delayed reward in a discounting task, or, in the 

case of foraging, by spending more time with the current option rather than searching for a 

better one (Niv et al., 2006; Niv et al., 2007). A very similar comparison – of current 

rewards to the long-run average – has also been suggested to govern the explore-exploit 

tradeoff (Aston-Jones & Cohen, 2005; Gilzenrat et al. 2010). Indeed, in the case of vigor, it 

has been shown that trial-by-trial fluctuations in behavioral vigor as assessed by reaction 

times are consistent with modulation by an ongoing estimation of the average reward rate 

(Guitart-Masip et al., 2011; Beierholm et al., 2013). The present results extend this rate-

sensitive adjustment from modulations of arousal to discrete foraging decisions.

That such diverse phenomena implicate the same decision variable invites the possibility 

that they might share neural mechanisms. In particular, whereas TD learning about 

cumulative future action values is widely linked to phasic dopamine signaling (Schultz et 

al., 1997; Montague et al., 1996; Houk et al., 1995), it has been argued that longer-timescale 

(“tonic”) extracellular dopamine levels might be a neural substrate for tracking average 

rewards and for controlling behaviors that depend on them (Niv et al., 2006; Niv et al., 

2007; Cools, 2008; Beierholm et al., 2013). Accordingly, dopamine is well known to affect 

response vigor and time discounting and we hypothesize that it may play a similar role in the 

current task (Robbins and Everitt, 2007; Salamone, 1988; Beierholm et al., 2013). However, 

while dopaminergic involvement in response vigor appears to focus on the nucleus 

accumbens (Lex and Hauber, 2008; Salamone, 1988), foraging decisions, switching to non-

default courses of action, average-reward tracking, cognitive control, and decisions 

involving costs, all appear to involve another important dopaminergic target, the anterior 

cingulate cortex (ACC; Hayden et al., 2011; Kolling et al., 2012; Walton et al., 2009; 
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Boorman et al., 2013; Gan et al., 2009; Seo et al., 2007; Curtis and Lee, 2010; Kurzban et 

al., 2012; Shenhav et al., 2013). Neurons in the ACC track reward history with a range of 

time constants (Seo et al., 2007; Bernacchia et al., 2011), and the slower of these may also 

serve as a signal for the average reward rate. Finally, the cingulate’s projections to another 

neuromodulatory nucleus, the locus coeruleus norepinephrine system, have been implicated 

in average reward effects governing explore-exploit tradeoffs (Aston-Jones and Cohen, 

2005).

A different choice mechanism that has been argued to be at least partly distinct from the 

dopaminergic/TD system is “model-based” learning. Such a system learns a cognitive map 

or model of the structure of the task and then evaluates options by explicit simulation or 

dynamic programming (Daw et al., 2005; Daw et al., 2011; Doya, 1999). Although model 

based learning in the current task — that is, incrementally estimating the state transitions 

and rewards and solving the Bellman equation at each step for the cumulative expected 

value of harvesting and exiting — would likely result in behavior quite similar to the MVT 

learning rule, this seems an implausible account of choice behavior in the current study. 

Humans have been shown to use model-based evaluation in problems with very small state 

spaces (most often for sequences of only two actions; Daw et al., 2011), whereas 

quantitatively computing the optimal exit threshold by dynamic programming would require 

a very deep and precise search. TD and the MVT rule represent two different and more 

plausible “model-free” ways to short-circuit this computation by learning decision variables 

directly while foregoing the global model.

Indeed, it has recently been proposed that, perhaps in addition to the model-free/model-

based distinction, the brain contains psychologically and anatomically distinct mechanisms 

for solving (bandit-type) simultaneous choice tasks vs. (patch-foraging type) serial stopping 

or switching tasks (Rushworth et al., 2012; Kolling et al., 2012), as with our TD vs. MVT 

models. On the basis of the imaging and physiological evidence discussed above, the ACC 

seems a likely substrate for foraging, whereas a long line of research implicates nearby 

ventromedial PFC in more symmetric economic choices, such as bandit tasks (e.g., Behrens 

et al., 2007; Hare et al., 2011; O’Doherty, 2011). The two sorts of choice have been most 

directly contrasted in a recent fMRI study (Kolling et al., 2012), supporting this anatomical 

dissociation, though another study using the task argued for a different intepretation of the 

ACC response (Shenhav et al, 2014). The present study, in the context of previous RL work, 

suggests a computational counterpart to such a distinction. In particular, learning in bandit 

tasks has been well described by TD and related delta-rule learning models (Sugrue et al., 

2004; Daw et al., 2006; Li and Daw, 2011; Ito and Doya, 2009; Barraclough et al., 2004). 

Our finding that learning in a serial switching problem is instead more consistent with a 

structurally different threshold learning rule is consistent with the idea that these two sorts of 

choices employ distinct computational mechanisms and helps to flesh out the function of 

this proposed additional mode of choice.

This computational distinction sets the stage for future work directly comparing both 

approaches against a range of tasks, so as to understand in what circumstances the brain 

favors each approach. It has been suggested that organisms may approach many problems 

like foraging tasks, including even classic symmetric or simultaneous ones like economic 
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lotteries and bandit tasks (Brandstatter et al., 2006; Hills et al., 2012; Hills and Hertwig, 

2010; Kacelnik et al., 2010). One might hypothesize a rational tradeoff: that the brain favors 

the simpler MVT rule in tasks for which it is optimal, or nearly so, but favors more complex 

decision rules in tasks where these would earn more effectively. The MVT threshold 

learning rule differs from TD in two respects, by essentially neglecting two sorts of 

information that are inessential to patch-foraging and analogously structured tasks. The first 

difference is that foraging models neglect the value of any other alternatives in a 

simultaneous choice set, since they assume options are evaluated sequentially. Subjects must 

accept or reject each option by comparing it to some global aspiration level (the average 

reward), which can account for alternatives only in the aggregate via their long run statistics. 

This approach could be applied to arbitrary problems, such as bandit tasks, by assuming that 

even when options are proffered simultaneously, subjects evaluate them serially, taking 

some option as “default.” Regardless of how the default is set, this should produce a sort of 

satisficing relative to a maximizing model (like TD) that evaluates each option and chooses 

among them, since subjects will select a “good enough” default even when a better option is 

available. This inefficiency should be especially pronounced – and, perhaps, TD methods 

most favored – when the choice set changes from trial to trial (e.g., Behrens et al. 2007).

The second difference has to do with sequential credit assignment. An MVT rule, unlike TD, 

neglects the longer-run consequences of engaging with an option by myopically considering 

only its instantaneous or next-step reward rate. For patch-leaving, such myopic evaluation 

results in the optimal long-run choice rule as long as patches degrade monotonically. (The 

same rule is optimal in models of serial prey selection, e.g. Krebs et al., 1977, because 

encounters are independent and the gain for processing each prey is a single event.) 

However, in a modified foraging-like task where options can improve – consider deciding 

whether to sell a stock whose dividend might decrease and increase cyclically, or to fire an 

employee whose productivity could be improved with training – then the MVT will 

undervalue staying. The myopia of foraging rules has also been noted in time discounting 

problems (e.g., Stephens et al., 2004). Finally, long-run credit assignment is important to 

many differently structured multistep choice tasks, such as spatial navigation or multiplayer 

games. For instance, in a two-choice Markov decision task, that we have elsewhere argued is 

learned by a combination of TD and model-based RL (Daw et al., 2011), the MVT rule 

would be at chance in selecting a first-stage move since they earn no immediate reward and 

are only distinguished by the reward earned following an additional state transition and 

choice. Different tasks will vary in the degree to which myopic credit assignment results in 

inefficient returns.

Overall, although the class of switching tasks for which the MVT solution is optimal is 

small, the idea of staying or switching by comparing short-run returns to the expected long-

run average is a plausible, albeit suboptimal, heuristic across many domains. MVT may be 

an overall favorable algorithm across a broader range of tasks because the resources saved in 

simplified computation may outweigh the reward losses. Thus, the choice and learning 

mechanisms isolated in simple patch foraging problems may shed light on broadly 

applicable systems, different from but complementary to those that have seen more attention 

so far.
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Figure 1. Task Display
Subjects foraged for apples in four 14-minute virtual patch-foraging environments. They 

were presented with a tree and had to decide whether to harvest it for apples and incur a 

short harvest delay or move to a new tree and incur a longer travel delay. Harvests at a tree 

earn apples, albeit at an exponentially decelerating rate. New trees are drawn from a 

Gaussian distribution. Environmental richness or opportunity cost of time was varied across 

blocks by changing the travel time and/or the apple depletion rate. The quality of the tree, 

depletion rate and richness of the environment are a priori unknown to the subject (see 

Methods for a detailed explanation).
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Figure 2. Foraging behavior
Behavioral results compared to the optimal (ideal observer) performance in the task. (Top) 

Experiment 1a (travel time; L=long, S=short) and 1b (depletion rate; t=steep, h=shallow), 

(Bottom) Experiment 2 (Lh=long-shallow, Lt=long-steep, Sh=short-shallow, St=short-

steep). (a,d) Example subject tree-by-tree exit points over time in the experiment. Colors 

indicate environments and grey lines indicate the optimal exit threshold. (b,e) Group 

performance by block. Height of the grey bars indicates optimal thresholds. Open circles 

connected by grey lines are individual subject mean exit thresholds and adjustment across 

environments. Filled diamonds are the mean exit threshold with 95% confidence intervals. 

(c,f) Colored curves show the achievable average reward per period for any given threshold 

policy in the different environments. Pluses are individual subjects’ mean exit thresholds. 

The dashed line is the MVT rule – points where the average reward rate is equal to the 

expected reward; it intersects the colored curves at the optimal exit thresholds.
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Figure 3. Model comparison
Approximate log Bayes factors (difference in BIC scores) favoring MVT vs TD learning 

models, shown for each subject separately for Experiments 1A and 1B (left) and 2 (right).
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Table 2

MVT-learning update-rule

Parameters: α, c, β

 P(ai= harvest) = 1/(1 + exp(−c − β(κksi − ρih)))

 δi ← ri/τi − ρi

 ρi+1 ← ρi + (1 −(1 − α)τi) · δi

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Constantino and Daw Page 30

Table 3

TD-learning update-rule

Parameters: α, γ, c, β

 P(ai= harvest) = 1/(1 + exp(−c − β(Qi(si, harvest) − Qi(exit))))

 Di~ Bernoulli(P(ai))

 δi ← ri+ γτi(Di • Qi(si) + (1 − Di) • Qi(exit)) − Qi(si−1, ai−1)

 Qi(si−1, ai−1) ← Qi+1(si−1, ai−1) + α • δi
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Table 4

TD(λ) update-rule

Parameters: α1, λ, γ, c, β

 P(ai = harvest) = 1/(1 + exp(−c − β(Qi(si, harvest) − Qi(exit))))

 Di ~ Bernoulli(P(ai))

 δi ← ri+ γτi (Di • Qi(si) + (1 − Di) • Qi(exit)) − Qi(si−1, ai−1)

 Ei(si, ai) ← 1

 ∀s, a Ei+1(s,a) ← Ei(s,a) + λ • γτiEi(s,a)

 ∀s, a Qi+1(s,a) ← Qi(s,a) + α1 • Ei(s,a) • δi
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Table 5

R-learning update-rule

Parameters: α1, α2, γ, c, β

 P(ai = harvest) = 1/(1 + exp(−c − β(Qi(si, harvest) − Qi(exit))))

 Di ~ Bernoulli(P(ai))

 δi ← ri − ρi • τi + Di • Qi(si, havest) + (1 − Di) • Qi(exit) − Qi(si−1, ai−1)

 Qi(si−1, ai−1) ← Qi+1(si−1, ai−1) + α1 • δi

 ρi+1 ← ρi + α2 • δi
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