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ABSTRACT

Post-translational modifications (PTMs) of transcription
factors play a crucial role in regulating metabolic
homeostasis. These modifications include phosphory-
lation, methylation, acetylation, ubiquitination, SUMOy-
lation, and O-GlcNAcylation. Recent studies have shed
light on the importance of lysine acetylation at nonhis-
tone proteins including transcription factors. Acetyla-
tion of transcription factors affects subcellular
distribution, DNA affinity, stability, transcriptional activ-
ity, and current investigations are aiming to further
expand our understanding of the role of lysine acetyla-
tion of transcription factors. In this review, we summa-
rize recent studies that provide new insights into the
role of protein lysine-acetylation in the transcriptional
regulation of metabolic homeostasis.

KEYWORDS metabolic homeostasis, transcription
factor, post-translational modification, type 2 diabetes
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INTRODUCTION

Chronic metabolic disorder has become a worldwide health
problem, in parallel with the increasing incidence of obesity
and type 2 diabetes mellitus (T2DM) (Chen et al., 2012).
Metabolic syndrome is a disorder caused by abnormal
energy utilization and storage (Zivkovic et al., 2007). The
pathogenesis of metabolic syndrome involves both insulin
resistance and β-cell dysfunction (Kahn et al., 2006). In the
insulin-resistance state, the peripheral tissues do not
respond to normal circulating concentrations of insulin due to
abnormalities in metabolic control mechanisms (Perry et al.,

2014). Understanding molecular mechanism(s) of PTM may
provide a novel background for develop drugs for anti-
metabolic syndrome.

In the adaptation of eukaryotic cells to internal and
external stimuli, transcription factors act as critical media-
tors coordinately regulating biological processes (Francis
et al., 2003). In most cases, these transcription factors
exert their actions by directly binding to cognate consen-
sus sequences of target genes (Li et al., 2015). These
transcription factors are subjected to post-translational
modifications (PTMs) affecting their activity, stability, intra-
cellular distribution, and interaction with other proteins
(Nerlov, 2008). Types of PTMs include reversible acetyla-
tion, phosphorylation, SUMOylation, glycosylation, and
ubiquitination (Meek and Anderson, 2009; Zhao et al.,
2011). Recently, acetylation and deacetylation of histones
and nonhistone proteins have been shown to be involved
in the control of cellular energy metabolism (Kim et al.,
2006; Guan and Xiong, 2011).

Protein acetylation on lysine residues is regulated by two
types of enzymes, histone acetyltransferases (HATs) and
histone deacetylases (HDACs). HATs transfer acetyl groups
to lysine residues of the substrate proteins, while HDACs
catalyze the reverse reaction (Haigis and Sinclair, 2010;
Choudhary et al., 2014). HAT/HDAC families are responsible
for the fine control of energy metabolism by regulating the
transactivation of transcription factors.

Although many recent reviews have described the
acetylation and deacetylation of nonhistone proteins,
including transcription factors (Glozak et al., 2005; Wang
et al., 2011; Choudhary et al., 2014), specific acetylation of
the transcription factors associated with regulation of meta-
bolic genes and its relevance to metabolic homeostasis have
not been well described. In this review, we will limit our
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discussion to the relevance of acetylation of transcription
factors (excluding nuclear receptors) involved in glucose and
lipid metabolism.

HATS AND HDACS

Introduction to HATs and HDACs

In recent decades, acetylation of histones and nonhistone
protein has been shown to be a ubiquitous phenomenon that
occurs in eukaryotic cells (Vahid et al., 2015). The opposing
activities of HATs and HDACs can modulate the activities of
diverse transcription factors and regulatory proteins (Glozak
et al., 2005; Wang, 2011). The effects of acetylation on
various transcription factors are illustrated in Fig. 1. Histori-
cally, HATs have been divided into two types depending
upon their cellular localization. Type A HATs acetylate both
histones and nonhistone proteins in the nucleus. Type B
HATs, on the other hand, catalyze the acetylation of histones
in the cytoplasm (Lee and Workman, 2007). Recently, some
HATs have been shown to function within both the nucleus
and cytoplasm and have even been shown to act in the form
of multiple complexes (Kimura et al., 2005). Thus, the pre-
viously supported classification of HATs into these two
groups has become outdated (Carrozza et al., 2003; Allis
et al., 2007). At present, there are three major families of
HATs: Gcn5-related N-acetyltransferases (GNATs), MYST
proteins, and cAMP-response element-binding protein
(CBP)/E1A-associated protein of 300 kDa (p300) (Lee and
Workman, 2007).

Acetylated proteins are deacetylated by HDACs. There
are three classes of mammalian HDACs, which are classi-
fied based on their homology to their yeast counterparts.
Recently, a fourth subfamily of HDACs was added based on

phylogenetic analysis (Shirakawa et al., 2013). Class I
HDACs constitute HDAC1, -2, -3, and -8 and are primarily
localized to the nucleus. Class II HDACs include HDAC4, -5,
-6, -7, -9, and -10 and shuttle between nucleus and cyto-
plasm (Khan and La Thangue, 2012). Class III HDACs,
termed sirtuins, act as NAD+-dependent deacetylases or
ADP-ribosyltransferase (Imai and Guarente, 2014). There
are seven sirtuins (SIRT1-7), which are distributed in the
nucleus, cytoplasm, and/or mitochondria (Chang and Guar-
ente, 2014; Imai and Guarente, 2014).

Physiological role of HATs and HDACs in the regulation
of metabolic processes

Knockout of HATs/HDACs in mice generally results in
embryonic lethality (Lagger et al., 2002; Rebel et al., 2002;
Gorrini et al., 2007; Montgomery et al., 2008; Gabay et al.,
2013). Consequently, studies on the physiological effects of
HATs/HDACs require the creation of conditional Cre/LoxP-
knockout alleles and heterozygous mice. Among HATs,
CBP/p300 is a well-known player involved in regulation of
glucose and lipid metabolism. The phenotypes of heterozy-
gous CBP-deficient mice show increased insulin sensitivity
and glucose tolerance despite prominent lipodystrophy of
white adipose tissue (Yamauchi et al., 2002). Expression of a
CH1 domain deletion mutant of CBP/p300 results in
improvement of insulin sensitivity with reduction in white
adipose tissue and body mass (Bedford et al., 2011). Addi-
tionally, disruption of CBP/p300 using adenoviral short hair-
pin RNA (shRNA) leads to decreased hepatic glucose
production (HGP), whereas overexpression of p300 impairs
glucose homeostasis and insulin sensitivity (Bricambert
et al., 2010; He et al., 2013). Mice with a glycine-to-serine
mutation (G422S) of p300 exhibit decreased HGP, sug-
gesting that phosphorylation at serine residues within p300
cause decreases in acetyltransferase activity (He et al.,
2012; He et al., 2013). In the HDAC family, HDAC3 and
SIRT1 have been well studied in association with metabolic
homeostasis. SIRT1 heterozygous knockout mice fed a
high-fat diet (HFD) show increased expression of lipogenic
genes, and the mice exhibit increased risk of fatty liver
development (Xu et al., 2010). Moreover, liver or adipose
tissue-specific SIRT1-knockout mice exhibit increased body
weight with development of metabolic dysfunction when fed
an HFD (Purushotham et al., 2009; Chalkiadaki and Guar-
ente, 2012). Conversely, the gain of SIRT1 function improves
glucose homeostasis and insulin-sensitivity in diabetic mice
models (Banks et al., 2008; Li et al., 2011). In contrast, liver-
specific HDAC3-knockout mice show significant lipid accu-
mulation resulting from increased triglycerides (TG) and
overexpression of peroxisome proliferator-activated receptor
gamma (PPARγ) genes (Knutson et al., 2008). However,
these mice show improved insulin sensitivity and lowered
HGP when excess pyruvate and lactate are used for syn-
thesis of TG (Sun et al., 2012). Also, suppression of class IIa
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Figure 1. Functional consequences of acetylation of tran-

scription factors. Ac, acetyl group; K, lysine residue.
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HDACs (HDAC4, -5, and -7) ameliorates glucose home-
ostasis in mice with diet-induced obesity (DIO) mice due to
inhibition of hepatic gluconeogenesis (Mihaylova et al.,
2011). The physiological roles of HATs/HDACs are summa-
rized in Table 1.

ROLE OF TRANSCRIPTION FACTOR ACETYLATION
IN THE REGULATION OF GLUCOSE AND LIPID
METABOLISM

Forkhead box O (FoxO) family proteins

Forkhead box O (FoxO) family proteins including FoxO1,
-3a, -4, and -6 are a subfamily of the forkhead group of
transcription factors and play a pivotal role in energy meta-
bolism in peripheral tissues (Eijkelenboom and Burgering,
2013). In particular, FOXO1 (also known as FKHR) is
important for regulating genes of glucose and lipid metabo-
lism (Matsumoto et al., 2007; Nakae et al., 2008). Phos-
phorylation of FOXO1 causes cytoplasmic localization
resulting in inhibition of its transcriptional activities (Fig. 2)
(Maiese et al., 2008). Recently, the transactivation of FOXO1
was shown to be regulated in response to growth factors,
starvation, hypoxic stress, and oxidative stress (van der
Horst and Burgering, 2007; Calnan and Brunet, 2008).
Acetylation of FOXO1 occurs at three lysine residues
(Lys242, Lys245, and Lys262) and is facilitated by HATs,
such as CBP and p300 (Table 2) (Matsuzaki et al., 2005; van
der Heide and Smidt, 2005). Interestingly, the consequences
of acetylation of FOXO1 are similar to those of phosphory-
lation; acetylation of FOXO1 by CBP/p300 leads to reduced
DNA-binding activity and translocation to the cytoplasm
(Fig. 2) (Matsuzaki et al., 2005; Perrot and Rechler, 2005).
Deacetylation of FOXO1 is mediated mainly by class II and
III HDACs (Fig. 2) (Huang and Tindall, 2007). Upon exposure
to stress stimuli, SIRT1 interacts with the LXXLL motif of
FOXO1, resulting in retention in the nucleus and increased in

DNA-binding activity (Fig. 2A) (Frescas et al., 2005; Nakae
et al., 2006). Deacetylated FOXO1 elevates the expression
of gluconeogenic genes (Fig. 2A) (Park et al., 2010). Fur-
thermore, expression of gene encoding glucokinase (GK), a
key enzyme in glucose utilization, is regulated through inter-
relationship between SIRT1-deacetylated FOXO1 and hep-
atocyte nuclear factor 4alpha (HNF4α) (Fig. 2A) (Ganjam
et al., 2009). Recruitment of HDAC3 (a class I of HDACs) by
class IIa HDACs resulted in the deacetylation of FOXO1,
which in turn upregulates the expression of gluconeogenic
genes (Fig. 2A) (Mihaylova et al., 2011). Recently, SIRT2 has
also been known to deacetylate FOXO1, resulting in
decreased adipocyte size with improvement in whole-body
insulin sensitivity (Fig. 2B) (Jing et al., 2007; Gross et al.,
2009). In 3T3-L1 pre-adipocytes, the deacetylation of FOXO1
by SIRT2 acts as a critical modulator of FOXO1 activity,
resulting in the transcriptional repression of the PPARγ pro-
moter (Fig. 2B) (Jing et al., 2007). In addition, administration
of adenoviral SIRT2 shRNA increases the acetylation of
FOXO1, alleviating the suppression of PPARγ gene expres-
sion by inducing export of FOXO1 into the cytoplasm (Fig. 2B)
(Jing et al., 2007; Wang and Tong, 2009).

cAMP-responsive element-binding (CREB) protein

CREB is a transcription factor that binds to an 8-bp element
known as the cAMP-response element (CRE) in the pro-
moter regions of target genes (Altarejos and Montminy,
2011). CREB is expressed in several tissues that regulate
the expression of genes related to neuronal differentiation,
adipocyte differentiation, hepatic glucose levels, and lipid
metabolism (Altarejos and Montminy, 2011; Ravnskjaer
et al., 2013). Suppressing CREB using antisense-oligonu-
cleotides (ASOs) prevents hepatic insulin resistance and
steatosis-associated T2DM (Erion et al., 2009). Phosphory-
lation of CREB by glucagon is well characterized and
enhances transcriptional activities (Fig. 2A) (Altarejos and

Table 1. Summary of the physiological roles of HATs and HDACs

Acetylase/
Deacetylase

Loss/Gain of
function

Physiological roles References

CBP Loss Increased insulin sensitivity and glucose tolerance Yamauchi et al. (2002)

CBP/p300 Loss Improved insulin sensitivity with reduction in body mass
Decreased glucose production

Bedford et al. (2011)
He et al. (2012)

p300 Gain Impaired insulin sensitivity and glucose tolerance Bricambert et al. (2010)

SIRT1 Loss Impaired insulin sensitivity and glucose tolerance
Increased fatty liver development

Chalkiadaki and
Guarente (2012)

Xu et al. (2010)

Gain Improved insulin sensitivity and glucose tolerance Banks et al. (2008), Li
et al. (2011)

HDAC3 Loss Improved insulin sensitivity and glucose tolerance, despite of
increased lipid accumulation

Sun et al. (2012)

Class IIa HDAC Loss Improved glucose tolerance by inhibiting gluconeogenesis Mihaylova et al. (2011)
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Montminy, 2011). CBP is known to acetylate three lysine
residues (Lys91, Lys94, and Lys136) located within the
activation domain of CREB (Table 2) (Lu et al., 2003).
Moreover, acetylation of CREB increases CREB-dependent
transactivation (Fig. 2A) (Lu et al., 2003). Interestingly, the
function of CREB in glucose and lipid metabolism has been
suggested to be regulated by the crosstalk between acety-
lation and phosphorylation (Fig. 2A) (Paz et al., 2014).

Sterol response element-binding proteins (SREBPs)

SREBPs are transcriptional regulators belonging to the basic
helix-loop-helix leucine zipper (bHLH/LZ) family (Soyal et al.,
2015). The SREBP family consists of SREBP-1a, -1c, and -2
(Shimano, 2009). SREBP-1c is primarily involved in fatty
acid and TG biosynthesis, whereas SREBP-2 activates
cholesterol biosynthesis (Soyal et al., 2015). In the feeding
state, SREBP-1c stimulates both hepatic lipogenesis and
glycolysis by upregulating target gene expression (Kim et al.,
2004; Jeon and Osborne, 2012). One of the novel mecha-
nisms regulating the transcriptional activities of SREBPs is
PTMs, such as phosphorylation, ubiquitination, and acety-
lation (Fig. 2B) (Shao and Espenshade, 2012). In particular,
acetylation has been shown to play a critical role in the
regulation of SREBP transcriptional activity. SREBPs are
acetylated by CBP/p300 through direct interactions (Gian-
domenico et al., 2003; Sundqvist and Ericsson, 2003). There
are three potential acetylation sites in SREBP-1a (Lys313,
Lys324, and Lys333) (Table 2) (Giandomenico et al., 2003).
Among these, two lysine residues (Lys324 and Lys333)
located at DNA-binding domain are important for transcrip-
tional activation (Fig. 2B) (Giandomenico et al., 2003).
Indeed, CBP/p300 plays a critical role in the regulation of
SREBP-1a stability by interfering with the ubiquitination of
these residues (Fig. 2B) (Giandomenico et al., 2003;
Sundqvist and Ericsson, 2003). In contrast, SREBP-1a is
deacetylated by SIRT1, resulting in a decrease in the sta-
bility and its association with hepatic lipogenic gene
expression (Fig. 2B) (Walker et al., 2010). In parallel with
SREBP-1a, acetylation and deacetylation of SREBP-1c
occurs at Lys289 and Lys309 through the activity of p300
and SIRT1, respectively (Fig. 2B; Table 2) (Ponugoti et al.,
2010). Notably, the acetylation of SREBP-1c is highly
increased in DIO mice and depletion of hepatic SIRT1 in
mice results in increased lipogenic gene expression (Ponu-
goti et al., 2010). In addition, overexpression of SIRT1
attenuates the transcriptional activity of SREBP-1c by
decreasing stability and occupancy at the promoter of lipo-
genic genes (Fig. 2B) (Ponugoti et al., 2010). In a

Figure 2. Role of transcription factor acetylation on the

regulation of glucose. (A) Effect of FOXO1 and CREB

acetylation on the carbohydrate metabolism. Acetylation of

FOXO1 is balanced by SIRT1 and CBP/p300. Once acetylated,

14-3-3 binds to FOXO1, and localizes to cytosol. The 14-3-3-

FOXO1 complex is subjected to proteosomal degradation in

cytosol. Deacetylated form of FOXO1 binds to IRE and

transactivates glycolytic genes or gluconeogenic genes in a

negative or a positive way, respectively. Acetylated form of

CREB transactivates gluconeogenic gene expression by bind-

ing to CRE in the gluconeogenic genes. Acetylation of CREB is

promoted when CREB is phosphorylated. (B) Effect of tran-

scription factor acetylation on the expression of lipogenic

genes. Deacetylated form of FOXO1 downregulates adipogenic

gene expression by binding to IRE of respective genes. FOXA2

is acetylated by p300 and upregulates expression of genes

involved in β-oxidation and ketogenesis. Deacetylated form of

FOXA2 is subjected to proteosomal degradation. SREBP family

is also acetylated by CBP/p300. Acetylated form of SREBPs

upregulates lipogeneic gene expression. Deacetylated form of

SREBPs undergo proteasomal degradation. Acetylated form of

ChREBP by p300 upregulates gene expression of lipogenic

genes. Deacetylated form of ChREBP is phosphorylated by

PKA, which promotes binding of 14-3-3, resulting in cytosolic

localization. Acetylation of C/EBPβ is balanced by GCN5 and

HDAC1. Acetyl-C/EBPβ upregulates adipogenic gene expres-

sion. Ac, acetyl group; P, phosphorylation; Ub, ubiquitination;

IRE, insulin-response element; CRE, cAMP-response element;

PKA, protein kinase A; SRE, SREBP response element; PP2a,

protein phosphatase 2a; CRM1, chromosome region mainte-

nance 1 protein.

Table 2. List of acetylated transcription factors that are involved in glucose and lipid metabolism

Transcription factor Acetylase Deacetylase Amino acid References

FOXO1 CBP/p300 SIRT1
SIRT2

K242, K245, K262 Matsuzaki et al. (2005), Jing et al. (2007)

CREB CBP/p300 SIRT1 K91, K94, K136 Lu et al. (2003), Paz et al. (2014)

SREBP-1a CBP/p300 K313, K324, K333 Giandomenico et al. (2003)

SREBP-1c p300 SIRT1 K289, K309 Ponugoti et al. (2010)

SREBP-2 CBP/p300 Giandomenico et al. (2003)

FOXA2 p300 SIRT1 K259, K275 von Meyenn et al. (2013)

ChREBP p300 SIRT1 K672 Bricambert et al. (2010), Marmier et al. (2015)

C/EBPβ GCN5 HDAC1 K39, K98, K101, K102 Cesena et al. (2007), Wiper-Bergeron et al.
(2007), Cesena et al. (2008)
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physiological state, reversible acetylation of SREBPs is
dynamically regulated during fasting and feeding cycles
(Walker et al., 2010). Function of acetylated SREBP-2 and
its acetylation sites are not identified despite SREBP-2 is
acetylated by CBP/p300 (Giandomenico et al., 2003). It may
be possible that acetylation of SREBP-2 may have similar
biological consequnences which observed in the acetylation
of other subtypes SREBPs.

Forkhead box A (FoxA) family proteins

FoxA family proteins, including FoxA1, -A2, and -A3 (also
known as HNF3α, HNF3β, and HNF3γ) belong to a sub-
family of the forkhead group containing a winged helix DNA-
binding domain and play a crucial role in lipid metabolism
(Lalmansingh et al., 2012). FOXA2 is a central regulator in
hepatic lipid metabolism, with role in fatty acid oxidation,
ketogenesis, and bile acid metabolism (Wolfrum et al., 2004).
Interestingly, phosphorylation of FOXA2 by metabolic stress
causes nuclear export with inhibition of its transcriptional
activities (Fig. 2B) (Howell and Stoffel, 2009; Banerjee et al.,
2010). Acetylation of FOXA2 occurs at multiple lysine resi-
dues (Lys6, Lys259, Lys264, Lys274, and Lys275) (Table 2)
(van Gent et al., 2014). Among these, two residues (Lys259
and Lys275) are acetylated by p300 when glucagon is added
(von Meyenn et al., 2013). In contrast to phosphorylation,
acetylation of FOXA2 results in increased in their stability and
transcriptional activity due to retention in the nucleus (Fig. 2B)
(von Meyenn et al., 2013; van Gent et al., 2014). As expec-
ted, deacetylation of FOXA2 by SIRT1 has the opposite
effects, causing reductions in stability and transactivation in
the nucleus (Fig. 2B) (von Meyenn et al., 2013; van Gent
et al., 2014). Overall, acetylation of FOXA2 may prevent the
T2DM by upregulating the expression of β-oxidation and
ketogenesis (Wolfrum et al., 2004; von Meyenn et al., 2013).

Carbohydrate-response element-binding protein
(ChREBP)

ChREBP is a bHLH/LZ transcription factor that functions in
forming a heterodimeric complex with Max-like protein X
(MLX) (Ma et al., 2006). ChREBP is a major mediator of the
glucose effect independent of insulin action, which upregu-
lates glycolysis- and lipogenesis-related genes, such as
L-pyruvate kinase (L-PK), fatty acid synthase (FAS), acetyl-
CoA carboxylase (ACC), and steroyl-CoA desaturase-1
(SCD-1) (Postic et al., 2007). The transcriptional activities of
ChREBP are regulated by multiple PTMs, including phos-
phorylation, O-GlcNAcylation, and acetylation (Guinez et al.,
2011; Filhoulaud et al., 2013). In the high-glucose state,
ChREBP is acetylated by p300 at Lys672, which is located
within the bHLH/LZ domain (Table 2) (Bricambert et al.,
2010; Chen et al., 2010). In contrast to the other transcription
factors mentioned above, acetylation of ChREBP does not
affect nuclear-cytoplasmic shuttling (Fig. 2B) (Bricambert

et al., 2010). Acetylated ChREBP readily binds to the
ChREBP-responsive element (ChoRE) (Fig. 2B) (Bricambert
et al., 2010). Recently, acetylation of ChREBP is increased
by inhibiting the expression and activity of SIRT1 upon
ethanol (EtOH) treatment (Fig. 2B) (Marmier et al., 2015).
Consequently, hyper-acetylated ChREBP increases the
expression of lipogenesis-related genes in the liver.

CCAAT/enhancer-binding proteins (C/EBPs)

There are six members in C/EBP family (Nerlov, 2007).
These proteins are bZIP transcription factors and are
expressed in peripheral tissues (Nerlov, 2007). Among
these, C/EBPβ plays an important role in hepatic glucose
and lipid metabolism (Schrem et al., 2004). Modulation of
transcriptional activities by C/EBPβ phosphorylation has
been demonstrated (Park et al., 2004). Acetylation of
C/EBPβ may also serve as a molecular switch for the reg-
ulation of transcription activities (Cesena et al., 2007; Wiper-
Bergeron et al., 2007; Cesena et al., 2008). Acetylation of
C/EBPβ at Lys39, which is located within the activation
domain (AD), results in the transactivation of gene expres-
sion associated with adipogenesis (Fig. 2B; Table 2) (Ce-
sena et al., 2007; Cesena et al., 2008). In glucocorticoid-
stimulated pre-adipocyte differentiation, GCN5 is known to
acetylate lysine residues (Lys98, Lys101, and Lys102)
(Fig. 2B; Table 2) (Wiper-Bergeron et al., 2007). Acetylation
of C/EBPβ increases the transcription of C/EBPβ target
genes, such as C/EBPα and PPARγ by disrupting the
interaction between C/EBPβ and the HDAC1 corepressor
complex (Fig. 2B) (Abdou et al., 2011). At present,
deacetylation of C/EBPβ and its biological significance are
not clear. It is possible that deacetylation of C/EBPβ may
have opposing effects to acetylation, similar to the phe-
nomena observed for other transcription factors.

PERSPECTIVES AND CONCLUSION

The epidemic of metabolic syndrome and T2DM has become
a serious health problem in modern society. In the coming
decades, these disorders will cause a much larger global
problem, requiring physical, social, and economic expenses.
In this review, we have summarized recent advancements in
the understanding of gene regulation in the context of rever-
sible acetylation/deacetylation of transcription factors and
their roles in the regulation of gene involved in metabolic
homeostasis, which are associated with the pathogenesis of
metabolic syndrome. It has become clear that single or mul-
tiple acetylation residue(s) in transcription factors can trigger
significant effects on whole-body energy homeostasis.

Exploring the key features of non-histone protein acety-
lation, including that of transcription factors will be critical for
understanding fine control of whole body metabolism. Thus
understanding the molecular mechanisms and physiological
relevance of acetylation is of great interest, considering the
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therapeutic potential of these processes in the development
of drugs combating metabolic syndrome and T2DM.
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sponsive element-binding; DIO, diet-induced obesity; EtOH, ethanol;

FAS, fatty acid synthase; FoxA, forkhead box A; FoxO, forkhead box

O; GK, glucokianse; GNATs, Gcn5-related N-acetyltransferases;

HATs, histone acetyltransferases; HFD, high-fat diet; HGP, hepatic

glucose production; HNF4α, hepatocyte nuclear factor 4alpha; MLX,

Max-like protein X; L-PK, L-pyruvate kinase; p300, E1A-associated

protein of 300 kDa; PHDACs, histone deacetylaes; PPARγ, perox-

isome proliferator-activated receptor gamma; SCD-1, steroyl-CoA

desaturase-1; SIRTs, sirtuins; SREBPs, sterol response element-

binding proteins; T2DM, type 2 diabetes mellitus; TG, triglycerides;

TMs, post-translational modifications.
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