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Abstract

Virtually all current theories of category learning assume that humans learn new categories by 

gradually forming associations directly between stimuli and responses. In information-integration 

category-learning tasks, this purported process is thought to depend on procedural learning 

implemented via dopamine-dependent cortical-striatal synaptic plasticity. This article proposes a 

new, neurobiologically detailed model of procedural category learning that, unlike previous 

models, does not assume associations are made directly from stimulus to response. Rather, the 

traditional stimulus-response (S-R) models are replaced with a two-stage learning process. 

Multiple streams of evidence (behavioral, as well as anatomical and fMRI) are used as inspiration 

for the new model, which synthesizes evidence of multiple distinct cortical-striatal loops into a 

neurocomputational theory. An experiment is reported to test a priori predictions of the new 

model that: (1) recovery from a full reversal should be easier than learning new categories equated 

for difficulty, and (2) reversal learning in procedural tasks is mediated within the striatum via 

dopamine-dependent synaptic plasticity. The results confirm the predictions of the new two-stage 

model and are incompatible with existing S-R models.

Introduction

Categorization is the process of assigning unique responses to different groups of stimuli. A 

variety of different category-learning theories have been proposed, yet virtually all assume 

that category learning is a process via which a single association is formed between each 

stimulus and every possible response (henceforth referred to as S-R models). However, 

recent empirical investigations have challenged this seemingly simple assumption, 

suggesting that a fundamental revision of current theories may be in order (Maddox, Glass, 

O’Brien, Filoteo, & Ashby, 2010; Kruschke, 1996; Wills, Noury, Moberly, & Newport, 

2006). This article proposes a new biologically detailed model of procedural learning that 

successfully addresses these challenges. New behavioral data are presented to further 
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support the general necessity of model revision and to justify the specific details of the 

proposed new model.

A strong prediction of any theory that assumes category learning is mediated by S-R 

associations is that reversing the correct responses for all stimuli should cause catastrophic 

interference because recovery from a full reversal would require unlearning all prior S-R 

associations, followed by new learning of the reversed associations. In contrast, creating 

new categories from the same stimuli in any other way should be less disruptive, because 

only some of the associations would have to be relearned, but not all. Existing empirical 

data, however, indicate that reversal learning is easier than learning novel categories 

(Kruschke, 1996; Maddox et al., 2010; Sanders, 1971; Wills et al., 2006). These results 

challenge the validity of S-R learning assumptions that underlie the existing category-

learning theories.

Although virtually all existing category-learning models are of the S-R type, a number 

assume that the S-R learning process is mediated via the interaction of multiple systems 

(Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Erickson & Kruschke, 1998), or that S-

R associations are formed via context-dependent Bayesian inference (Anderson, 1991; 

Gershman, Blei, & Niv, 2010; Redish, Jensen, Johnson, & Kurth-Nelson, 2007). Thus, the 

basic intuition about full reversals in S-R models may not be directly applicable to these 

models.

The multiple memory systems framework assumes that S-R associations are formed via 

procedural learning, whereas declarative memory is used to formulate and test explicit 

strategies (Ashby & O’Brien, 2005). Such a framework may, in principle, be able to account 

for the observation that recovery from full reversal is easier than new learning. However, 

since these models assume that procedural category learning is an S-R process, the only way 

this seems possible is if the reversal is dominated by declarative mechanisms. If declarative 

mechanisms can somehow be ruled out then these models are clearly lacking in their current 

form. Likewise, a context-sensitive model might explain the results of reversal experiments 

as the effects of context shifts. The exact details of how this would be done are unclear. But, 

even with the addition of context effects, if the underlying learning was S-R then the 

observed ease of reversals relative to new categories still appears mysterious.

The literature on reversal learning is enormous, dating back at least to Spence (1940). Much 

of this work focuses on the learning of reversed reward associations. Many animal and 

neuroimaging studies of such reversals implicate a distributed neural network that includes 

orbitofrontal cortex and the ventral striatum (e.g., Clarke, Robbins, & Roberts, 2008; Cools, 

Clark, Owen, & Robbins, 2002; McAlonan & Brown, 2003). Of course, if feedback is given, 

and the category assignments of all stimuli are reversed, then we would expect activity in a 

similar reward-learning network. Our interest, however, is not in the learning of the reversed 

reward associations, but in the learning of reversed motor responses. This literature is 

considerably smaller. And even within this reduced literature, our focus is on the learning of 

reversed motor associations in tasks mediated by procedural learning.
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The empirical demonstrations that it is indeed easier for participants to recover from a full 

reversal than it is to learn novel categories (Maddox et al., 2010; Kruschke, 1996; Wills et 

al., 2006) provide a hint that category learning might include two separate stages or 

processes – one in which the category structure is learned, and one in which each structure is 

associated with a motor goal (e.g., press the button on the left). In such two-stage models, a 

full reversal only requires unlearning and relearning of the response associations (the second 

stage), since the category structures remain unchanged. In contrast, a switch to novel 

categories constructed from the same stimuli could require unlearning and re-learning at 

both stages. Thus, it seems natural for a two-stage model to predict less interference from a 

full reversal than from a switch to new categories, in agreement with the empirical findings 

cited above.

Within the categorization domain, the best evidence for procedural learning comes from the 

information-integration (II) task. In an II category-learning task, stimuli are assigned to 

categories in such a way that accuracy is maximized only if information from two or more 

noncommensurable stimulus dimensions is integrated at some predecisional stage (Ashby & 

Gott, 1988). Typically, the optimal strategy in II tasks is difficult or impossible to describe 

verbally (which makes it difficult to discover via logical reasoning). An example of 

categories that might be used in an II task is shown in Figure 1. In this case, the two 

categories are each composed of Gabor patterns, which are circular sine-wave gratings that 

vary in bar width (i.e., spatial frequency) and bar orientation. The diagonal line denotes the 

category boundary. Note that no simple verbal rule correctly separates the disks into the two 

categories. Nevertheless, many studies have shown that with enough practice people reliably 

learn such categories (Ashby & Maddox, 2005).

II categorization tasks are often contrasted with rule-based (RB) tasks, in which the 

categories can be learned via some explicit reasoning process that requires selective 

attention. Many studies have documented a wide variety of qualitative differences in how 

RB and II tasks are initially learned (see Ashby & Maddox, 2005, 2011 for reviews), and all 

of these are consistent with the hypothesis that procedural memory is required to learn II 

structures, whereas RB category learning is mediated by declarative memory (Ashby & 

O’Brien, 2005; although see Newell, Dunn, & Kalish, 2011).

This article proposes a new biologically-detailed two-stage model of procedural category 

learning. The model generalizes the best existing neurocomputational model of II learning 

and is motivated by multiple findings in the literature. We then derive several a priori 

predictions from the model about a variety of different reversal conditions. Next, we 

describe the results of a new experiment that tests and supports these predictions. 

Specifically, our results show that: (1) learning new categories is more difficult than 

recovering from a full reversal, and (2) recovering from a reversal depends on procedural, 

rather than declarative mechanisms.
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A New Biologically Detailed Model of Procedural Category Learning 

Motivation

There is considerable evidence that II category learning depends critically on the striatum 

(e.g., for a review, see Ashby & Ennis, 2006). The only current theory of category learning 

that posits a neurobiological locus of II category learning is COVIS (Ashby & Waldron, 

1999; Ashby et al., 1998). COVIS assumes that direct associations from stimuli to motor 

response are learned during II categorization. Stimuli are associated with categorization 

responses via changes in synaptic strength at cortical-striatal synapses between pyramidal 

neurons in visual association areas and medium spiny neurons in the striatum. Although 

COVIS accounts for an impressive variety of data (e.g., Ashby, Ennis, & Spiering, 2007; 

Crossley, Ashby, & Maddox, 2013, 2014; Filoteo et al., 2014; Hélie, Paul, & Ashby, 2012; 

Valentin, Maddox, & Ashby, 2014), because it postulates only one stage of learning, it 

predicts either worse transfer performance in II tasks after a full reversal than after a switch 

to new categories, or a switch to suboptimal declarative strategies during reversals.

The most relevant study to the question of whether procedural learning during II 

categorization is mediated by one or two stages was reported as Experiment 3 by Maddox et 

al. (2010). This study found evidence that after training on one set of II categories, recovery 

was faster when the training categories were reversed than when participants were 

transferred to novel categories constructed from the same stimuli. Below, a similar 

experiment is reported that confirms this conclusion.

So how should the procedural-learning model of COVIS be generalized to include a second 

learning stage? One clue comes from fMRI studies of II category learning, which have not 

reported a consistent site of task-related activation within the striatum. Some studies have 

reported activation in both the caudate nucleus and the putamen (Cincotta & Seger, 2007; 

Seger & Cincotta, 2002), while other studies have reported task-related activity either only 

in the putamen (Waldschmidt & Ashby, 2011) or only in the caudate (Nomura et al., 2007). 

Thus, one interpretation of the literature is that both the caudate nucleus and the putamen 

are, or can be, relevant for II category learning.

Other clues come from anatomical and physiological studies that support the existence of (at 

least partially) segregated loops through the basal ganglia that each serve a different 

function. For example, DeLong, Georgopoulos, et Crutcher (1983) distinguished between an 

associative loop through the caudate nucleus and a motor loop through the putamen. More 

recent authors suggest four cortical-striatal loops: motor, visual, executive/spatial and 

motivational/affective (Seger, 2008; Lawrence, Sahakian, & Robbins, 1998). The classic 

view is that these loops are parallel and closed – that is, the striatum projects back to the 

same region of cortex from which it receives its input (Alexander, DeLong, & Strick, 1986; 

Middleton & Strick, 2000). Even so, there is now considerable evidence that at least some 

loops through the basal ganglia are open and interconnected (Lopez-Paniagua & Seger, 

2011; Joel & Weiner, 1994; Hikosaka, Nakamura, & Nakahara, 2006; Nakano et al., 1992; 

McFarland & Haber, 2000).
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COVIS can be generalized to include two learning stages in a way that is consistent with 

these results if we hypothesize that II category learning is mediated by double cortical-

striatal-cortical loops. The current literature is insufficient to make any strong claims about 

the exact anatomical locus of these loops, but an initial plausible hypothesis1 is illustrated in 

Figure 2. The model begins with projections from cortical visual association areas into the 

body and tail of the caudate nucleus, which projects through the globus pallidus and ventral 

anterior nucleus of the thalamus to the pre-supplementary motor area (preSMA). Next, 

preSMA projects to the posterior putamen then through the globus pallidus and ventral 

lateral nucleus of the thalamus to the SMA. The two sites of learning in this model are at the 

two different types of cortical-striatal synapses. The learning of category structure is 

mediated by plasticity at visual cortical-caudate synapses, and learning to associate each 

structure with a specific response is mediated at preSMA-putamen synapses. Although we 

are reticent to make strong, precise anatomical claims due to a current lack of evidence, this 

model nevertheless posits that both learning stages are at cortical-striatal synapses and 

mediated by dopamine-gated reinforcement learning. As such, the model makes the strong 

prediction that recovery from an II reversal should be impaired in the presence of delayed 

feedback. This prediction is discussed, tested and supported in the experiment described 

below.

Despite its intuitive appeal, however, it is not immediately clear that this model is capable of 

learning using a global reinforcement learning rule of the kind thought to characterize 

synaptic plasticity at cortical-striatal synapses (Ashby & Helie, 2011). This is because of a 

credit-assignment problem. For example, if this model produces an incorrect response and 

negative feedback is delivered, then dopamine levels will drop below baseline and all 

recently active synapses will be weakened. But the error could have occurred because one 

stage was incorrect while the other was correct. In this case, the synapses at the stage that 

was correct would be weakened, reducing the probability of a correct action on future trials. 

Therefore, it is critical to test whether or not this model can learn when combined with a 

biologically realistic model of reinforcement learning, and whether it actually can provide 

better accounts of the various data than the single-stage version of COVIS.

If the two-stage model can solve the credit-assignment problem, then it seems likely that the 

model will recover from a full reversal more quickly than from a partial reversal (i.e., a 

switch to new categories constructed from the same stimuli). Again, this is in direct 

opposition to what we expect from a one-stage model. Before comparing these models to 

human behavior however, it is worth confirming these expectations. In the following 

section, we test whether the two-stage model can solve the credit assignment problem, and 

we describe simulations of both the one-stage and two-stage models. It should be noted that 

these simulations effectively present a priori predictions of the models since no 

consideration was given to empirical data in order to produce them. This is possible, in part, 

1This model only includes the so-called direct pathway through the basal ganglia, and not the indirect or hyperdirect pathways. As 
mentioned earlier, the COVIS model of procedural learning, which also only includes a direct pathway, is nevertheless consistent with 
a wide variety of data (Ashby et al., 2007; Crossley et al., 2013, 2014; Filoteo et al., 2014; Hélie et al., 2012; Valentin et al., 2014). 
Following the computational cognitive neuroscience simplicity heuristic (Ashby & Helie, 2011), we do not include structure unless it 
is critical for function or is required by existing data.
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because unlike many mathematical models, neurobiologically constrained models are 

severely limited in their range of behavior.

Simulations

We constructed biologically detailed computational cognitive neuroscience (CCN) models 

of both networks shown in Figure 2. CCN models are constructed to mimic neural networks 

that are faithful to known neuroanatomy and that include spiking neuron units in each of the 

modeled brain regions (Ashby & Helie, 2011). The models use learning rules that mimic 

biologically plausible synaptic plasticity. Typically, models of each neuron type are fixed by 

fitting the individual unit models to appropriate single-unit recording data from the 

literature. In real brains, connections between brain regions do not appear or disappear from 

task to task, nor does the qualitative nature via which a neuron responds to input. For these 

reasons, the architecture of the network and the models of each individual unit (including 

numerical values of all parameters) remain fixed throughout all applications (called the Set-

in-Stone Ideal; Ashby & Helie, 2011).

Compared to traditional cognitive models, CCN models have a number of attractive 

advantages (for more details see Ashby & Helie, 2011). First, they are more constrained than 

cognitive models because of their fixed architecture and the rigid way that each unit 

responds to input. For example, the models shown in Figure 2 include a parameter 

specifying the strength of synapses between thalamus and SMA. Neuroanatomy requires 

that these are excitatory projections, so no matter the value of these parameters, increasing 

activity in thalamus can only increase activity in SMA2. Second, attending to the 

neuroscience data can expose relationships between seemingly unrelated behaviors. For 

example, the architectures shown in Figure 2 as possible models of II category learning are 

similar to the neural networks that have been proposed to underlie implicit sequence 

learning (e.g., Grafton, Hazeltine, & Ivry, 1995), suggesting these two seemingly disparate 

behaviors might share some previously unknown deep functional similarity. Third, in many 

cases, studying the underlying neuroscience leads to surprising and dramatic behavioral 

predictions that would be difficult or impossible to derive from a purely cognitive approach. 

For example, the prediction that II category learning should be impaired with a feedback 

delay came from a CCN approach. Fourth, CCN models are especially amenable to a 

converging operations approach to model testing because they make predictions about both 

behavioral and neuroscience data. Thus, rather than simply testing them against behavioral 

data, it should also be possible to test CCN models against a variety of neuroscience data, 

including single-unit recording data, lesion data, psychopharmacological data, fMRI data, 

and possibly even EEG data.

The two CCN models we constructed included all brain areas shown in Figure 2. The one-

stage model is identical to the procedural-learning system of COVIS (Ashby et al., 1998, 

2007; Ashby & Waldron, 1999; Crossley et al., 2013). The two-stage model was constructed 

in an identical manner, but with the addition of extra brain regions. Each model was 

constructed to mimic the architectures shown in the figure and included spiking neuron units 

2Of course, if the synaptic weights are set too low, then no amount of thalamic activity will cause a response in SMA. But in this case, 
the model never makes a motor response, so these values are avoided.
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in each of the depicted brain regions. The models used well-established methods (Ashby & 

Helie, 2011) and similar parameter values to previously published models (Ashby & 

Crossley, 2011; Crossley et al., 2013). In both models, learning occurred only at cortical-

striatal synapses and was mediated via a biologically plausible reinforcement-learning 

algorithm (Ashby & Helie, 2011). Therefore, in the one-stage model, learning occurred only 

at synapses between sensory cortical units and the medium spiny units in the striatum. In the 

two-stage model, learning occurred at these same synapses but also at synapses between 

preSMA units and medium spiny units in the putamen. Two units are used for each cortical-

striatal stage – one for each possible category or response. Mathematical details are given in 

the Appendix.

All parameters in the models were fixed, except the learning rates. Specifically, within each 

striatal compartment, one learning rate governed the rate of synaptic strengthening (long-

term potentiation or LTP) and one governed the rate of synaptic weakening (long-term 

depression or LTD). Thus, in the one-stage model, two learning rates were estimated (the 

rates of LTP and LTD at synapses between visual cortex and the caudate), whereas four 

learning rates were estimated in the two-stage model (one pair for each stage of learning).

To extract the a priori predictions of the models, we ran them through full Reversal and New 

Category conditions (see Figure 4 for category distributions, the exact details of which can 

be found in the Methods of experiment reported below). Learning rates were optimized to 

extract the best possible performance of the models across both conditions (i.e., to maximize 

accuracy). Of course, it is implausible that the rates of LTP and LTD in the human striatum 

evolved specifically to optimize accuracy in the II tasks described in this article. If not, then 

the parameter values that maximize model accuracy are not good estimates of human striatal 

learning rates. Even so, examining performance of the models under conditions in which 

they learn as quickly as possible demonstrates the natural behavior of the model 

architectures, showcasing the best performance one can hope for with each model.

To find best-fitting values of the learning rates, we used particle swarm optimization (e.g., 

Clerc, 2012), which creates a population of potential solutions (the “particles”) and then 

iteratively moves these particles in parameter space according to both their historically best 

position, and the best known position of their neighborhood. Due to the stochastic nature of 

the models, the “function” to be optimized (proportion of correct responses) is not strictly a 

function at all. Hence particle swarm optimization, which makes very few assumptions 

about the form of the problem, is an appropriate tool where traditional optimization routines 

will fail. After parameter estimation was complete, 100 simulations were run with the best-

fitting parameter values and the model predictions were computed by taking the mean across 

all 100 simulations.

The results are presented in Figure 3. First note that as expected, the one-stage model 

performs worse in the Reversal condition than in the New Categories condition. This seems 

an inescapable consequence of the fact that all stimuli change their category membership in 

the Reversal condition, whereas only half change their membership in the New Categories 

condition. Any one-stage model must therefore reverse all associations in the Reversal 

condition, but only half of the associations in the New Categories condition.
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Second, note that the two-stage model learns consistently, both during training and during 

transfer. Thus, this model successfully solves the credit assignment problem.

Third, note that the two-stage model predicts better transfer performance in the Reversal 

condition than in the New Categories condition. It does this when it maximizes accuracy 

across both tasks with no regard for human data. In this sense, it is an a priori prediction of 

the model.

Fourth, note that initial learning is actually faster for the two-stage model than for the one-

stage model when both models are optimized for maximum performance. This is because 

the one-stage model maximizes accuracy when it recovers quickly from the reversal. A 

quick recovery requires a high LTD rate (an order of magnitude larger than the rate of LTP). 

This high rate of LTD hastens recovery from the reversal, but at the cost of slower initial 

learning. Thus, despite having more synapses to train (two stages of learning versus one), 

the two-stage model still learns faster. Further simulations showed that learning rates can be 

found that allow the one-stage model to learn initially as fast (or faster) than the two-stage 

model, but performance after the reversal takes a serious hit with these parameter values. In 

particular, transfer accuracy of the model is below chance for a considerable time. Thus, the 

one-stage model can either do well initially or during the reversal, but not both. The natural 

flexibility of the two-stage model provides an inherent advantage over the one-stage model, 

even in training, with quite minimal constraints on transfer performance (i.e., at least as 

good as chance).

The next section describes an experiment to test this new model.

An Experimental Test

Participants were trained on the II categories shown in Figure 1. After they had learned the 

categories, without any warning, they were transferred to one of three conditions: (1) 

Reversal: a reversal shift in which the category assignment of every stimulus was reversed; 

(2) New Categories: new categories created from the same stimuli; or (3) Reversal/Delay: a 

reversal shift with a feedback delay. The new categories were created by rotating the 

category bound shown in Figure 1 by 90 degrees counterclockwise (see Figure 4). Note that 

this rotation reverses the category membership of half of the stimuli whereas the other half 

retain their same category membership as during initial training. Thus, simple S-R models 

predict that performance should be worse in the Reversal conditions than in the New 

Categories condition.

A number of previous studies have included similar experimental conditions. For example, 

numerous studies have reported that reversing the category response keys interferes with the 

expression of II learning, but not the expression of simple RB learning (Ashby, Ell, & 

Waldron, 2003; Maddox, Bohil, & Ing, 2004; Spiering & Ashby, 2008). None of this work 

however, focused on recovery and no attempt was made to compare the effects of a reversal 

to learning new categories. Our Reversal and New Categories conditions are most similar to 

Experiment 3 of Maddox et al. (2010). However, in our experiment, participants were not 

informed of any changes to the categories prior to transfer, whereas in Maddox et al. (2010) 

participants were explicitly informed that the category structures had changed at the time of 
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the reversal or when new categories were introduced. Especially in reversal conditions, 

informing participants when a change has occurred raises the possibility of explicit 

intervention. For example, one possibility is that the faster recovery from a full reversal 

reported by Maddox et al. (2010) was not a natural property of procedural learning, but 

instead was due to explicit intervention. This possibility is somewhat reduced in our design 

because we did not explicitly inform participants of a change. Another critical difference is 

that we included the Reversal/Delay condition to explore whether reversal learning is 

mediated via procedural or declarative mechanisms. In this condition, feedback was delayed 

by 2.5 seconds after the response. The delay was introduced in the final block of training to 

avoid its introduction coinciding with transfer. This way the introduction of the delay itself 

would not alert participants to any changes in category membership.

Motivation for including the Reversal/Delay condition comes from the neuroscience 

literature on synaptic plasticity within the basal ganglia. Much evidence suggests that 

procedural learning depends critically on the striatum (Badgaiyan, Fischman, & Alpert, 

2007; Grafton et al., 1995; Jackson & Houghton, 1995; Knopman & Nissen, 1991) and in 

particular, on synaptic plasticity at cortical-striatal synapses that is facilitated by a dopamine 

(DA) mediated reinforcement learning signal (Valentin et al., 2014). The idea is that phasic 

DA levels in the striatum increase following positive feedback, and decrease following 

negative feedback, causing the strengthening (i.e., via LTP) or weakening (i.e., via LTD) of 

recently active synapses, respectively. In this way, the DA response to feedback serves as a 

teaching signal for which successful behaviors increase in probability and unsuccessful 

behaviors decrease in probability.

According to this account, synaptic plasticity can only occur when the visual trace of the 

stimulus and the post-synaptic effects of DA overlap in time. The cortical excitation induced 

by the visual stimulus results in glutamate release into the striatum, which initiates several 

post-synaptic intracellular cascades that alter the cortical-striatal synapse (e.g. Rudy, 2014). 

One such cascade, which seems especially important for cortical-striatal synaptic plasticity, 

is mediated by NMDA receptor activation and results in the phosphorylation of calcium/

calmodulin-dependent protein kinase II (CaMKII). During a brief period of time (thought to 

be several seconds) when CaMKII is partially phosphorylated, a chemical cascade that is 

initiated when DA binds to D1 receptors can potentiate the LTP-inducing effects of CaMKII 

(e.g., Lisman, Schulman, & Cline, 2002).

Thus, the effects of feedback should be greatest when the peak effects of the DA-induced 

cascade overlap in time with the period when the CaMKII is partially phosphorylated. The 

further apart in time these two cascades peak, the less effect DA will have on synaptic 

plasticity. In fact, a number of studies have reported II category learning results consistent 

with these predictions. First, Worthy, Markman, et Maddox (2013) reported that II learning 

is best with feedback delays of 500ms and slightly worse with delays of 0 or 1000ms. 

Second, several studies have reported that feedback delays of 2.5 secs or longer impair II 

learning, whereas delays as long as 10 secs have no effect on RB learning (Dunn, Newell, & 

Kalish, 2012; Maddox, Ashby, & Bohil, 2003; Maddox & Ing, 2005).
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In summary, if reversal learning is mediated via procedural memory, and in particular by 

cortical-striatal dynamics, then it should be impaired when feedback is delayed. In contrast, 

if reversal learning is mediated cortically (e.g., by declarative mechanisms) then it should be 

unaffected by delayed feedback. Evidence reported below that reversal learning is indeed 

impaired when feedback is delayed support the proposed new model, which assumes that the 

reversal is mediated via procedural memory.

Method

Participants—Seventy-nine participants completed the study and received course credit 

for their participation. All participants had normal or corrected to normal vision. Each 

participant was assigned randomly to one of three conditions. Participants were excluded 

from subsequent analyses if they failed to reach a mean of accuracy of 70% during the final 

two blocks of training. Sixty-three participants met this criterion (Reversal N = 19; New 

Categories N = 25; Reversal/Delay N = 19). A priori power calculations using G*Power 

3.1.9 (Faul, Erdfelder, Lang, & Buchner, 2007) suggest that with this sample size, power is 

approximately 0.8 for a moderate effect size (f = 0.25) with α = 0.05 and a between-measure 

correlation of 0.3.

Stimuli and Category Structure—Stimuli were sine-wave gratings with Gaussian 

masks (Gabor patches). They differed across trials only in orientation and spatial frequency. 

Values for orientation and frequency were assigned by sampling from two bivariate normal 

distributions – one for each category. These distributions had means μ1 = (40, 60) and μ2 = 

(60, 40), and identical covariance matrices, . The optimal decision bound 

for these distributions is the line y = x, which would achieve 100% accuracy.

Two hundred random samples from each distribution were selected for the training 

categories and 100 random samples were selected for the transfer categories. Outliers (more 

than three Mahalanobis distance units from the mean) were discarded and replaced with new 

samples. Each set of sample stimuli was linearly transformed so that the sample means, 

variances, and covariances exactly matched the population values. In the reversal and 

reversal/delay conditions correct category membership during transfer was the reverse of 

during training. For the new category condition, the stimuli were rotated 90 degrees in 

stimulus space to form the transfer categories. Figure 4 shows scatter plots for the transfer 

stimulus distributions that were used.

To convert the sampled values into orientations and spatial frequencies the following 

transformations were chosen:

• Spatial Frequency = (x + 7.5)/60 (cycles per degree)

• Orientation = 0.9y + 20 (degrees)

These values were selected so as to give roughly equal salience to both dimensions.

Procedure—Each participant was randomly assigned to one of three conditions: Reversal, 

New Categories, Reversal/Delay. The experiment was run on computers using PsychoPy 

Cantwell et al. Page 10

Psychon Bull Rev. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Peirce, 2007). Before the experiment, participants were told that they would learn to 

categorize novel stimuli. An initial set of on-screen instructions told participants that two 

buttons would be used (the ‘f’ and ‘j’ keys), and that to start with they would have to guess, 

having not seen such stimuli before. For all conditions, the total session consisted of 12 

blocks of 50 trials each. Between each block there was a participant-terminated rest period. 

The stimuli were shuffled and presented in a random order for each participant.

For the Reversal and New Category conditions there were 8 blocks of training followed by 4 

blocks of transfer. No warning or prompt was given about transfer. For the Reversal/Delay 

condition there were likewise 8 blocks of training followed by 4 blocks of transfer and no 

warning or prompt was given about transfer. The feedback delay was introduced in the final 

block of training.

At the start of each trial a fixation crosshair was presented for 600ms. Following this, a 

response-terminated stimulus was presented for a maximum of 3000ms. Auditory feedback 

was then given. For a correct response a happy sound was played: the notes E, G#, and B 

were played in quick succession with an organ sound. Incorrect responses were met with a 

negative sound: G then E with a klaxon sound. Auditory feedback was delivered 

immediately after each response throughout the Reversal and New Categories conditions 

and during the first 7 blocks of the Reversal/Delay condition. For the final 5 blocks of 

Reversal/Delay, feedback was given 2.5 seconds after the response. During the 2.5 seconds 

between stimulus and feedback, a random stimulus from the stimulus space was presented.

Results

Accuracy analysis—The accuracy results, averaged across participants, are shown in 

Figure 5. The data were split between training and transfer for the purpose of statistical 

analysis.

To examine whether there were any differences in how the three groups learned the identical 

training categories, a 3 condition × 8 block repeated-measures ANOVA was computed. The 

main effect of block was significant [F(7, 420) = 26.9, η2 = 0.196, , p < 0.001], 

which suggests significant category learning. More importantly, however, there were no 

differences among conditions [F(2, 60) = 0.34, p > 0.5] and no interaction between block 

and condition [F(14, 420) = 1.33, p = 0.19]. Thus, all groups learned the training categories 

in a similar manner.

To examine differences during transfer, we ran a 3 condition × 4 block repeated measures 

ANOVA. The main effects of condition [F(2, 60) = 12.46, η2 = 0.181, , p < .001] 

and block [F(3, 180) = 29.02, η2 = 0.124, , p < .001] were both significant, and the 

condition × block interaction was not significant [F(6, 180) = 0.38, p > 0.5].

We also completed post-hoc repeated measures ANOVAs for each pair of conditions during 

transfer. These analyses revealed that recovery from the reversal with immediate feedback 

was significantly different than recovery from the new categories [F(1, 42) = 21.7, η2 = 

0.149, , p < .001] and from the reversal with delayed feedback [F(1, 36) = 18.61, 
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η2 = 0.231, , p < .001], but recovery from the new categories was not significantly 

different than recovery from the reversal with delayed feedback [F(1, 42) = 2.005, p = 0.16].

Decision-Bound Modeling—The accuracy-based analyses demonstrate that recovery 

from a reversal is faster than transfer to new categories or a reversal with feedback delay. 

These results are consistent with two plausible hypotheses. One is that the recovery 

differences are due entirely to properties of procedural learning. Another however, is that the 

reversal and/or new categories caused participants to switch to non-optimal declarative 

memory-based strategies. To test between these possibilities, a number of different decision 

bound models (e.g., Ashby & Gott, 1988; Maddox & Ashby, 1993) were fit to the response 

data of each individual participant.

Decision bound models assume that participants partition the perceptual space into response 

regions. On every trial, the participant determines which region the percept is in, and then 

emits the associated response. Three different types of models were fit to each participant’s 

responses: models that assumed an explicit RB strategy, models that assumed an II strategy, 

and models that assumed random guessing. The RB models assume that participants set a 

decision criterion on a single stimulus dimension. For example, a participant might base his 

or her categorization decision on the following rule: “Respond A if the bar width is small, 

otherwise respond B”. Two versions of the model were fit to the data. One version assumed 

a decision based on spatial frequency (i.e. bar width), and the other assumed a decision 

based on orientation. These models have two parameters: a decision criterion along the 

relevant perceptual dimension, and a perceptual noise variance. The II model assumes that 

participants divide the stimulus space using a linear decision bound. One side of the bound 

is associated with an A response and the other side is associated with a B response. These 

decision bounds require linear integration of both stimulus dimensions, thereby producing 

an II decision strategy. This model has three parameters: the slope and intercept of the linear 

decision bound, and a perceptual noise variance. Two models assumed the participant 

guessed randomly on every trial. One version assumed that each response was equally likely 

to be selected. This model has no free parameters. A second model assumed that the 

participant guessed response A with probability p and guessed B with probability 1 − p, 

where p was a free parameter. This model is useful for identifying participants who are 

biased towards pressing one response key.

Model parameters were estimated using the method of maximum likelihood, and the statistic 

used for model selection was the Bayesian information criterion (BIC; Schwarz, 1978), 

which is defined as: BIC = r ln N − 2 ln L; where r is the number of free parameters, N is the 

sample size, and L is the likelihood of the model given the data. The BIC statistic penalizes 

models for extra free parameters. To determine the best-fitting model within a group of 

competing models, the BIC statistic is computed for each model, and the model with the 

smallest BIC value is the winning model. All models were separately fit to the last 100 

training trials of each participant and the last 100 transfer trials.

The results of the model fitting are presented in Table 1. Note that more than 90% of the 

participants successfully acquired an II strategy during training and that this percentage did 

not differ much across conditions. Thus, in all three conditions, the vast majority of 

Cantwell et al. Page 12

Psychon Bull Rev. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



participants appeared to learn the categories using a procedural memory strategy. After 

transfer in the Reversal condition, explicit one-dimensional rule use increased slightly but II 

strategies remained in use by the majority of participants. In stark contrast, almost two thirds 

of participants in the Reversal/Delay condition used rules after transfer. Fisher’s exact test 

supports the conclusion that the distribution of strategies is significantly different between 

conditions (p = 0.02).

The fact that participants continued using II strategies after transfer in the Reversal condition 

indicates that performance observed here is due directly to properties of procedural learning. 

The greater move away from II strategies in the New Categories and Reversal/Delay 

conditions makes the inferences about procedural learning slightly less direct. Since the 

transfer was introduced without any prompt or warning, there were no direct cues to 

participants to change strategy. Rather, a change in strategy would likely be prompted by the 

failing of the currently employed strategy. That this “failing” occurred after transfer in the 

New Categories and Reversal/Delay conditions, but not in the Reversal condition, is 

indicative of poorer performance of procedural learning in these transfer scenarios. It should 

also be noted that the delay in the Reversal/Delay condition was introduced before transfer, 

and so the delay itself does not appear to have caused a move away from II strategies.

As a further analysis, and to verify our reasoning above, we repeated the accuracy-based 

analyses reported in the previous section for the subset of participants who used procedural 

strategies throughout the course of the experiment. Thus, the data of any participant that 

were best fit by an RB or guessing strategy, either during training or transfer, were excluded 

from this analysis. Qualitatively, the accuracy plots remained in agreement with Figure 5. In 

particular, the same ordinal relations were observed among conditions. To assess for 

significance, ANOVAs were run as before. Despite the greatly reduced sample sizes 

(Reversal N = 14; New Categories N = 10; Reversal/Delay N = 6), the effect due to 

condition was still significant during transfer [F(2, 27) = 4.03, η2 = 0.113, , p = 

0.029], with performance better in the Reversal condition than in either the New Categories 

or Reversal/Delay conditions.

Discussion

Our data analyses revealed a number of notable results. First, in line with previous findings, 

participants recovered more quickly from a full category reversal than from a rotation of the 

category structures that reversed the category membership of only half the stimuli. Decision-

bound modeling showed that this difference was likely not due to a switch from a procedural 

strategy to suboptimal one-dimensional rules.

Second, note that the initial learning curve for the Reversal group appears similar to the 

learning curve for this group during transfer. There are several differences though between 

these training and transfer phases, which make it difficult to draw strong conclusions from 

this similarity. One is that at the beginning of initial training, accuracy is at chance (i.e., 

50%), whereas at the beginning of transfer, accuracy is considerably below chance. Another 

critical difference is that participants must overcome the natural human tendency to 
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perseverate with response strategies (e.g., Ramage, Bayles, Helm-Estabrooks, & Cruz, 1999) 

during transfer but not during initial training.

Third, feedback-delay, which is known to impair striatal-based learning, drastically 

undermined recovery from a full reversal. This result is consistent with the hypothesis that 

reversal learning is dependent on the striatum.

This qualitative pattern of results is predicted by the two-stage model, but not by the one-

stage model. Later in this section we will examine the quantitative fits of both models to the 

human data. First though, we will explore the implications of these results for other existing 

models of category learning.

The most successful models of category learning assume that S-R associations are formed 

through a sophisticated process. For example, consider ATRIUM (Erickson & Kruschke, 

1998) and COVIS (Ashby et al., 1998). Both models assume that category learning is 

mediated by the interaction of two systems – one that learns S-R associations directly and 

one in which S-R associations are formed by applying an explicit rule. ATRIUM assumes 

that the direct system is a standard exemplar model, whereas COVIS assumes it is the 

striatal pattern classifier. Although both models are capable of accounting for a wide range 

of categorization behavior, they both seem incompatible with our results. During training, 

both ATRIUM and COVIS predict that the direct system will dominate performance 

(because optimal performance cannot be obtained with a simple rule). There are two 

possibilities for transfer: either the direct system will continue to dominate, in which case 

the models essentially reduce to simple single-system S-R models, or the models predict a 

switch to rule-based strategies. Neither of these options is consistent with our results. Single-

system S-R models make the wrong predictions about the relative difficulty of recovering 

from a reversal compared to learning new categories while rule use predicts that decision 

bound models that assume a simple one-dimensional rule should dominate during transfer.

Models that assume S-R associations are formed via sophisticated context-dependent 

Bayesian inference (Anderson, 1991; Gershman et al., 2010; Redish et al., 2007) might 

avoid catastrophic interference in the Reversal condition by recognizing the transfer phase 

as a new context. In this case, the previously learned S-R associations would simply be set 

aside, and a new set of associations would be learned from scratch. In our opinion, such 

context-sensitive models provide the best opportunity for single-stage models of learning to 

account for our results. Even so, such models face some major challenges. Transfer 

performance in context-sensitive models depends on their ability to recognize the transfer 

environment as a new context. In general, this is easy for environments that share few 

attributes, and difficult for those that are highly similar. In our experiments there are no cues 

of the traditional type that signal transfer is occurring. Error rate increases in all conditions, 

and in the New Categories condition there are some novel stimuli (around 30%), but it is not 

clear how these changes could be used to define a new context. Furthermore, for an S-R 

model to account for our results it would have to recognize a new context in the Reversal 

condition, but not in the New Categories or Reversal/Delay conditions. We know of no 

current models capable of this discrimination. But more work is needed to determine 

whether such a model is possible.
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Even so, it is important to note that the issue of context-sensitive learning is logically 

unrelated to whether procedural learning is mediated by one or two stages. In fact, we have 

proposed elsewhere that striatal learning is context dependent (Crossley et al., 2013, 2014). 

So our hypothesis is that the best model of procedural learning will probably combine 

context sensitivity with two stages of learning.

In summary, previous models of procedural category learning seem unable to account for 

why reversal learning is easier than learning new categories. To evaluate the ability of the 

two-stage model to provide a good quantitative fit to our results, we fit it and the one-stage 

model described above to the data using particle swarm optimization. Using this approach, 

we found parameter estimates that minimized the sum of squared errors between the model 

and the human data.3

We chose to fit the models to the learning and transfer data of all participants, rather than 

just to the data from the subset of participants whose responses were best fit by a model that 

assumed a procedural strategy. First, some of the sample sizes of participants in this latter 

group were small, so standard errors were large. Second, as mentioned previously, the data 

of the two groups were highly similar. Third, the decision bound modeling, like any 

statistical method, is susceptible to errors.

As in our earlier simulations, after parameter estimation was complete, 100 simulations were 

run with the best-fitting parameter values and the model predictions were computed by 

taking the mean across all 100 simulations. The results are presented in Figure 6. As 

expected, the one-stage model again performs worse in the Reversal condition than in the 

New Categories condition. Thus, this prediction is made regardless of whether the model 

attempts to mimic human performance or to maximize accuracy.

To test the generality of this result, we repeated these simulations using a single-layer 

perceptron (Bishop et al., 2006; Rosenblatt, 1958). This is a popular machine-learning 

model that learns linear classification boundaries. The results were qualitatively similar to 

the single-stage model. The best performing version of the perceptron learned the new 

categories faster than the reversed categories. A brute force exploration of the parameter 

space failed to find parameters for which the reversal was learned faster than the new 

categories. Thus, even taking a more general machine-learning approach and abandoning 

biological constraints, single-stage models appear unable to account for the results of this 

experiment.

In contrast, the two-stage model provides good quantitative and qualitative fits to the human 

data. Qualitatively, it captures the major features of the data, including i) consistent 

incremental learning during initial training, ii) faster recovery from a reversal than from 

transfer to new categories, and iii) that recovery in both conditions never reaches final-block 

training accuracy. Quantitatively, the fit is also quite good, at least for 15 of the 16 data 

3We made no attempt to fit the data from the Reversal/Delay condition. The one-stage model has successfully accounted for the 
effects of various feedback delays (i.e., from 0 to 2.5 secs) (Valentin et al., 2014), so it would be straightforward to model these data. 
Even so, we chose not to include such modeling. First, both models predict poorer performance in the Reversal/Delay condition than 
in the Reversal Condition, because all learning occurs in the striatum in both models. Second, modeling the Reversal/Delay data 
would require extra free parameters.
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points. The single exception is the first transfer block (i.e., block 9) in the Reversal 

condition, where the two-stage model performs notably worse than the human participants. 

Figure 3 shows that this is not a necessary prediction of the model, however. Rather, it 

appears to be a feature of the particular set of parameter values that minimize sum of 

squared errors.

General Discussion

We proposed a revision of a classic procedural-learning model that assumes a single 

cortical-basal ganglia loop. The new model includes two stages implemented via two 

sequentially connected basal ganglia loops with DA-dependent synaptic plasticity at both 

sets of cortical-striatal synapses. Stage 1 learns about category structure and stage 2 learns 

about response mappings. We reported new experimental results that were strongly 

incompatible with classic S-R models of procedural learning but consistent with this new 

account. Our experimental data showed that recovery after a full reversal, in which all 

category labels are reversed, is faster than learning new categories in which only half the 

stimuli reverse category membership, but only when feedback is provided immediately after 

the response. This difference is completely abolished if feedback is delayed by just a few 

seconds. This, we argue, supports the hypothesis that the categories were learned in two 

stages (since full-reversals are less impaired) and that reversals are mediated within the basal 

ganglia (since delayed feedback removes this effect).

In addition to the considerable evidence that there are interactions between otherwise 

“distinct” cortical-striatal loops, our proposal demonstrates a potential advantage to such an 

open interconnectedness. Such interactions may allow for significantly more flexible 

behaviors, and could even provide benefits in fixed scenarios, such as the increased learning 

rate described above.

The model we propose assumes that stage 1 learning is mediated via projections between 

visual cortical areas and the caudate body and tail, whereas stage 2 is assumed to be 

mediated through projections between preSMA and the posterior putamen. There is already 

good evidence that the body and tail of the caudate receive similar DA inputs as the 

posterior putamen (e.g., Haber, Kim, Mailly, & Calzavara, 2006). For this reason, we 

assumed that learning in both stages is mediated by a single global DA signal that is 

identical at every cortical-striatal synapse. Global learning signals of this type greatly reduce 

model flexibility, and in the present case, they make the model potentially susceptible to the 

credit-assignment problem. Thus, it is noteworthy that our model was able to learn at all. 

More importantly, however, it also provides a significantly improved account of the 

behavioral data. This was achieved despite attempts to significantly constrain model 

construction to biologically grounded mechanisms and anatomy.

The two-stage model in Figure 2 is superficially similar to a traditional 3-layer connectionist 

network since both allow for learning at two successive stages. In 3-layer connectionist 

networks, the weights are modifiable between the input layer and the intermediate or hidden 

layer, and between the hidden and output layers. Adding a hidden layer to connectionist 

networks has long been known to add to their flexibility in accounting for a range of 
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behaviors. Three-layer connectionist networks, however, are fundamentally different from 

the model proposed here in at least two important ways. First, the weights in connectionist 

networks are typically adjusted through some gradient-descent learning algorithm (e.g., 

back-propagation) and therefore each synaptic weight is trained via its own independent 

teaching signal. In contrast, as already noted, our network assumes a more biologically 

plausible global reinforcement learning signal that is identical at all synapses. Second, 

connectionist models are typically not constrained by neuroanatomy, whereas the 

architecture of the models described in Figure 2 was chosen to mimic known neuroanatomy.

In summary, empirical results demonstrate the need for a move away from classic S-R 

models of category learning but are compatible with the assumption of a multiple-stage 

process. We proposed a two-stage generalization of a classic one-stage procedural category-

learning model, in which both stages are learned striatally. Our own empirical investigations 

support the hypothesis that a second stage of category learning, which associates a response 

with a category structure, is mediated within the basal ganglia. Via simulations, the model 

was shown to provide a good account of the data. Future research should investigate the 

possible effects of a second category-learning stage on tasks other than the simple reversal 

and new category tasks studied here.
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Appendix: Computational Cognitive Neuroscience Modeling

Neural Network

Visual input was simulated using an ordered array of 10, 000 sensory units, each tuned to a 

different stimulus. We assumed that each unit responds maximally when its preferred 

stimulus is presented and that its response decreases as a Gaussian function of the distance 

in stimulus space between the stimulus preferred by that unit and the presented stimulus. 

Activation in each unit was either 0 or equal to some positive constant value during the 

duration of stimulus presentation. Specifically, we assumed that when a stimulus is 

presented, the activation of sensory cortical unit k is given by:

(A1)

where d is the distance in stimulus space between the preferred stimulus of unit k and the 

presented stimulus. A and a are both constants, determining the maximum levels of 

activation and the width of the tuning curves.

In the first striatal stage of the one-stage and two-stage models, there are two medium spiny 

units. Denote these as j and j′. The activation in striatal unit j at time t, denoted Vj(t), was 

determined by the following version of the Izhikevich (2007) model of the medium spiny 

neuron:
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(A2)

(A3)

with

(A4)

where wjk(n) is the strength of the synapse between sensory cortical unit k and striatal unit j 

on trial n, with κ a constant, and ε(t) Gaussian white noise. To produce spikes, when Vj(t) 

reaches 40 mV it is reset to -55 mV, and U (t) is reset to U (t) + 150. Input to the Izhikevich 

model is calculated according to equation A4, the second term of which models lateral 

inhibition from striatal unit j′ using the alpha function f[x] (e.g., Rall, 1967), a standard 

method for modeling the temporal smearing that occurs postsynaptically when a presynaptic 

neuron fires a spike. Specifically, if time striatal unit j′ spikes at time t0, the following input 

is delivered to striatal unit j:

(A5)

with t′ = t – t0. The alpha function is used consistently to model the post-synaptic effects of a 

spike in every unit of both models.

The two-stage model also has a second pair of medium spiny neurons, this time in the 

putamen (see Figure 2). These are likewise governed by equations A2 and A3 only this time 

the equation for I is replaced by:

(A6)

where the sum over units k indicates the units from preSMA, and the unit j′ is the lateral in 

putamen.

Activation in cortical regions (SMA and preSMA) is modeled using the Izhikevich 

equations as well. However, the parameters chosen here were those of “regular spiking 

neurons” (Izhikevich, 2007).

Activation in all other units is modeled with the quadratic integrate-and-fire (QIF) model 

(see e.g. Ermentrout & Kopell, 1986, or Izhikevich, 2007). The QIF model assumes that the 

intracellular voltage at time t is given by:

(A7)
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where β is a constant that determines the baseline firing rate, I is the total driving current, 

−60 is the resting membrane potential, and −40 is the instantaneous threshold potential. 

Equation A7 produces the upstroke of action potentials by itself, but not the downstroke. To 

create spikes, when V (t) reaches 35 it is reset to −50.

The architecture of both models is shown in Figure 2. In the one-stage model, strong 

activation in the striatum inhibits the tonically active GPi, which in turn allows thalamus to 

excite cortex. The two-stage model has analogous behavior for both loops through the 

striatum (i.e., caudate and putamen).

All differential equations were solved numerically using Euler’s method with time steps of 1 

ms. To generate motor responses, thresholds were placed on the number of spikes produced 

by each SMA unit. As soon as one unit spiked enough to reach threshold, the model was 

considered to have made the corresponding response. If no response was made within 

3000ms, the trial ended and no response was recorded.

Learning

Initially the weights wjk, which codify the strength of projections from cortex to striatum, 

were set at random uniformly in the [0.1, 0.2) interval. For the two-stage model, the wjk 

from preSMA to putamen were set at random uniformly in the [1.75, 1.85) interval. 

Following this, all cortical-striatal synaptic weights were then updated after each trial via a 

biologically plausible reinforcement learning algorithm (Ashby & Helie, 2011). In the one-

stage model, learning occurred only at synapses between the sensory cortical units and the 

medium spiny units in the striatum. In the two-stage model, learning occurred at these same 

synapses but also at synapses between preSMA units and putamen units. After feedback on 

trial n, the strength of the synapse between units a and b was adjusted as follows:

(A8)

where Ia is the driving current at b due to action potentials from a, and [g(t)]+ is equal to g(t) 

when g(t) > 0 and 0 otherwise. θNMDA and θAMPA represent the activation thresholds for 

post-synaptic NMDA and AMPA glutamate receptors, respectively. In Equation A8 these 

parameters act as thresholds so that synaptic strengthening (i.e., LTP) occurs only if post-

synaptic activation exceeds θNMDA. If activation is between θAMPA and θNMDA then the 

synapse is weakened, and no change in the synaptic weight occurs if activation is below 

θAMPA.

D(n) represents the amount of dopamine released in response to the trial n feedback and 

Dbase represents the baseline dopamine level. Following previous applications (e.g., Ashby 

& Crossley, 2011), we assumed that dopamine release was a piecewise linear function of the 
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reward prediction error (RPE), which is defined as the difference between obtained reward 

on trial n, Rn, and the predicted reward, Pn; that is,

(A9)

Rn is set to 1 when reward feedback is given, 0 in the absence of feedback, and −1 when 

error feedback is given. The predicted reward, Pn is calculated using the single-operator 

model (Bush & Mosteller, 1951):

(A10)

Finally, we assumed that the amount of dopamine release is related to the RPE in the manner 

consistent with the dopamine firing data reported by (Bayer & Glimcher, 2005). 

Specifically, we assumed that

(A11)

Note that the baseline dopamine level is 0.2 (i.e., when the RPE = 0) and that dopamine 

levels increase linearly with the RPE. However, note also the asymmetry between dopamine 

increases and decreases. As is evident in the Bayer and Glimcher (2005) data, a negative 

RPE quickly causes dopamine levels to fall to zero, whereas there is a considerable range for 

dopamine levels to increase in response to positive RPEs.

Parameter Estimation

Most parameters in the models were fixed during model construction. For example, the 

parameters in the medium spiny neuron units were taken from Izhikevich (2007). The 

parameters for the units in the other regions were chosen so that a reasonable change in the 

firing rate of the pre-synaptic unit would cause a reasonable change in the firing rate of the 

post-synaptic unit. The baseline firing rate of all cortical units was set to a low value, 

whereas the baseline firing rate of thalamic and GPi units was set to a high value. These 

values were chosen because GPi neurons have a high tonic firing rate and so as to mimic 

other excitatory inputs to thalamus. This allows the thalamus to excite cortex when the tonic 

inhibition from the GPi is reduced by striatal firing. The height of the radial basis function 

was chosen to be large enough so that visual activation increased striatal firing, and the 

radial basis function width was set to 1/8th of the stimulus space (analogous to a standard 

deviation). The parameters in the dopamine model were taken from Ashby et Crossley 

(2011).

Thus, only the parameters αw and βw of the learning Equation A8 were adjusted 

independently for the two models. In model 1 there is one α and one β, corresponding to the 

rates of LTP and LTD at synapses from visual cortex into striatum. Model 2 has two α and 
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two β – one pair for each stage of learning. Particle swarm optimization was used to find 

optimal values for these parameters. See Table 2 for values.
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Figure 1. 
An example of stimuli that might be used in an information-integration (II) category-

learning task. Gabor patches that differ on spatial frequency and orientation are assigned to 

either category A or B.
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Figure 2. 
Architectures for both models simulated in this article. Diamonds represent Izhikevich 

medium spiny neuron units, circles represent quadratic integrate-and-fire units, squares 

represent Izhikevich regular spiking neuron units. (SMA = supplementary motor area, GPi = 

internal segment of the globus pallidus, VL = ventral-lateral nucleus of the thalamus, VA = 

ventral-anterior nucleus of the thalamus)
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Figure 3. 
The most accurate performance allowed by each model.
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Figure 4. 
Scatter plots showing stimuli that were used during transfer. Top: transfer stimuli for 

Reversal and Reversal/Delay conditions. Bottom: transfer stimuli for New Categories 

condition.
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Figure 5. 
Mean accuracy per block, for each condition.
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Figure 6. 
Human data and the best-fitting predictions of both models to training and transfer for 

Reversal and New Categories conditions. Human data is plotted with solid lines, simulated 

with dashed.
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Table 1

Number of participants whose responses were best fit by decision bound models of three different types.

f II strategy 1-D rule guessing

Reversal training 17 2 0

Reversal transfer 14 5 0

New Categories training 23 2 0

New Categories transfer 11 9 5

Reversal/Delay training 17 2 0

Reversal/Delay transfer 6 12 1
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Table 2

Estimated learning rates for each model.

1-stage 2-stage

Best fit to human data

α1 1.09 × 10−7 2.13 × 10−10

β1 1.45 × 10−7 2.14 × 10−8

α2 8.39 × 10−7

β2 2.75 × 10−8

Maximum accuracy

α1 5.73 × 10−8 3.45 × 10−8

β1 1.31 × 10−7 4.04 × 10−8

α2 3.17 × 10−7

β2 1.11 × 10−7
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