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Abstract
At the sensor level many aspects, such as spectral power, functional and effective

connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been

comprehensively investigated through both electroencephalography (EEG) and magneto-

encephalography (MEG). Despite this, differences between both modalities have not yet

been systematically studied by direct comparison. It remains an open question as to

whether the integration of EEG and MEG data would improve the information obtained from

the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor

system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed

(EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and

spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta

and gamma). Networks of functional and effective connectivity were described using a spa-

tial filter approach called the dynamic imaging of coherent sources (DICS) followed by the

renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level

was significantly higher in EEG than in MEG data in both EO and EC conditions. At the

source level, there was a trend towards a better performance of the combined EEG+MEG

analysis compared with separate EEG or MEG analyses for the source mean power, func-

tional correlation, effective connectivity for both EO and EC. The network of coherent

sources and the spatial resolution were similar for both the EEG and MEG data if they were

analyzed separately. Results indicate that the combined approach has several advantages

over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of

EEG and MEG, EEG was characterized by significantly higher values in all measured

parameters in both sensor and source level. All the above conclusions are specific to the

resting state task and the specific analysis used in this study to have general conclusion

multi-center studies would be helpful.
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Introduction
Electroencephalography (EEG) and magnetoencephalography (MEG) represent functional
imaging techniques which measure neural activity with a high temporal resolution. However,
each of these methods is characterized by specific advantages and drawbacks. MEG is superior
to EEG for identifying brain sources with tangentially oriented dipoles and in addition, cap-
tures short range connectivity better [1]. In contrast, EEG is characterized by more precise
localization of brain sources with radially oriented dipoles, and better describes long range con-
nectivity [2]. Finally, EEG is more prone to volume conduction effects than MEG [3]. Still, not
all functional quantities that can be derived from estimated brain activity have been compared
between EEG and MEG. Spectral power, functional and effective connectivity as well as rela-
tive-power-ratio (RPR) and spatial resolution have been sufficiently investigated on the sensor
level using both EEG and MEG. Despite this, a direct comparison of the differences between
these modalities has yet to be systematically performed. Moreover, the disadvantages of EEG
and MEG may be compensated for by utilizing a combination of both modalities, as demon-
strated in a number of studies [4–15]. To the best of our knowledge, no previous studies have
shown whether the integration of EEG and MEG data can improve the analysis of spectral
power, functional and effective connectivity, and RPR. Here, we first compare the sensitivity of
EEG, MEG, and the combined EEG-MEG analysis for the detection of the parameters listed
above. We use the resting state EEG and MEG data with two conditions, eyes closed (EC) and
eyes open (EO), because of well described oscillatory networks underlying these resting state
networks (see Michels et al., 2013). Previous studies have shown differences between EC and
EO conditions based on the power spectrum [16, 17], but only a few have looked at differences
in functional brain networks between EC and EO conditions [18–21]. The second aim of this
study, therefore, is to compare EEG and MEG derived measurements in relation to EC and EO
conditions.

Dynamic imaging of coherent sources (DICS) is one of the source analysis techniques in the
frequency domain. DICS uses adaptive spatial filtering to analyze neuronal networks by imag-
ing power and coherence estimates of oscillatory brain activity [22]. There is increasing evi-
dence that DICS is able to show coherent changes not only between cortical sources, but also
between cortical and sub-cortical structures such as the thalamus [15, 23–32]. The delineation
of neuronal activity requires not only the information on localization, but also on the interac-
tions between the activated sources. Using the renormalized partial directed coherence
(RPDC), directed connectivity can be investigated by accessing the information flow between
different sources. The combination of both these approaches allow analyses of the functional
(coherences between cortical and sub-cortical activities) and effective (hierarchical relation and
information flow between involved regions) connectivity within neuronal networks.

In this study, we investigate detection sensitivity of EEG, MEG as well as of EEG-MEG
fusion, for the analysis of spectral power, functional and effective connectivity, and RPR in con-
ditions EO and EC using both DICS and RPDC.

Subjects and Methods

2.1 Subjects
Twenty nine (15 male and 14 female) healthy volunteers participated in this study (age
29 ± 5,68 years, age range: 23–38 years). The subjects were recruited by advertisements. The
study was performed in accordance with the Declaration of Helsinki and approved by local eth-
ics committees of the Medical Faculty, Goethe Universität Frankfurt amMain. All subjects
gave their written informed consent. The subjects were paid for participation in this study.
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2.2 Experimental design
First, each subject maintained an eyes-closed state for five minutes in a fully relaxed state. Sec-
ond, the subjects kept their eyes-open for another five minutes while focusing on a cross in the
middle of a screen without any instructions and staying in a fully relaxed state. MEG measure-
ments were recorded using a 275 channel whole-head CTF MEG System (Omega 2005; VSM
MedTech Ltd.) in a synthetic 3rd-order gradiometer configuration. EEG measurements were
obtained simultaneously using CTF EEG amplifiers integrated with the MEG system. 56 chan-
nels selected from EEG caps with 61 equidistantly placed scalp electrodes (64-channel system,
BrainProducts, München, Germany) were used for EEG recordings. EEG and MEGmeasure-
ments were synchronously recorded at a sampling rate of 1200 Hz and filtered online with
fourth-order Butterworth filters (300 Hz low pass and 0.1 Hz high pass). Before and after each
five minute recording the subject's head position relative to the gradiometer array were deter-
mined using three localization coils, one at the nasion and the other two located 1 cm anterior
to the tragus of each ear on the nasion-tragus plane. Epochs with a head movement exceeding
5 mm were discarded from further MEG/EEG data analysis. For artefact detection a horizontal
and vertical electro-oculogram (EOG) was recorded via four electrodes; two were placed distal
to the outer canthi of the left and right eye (horizontal eye movements) and the other two were
placed above and below the right eye (vertical eye movements and blinks). The impedance of
each electrode was measured with an electrode impedance meter (Astro-Med, Inc Grass Instru-
ment Division, W. Warwick RI USA) and was kept below 15 kO. Data were stored in a com-
puter and analyzed off-line.

2.3 Data pre-processing
Each recording was segmented into a number L of 1s - long high-quality epochs, discarding all
those data sections with visible artifacts. The total length (N) of the recording was divided into
M high quality segments with M ranging from 280 to 290, such that N = LM. The data were
analyzed across the following frequency bands: delta (1–3 Hz), theta (4–7 Hz), alpha (8–13
Hz), beta (14–30 Hz) and gamma (31–49 Hz) for each condition of EO and EC separately.

2.4 Semi-realistic head models
The solution for the forward problem in this study is achieved by an approach which uses the
piece-wise homogeneous approximation and can be estimated by boundary element method
(BEM) [12, 33–38]. The conductivity of the BEMmodel is assumed to be isotropic for each
layer of the head. The lead field matrix relates the current sources present within the brain to
the electromagnetic activity measured across the scalp. The vector lead field matrix estimated
here contains the information regarding the geometry and conductivity of the model. The stan-
dard magnetic resonance images (MRI) are used for extracting the surfaces of the layers such
as the scalp, skull, and brain. The individual electrodes and sensors locations were obtained
from the CTF system. The linear-collocation 3-layer BEMmodel was used to construct the
semi realistic head models. The open source software OpenMEEG [39] was used to construct
the semi-realistic head models. The backbone of this approach was developed on the basis of
the integrated analysis of MEG and EEG simultaneously. The conductivity is a minor concern
in the case of MEG[34], is used first to find the accurate source location information for the
tangential components. Next the radial component from the EEG data by adjusting the con-
ductivity profile of the EEG model in integrated [12]. The conductivity values for the scalp and
brain was 0.8 S/m, and for the skull 0.008 S/m. The number of elements of the BEM was 3564
for the grey matter and the 8723 covering the entire brain with a 5 mm voxel distance for each
element.
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2.5 Source analysis
The DICS beamformer has several advantages in comparison to other beamformer source anal-
ysis in the frequency domain. First, our primary objective was to look at the network of coher-
ent sources to achieve this dynamic imaging of coherent sources is the most suitable method.
The second was to use a beamformer which can be applied in the frequency domain so that we
can look at the networks separately at each frequency band. Thirdly, EEG/MEG analyses such
as DICS are based on a better temporal resolution; it is possible to apply calculations within the
scope of Granger causality to demonstrate directionality of information flow within networks
of sources by extracting the frequency band specific network source signals. The inverse prob-
lem is solved in this study using a beamformer approach called the dynamic imaging of coher-
ent sources (DICS) [22] to identify coherent brain sources at predefined frequency bands.
DICS uses a algorithm called the linear constrained minimum variance (LCMV) spatial filter
[40] and estimates the tomographic power maps which are based on the semi-realistic head
models as used in this study. The power and coherence at any given location in the brain can
be estimated using a linear transformation which in this study is the LCMV filter. The filter
relates the electromagnetic filed on the surface to the underlying neural activity in a certain
brain region. The neural activity is modelled as a current dipole or sum of current dipoles. The
spatial filter was applied to a large number of voxels covering the entire brain, assigning to each
voxel a specific value of coherence. A voxel size of 5 mm was used in this study. The reference
region was identified by the source in the brain with the strongest power first and used as the
reference to find other coherent sources at the respective frequency bands. Once coherent
brain areas were identified, their activity was extracted by the spatial filter [40]. The application
of the spatial filter has been previously described [41]. The criteria used to identify areas was
performed using a within subject surrogate analysis. This was used to define the significance
level and set the limit for projecting out and identifying other areas in the brain. Local maxima
in the resulting maps represent areas that have the strongest coherence to the reference signal.
All the original source signals for each source with several activated voxels were combined (by
estimating the second order spectra and employing a weighting scheme depending on the ana-
lyzed frequency range) to form a pooled source signal estimate for every source as previously
described [42, 43]. This analysis was performed for each subject separately, followed by a grand
average across all subjects for all the three recording methods EEG, MEG and the combined
EEG-MEG approach (EEG+MEG).

2.6 Renormalized partial directed coherence (RPDC)
The RPDC was applied to identify the direction of information flow between two signals. [44].
For RPDC, the multivariate model is based on the principle of Granger causality [45]. The
RPDC was used instead of Granger causality measures because RPDC provides both frequency
information and causality information. The multivariate approach was used to model the
pooled source signals as an autoregressive process to obtain the coefficients of the causality.
The Akaike information criterion (AIC) was used in this study to estimate the optimal model
order [46, 47]. The AIC is a measure of the relative goodness of fit which has the minimum loss
of information of a resulting statistical model with an optimal order for the corresponding
model [47]. The surrogates [48] was used to calculate the significance level on the pooled
source signals after the estimation of the RPDC values. In the surrogate method [48, 49], we
divide the original time series into smaller one second non-overlapping segments of equal size.
These smaller one second windows are shuffled randomly and concatenated. This process was
repeated 100 times and the 99th percentile was taken as the threshold or significance value. In
addition, the significant connections were tested with a time reversal technique for EEG to
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justify that observed connections are due to strong symmetries and not due to volume conduc-
tion effects in EEG [50, 51]. The open source Matlab package ARFIT [52, 53] was used for esti-
mating the autoregressive coefficients from the spatially filtered source signals.

2.7 Relative-power-ratio (RPR) analysis
The scalp level RPR was estimated for both the recording modalities separately from the power
spectrum of each of the electrodes/sensors. The RPR was calculated by taking the ratio of EC
power (for each of the five individual frequency bands) to that of the power in the correspond-
ing five individual frequency bands at the EO condition. The same numbers of sensors were
selected fromMEG and corresponding EEG electrodes to have a direct comparison of the RPR
values. In total, minimum of 7 and maximum of 10 electrodes/sensors were selected with the
maximum power at the particular frequency band for each of the five topological regions (fron-
tal—9, central—7, parietal—9, temporal—10 and occipital—8) in the scalp. The selection of
the electrodes and sensors was performed by estimating the Euclidean distance between the
EEG electrodes and the corresponding MEG sensors (selected by visualization in the forward
model). Our criteria stipulated that the Euclidean distance between the EEG electrodes and
corresponding MEG sensors should be� 20 mm. At the end, the mean RPR was estimated
from the corresponding electrodes/sensors in case of MEG and EEG alone for the five topologi-
cal regions separately. The source level RPR was estimated in the same way by taking the
pooled source signals from the first identified sources in each recording modality separately for
all frequency bands, instead of the electrodes/sensors signals. In case of EEG+MEG, the RPR
was calculated by normalizing the source signals to the maximum RPR at the respective fre-
quency band, yielding unit-free measures for both EEG and MEG [54].

2.8 Statistical analysis
At the scalp level, in a first step, the total data length between the subjects was tested with a
non-parametric Friedman test for dependent samples (n = 29, α = 0,05). In a second step, in
order to ensure that any of the reported results (which are all calculated for pre-defined fre-
quency bands) are not confounded by group differences in individuals’ alpha frequency (IAF),
we also estimated and compared individual band limits calculated as a percentage of the IAF
[55]. First, we calculated the IAF from the mean of all EEG / MEG channels or sensors (exclud-
ing EOG and ECG channels). Next, based on the IAFs, we defined the lower and upper bound-
aries of the other frequency bands (delta, theta, and beta) within 10% of the predefined band
edges. The mean and standard deviation of IAF from all the subjects was (10.4±2.3) Hz. For
example, one subject had an IAF of 10,1 Hz, so the lower band edge for the delta band (defined
as 1–3 Hz) is 1.01 Hz (0,1 (10% of 1 Hz) x 10,1 Hz) and the upper edge is 3.03 (0,3 x 10,1 Hz).
We then estimated the median frequency band values for all subjects to see whether those val-
ues lay in the range of the pre-defined frequency band, and whether the values differed within
the group of subjects (one-sample t-tests) (α = 0,05). In a third step, spectral source mean
power differences within the different frequency bands of interest were assessed by two-tailed
paired t-tests (α = 0,05). The significance threshold of the sources was tested by a within subject
surrogate analysis. The surrogates were estimated by a Monte Carlo random permutation 100
times shuffling of one second segments within each subject. The one second epoch length was
chosen by an adaptive epoch length selection method [56]. The p-value was estimated for each
of these 100 random permutations and the 99th percentile value of each source of all these per-
mutations is taken as the final threshold.

At the source level, in a first step, the mean coherence (or interaction strength) between all
sources was estimated. The Kruskal-Wallis one-way analysis of variance test was performed on
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the mean coherence values of EEG, MEG and EEG+MEG. In order to find the difference in
coherence strength between the EC versus EO within recording modalities, a Friedman one-
way analysis of variance test was performed with the coherence values on the first coherent
source from each subject. In a second step, power and coherence differences between-recording
modalities were assessed as follows: A reference voxel was selected in the posterior parietal cor-
tex with the MNI co-ordinates [8–77 38]. The criteria for selecting this voxel were (1) highest
frequency (number of occurrences) of activation in the identified first source in the network
for all the frequency bands at the group level; (2) the voxel is found in the first identified source
over all conditions (EO, EC); (3) it shows the lowest power of all voxels in all frequency bands,
because the voxel to be selected here as the maximum power then it will overlap to the actual
maximum power voxel. At the end, if the voxel has maximum coherence then this will also
influence statistics for the RPDC analyses. The semi-realistic head model was used for all the
recording methods which give the advantage of selecting the same reference voxel across the
different recording methods. Within this spatial template, the Euclidean distance was estimated
between the reference voxel and the voxel with the maximum power or coherence for the maxi-
mal overlapping (frequency of occurrence for each frequency band separately) number of
sources between the recording modalities for all sources. The quantitative measure of distance
was then compared between the recording modalities for each source with a one-way ANOVA.
If the frequency band specific spatial distribution of sources differs within the recording modal-
ities then there should be also significant difference between the recording modalities. This
should be reflected by significant between recording method-differences in the Euclidean dis-
tances between the reference voxel and the particular overlapping sources.

In a third step, spatial differences between recording modalities were assessed as follows: the
number of voxels activated for each source and each recording method (EEG, MEG, and EEG
+MEG) was estimated. This quantitative measure was then compared between the recording
modalities for each source with a one-way ANOVA. If the frequency band specific number of
voxels differs within the recording modalities then there should also be significant difference
between the recording modalities.

In a fourth step, to compare RPDC values between recording modalities analysis, the same
reference voxel was chosen as described above. Next, the directionality or information flow was
estimated between the reference voxel and the maximally activated voxel of all sources. The
RPDC values were then compared between the three recording modalities with one-way
ANOVA. The directionality between the reference voxel and the maximally activated voxel for
each source is different between the three recording modalities. Since the directionality can be
bi-directional (i.e., from the reference voxel to the maximally activated voxel and vice versa),
we will report the subsequent results for both possible directions.

In a fifth step, the scalp level RPR between the recording modalities (EEG vs. MEG) was
tested with a non-parametric Friedman test for dependent samples (n = 29, α = 0,05). The
source signal RPR values (n = 29, α = 0,05) for each of the recording modalities were tested for
significance using the multifactorial ANOVA, within-subject factor being the sources for EC
(n = 4 sources: Delta;), (n = 3 sources: Theta), (n = 5 sources: Alpha), (n = 6 sources: Beta), for
EO (n = 4 sources: Delta;), (n = 3 sources: Theta), (n = 5 sources: Alpha), (n = 4 sources: Beta)
and the between subject factor being the recording modalities (n = 3: EEG, MEG, EEG+MEG).
All the above mentioned statistical analyses were performed using Matlab R 2013 a- 64-bit
version.
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2.9 Simulation
In this study, we wanted not only to test the analyses on the real data as there are always several
unknowns. We also wanted to test the analyses on data where we know the ground truth by
simulations. The simulations of this kind can also help in building up model based studies is
EEG and MEG for functional and effective connectivity. The two main purposes of the simula-
tion are first to test the exact same analysis and the parameters estimated from real data to vali-
date them with known values. The second to prove whether the RPR is an important
parameter for the source analysis in comparison to the other factors like number of electrodes/
sensors, orientation of the dipoles and the distribution of the sources.

Simulation1: Eyes closed

x1ðtÞ ¼ 1; 9775x1ðt � 1Þ � 0; 9801x1ðt � 2Þ þ 0; 75x2ðt � 1Þ þ 0; 75x5ðt � 1Þ þ Z1ðtÞ
x2ðtÞ ¼ 1; 9775x2ðt � 1Þ � 0; 9801x2ðt � 2Þ þ 0; 75x5ðt � 1Þ þ Z2ðtÞ
x3ðtÞ ¼ 1; 9775x3ðt � 1Þ � 0; 9801x3ðt � 2Þ þ 0; 75x4ðt � 1Þ þ 0; 75x5ðt � 1Þ þ Z3ðtÞ
x4ðtÞ ¼ 1; 9775x4ðt � 1Þ � 0; 9801x4ðt � 2Þ þ 0; 75x1ðt � 1Þ þ 0; 75x2ðt � 1Þ þ 0; 75x5ðt � 1Þ þ Z4ðtÞ
x5ðtÞ ¼ 1; 9775x5ðt � 1Þ � 0; 9801x5ðt � 2Þ þ Z5ðtÞ

ð1Þ

Simulation II: Eyes open

x1ðtÞ ¼ 1; 9775x1ðt � 1Þ � 0; 9801x1ðt � 2Þ þ 0; 75x5ðt � 1Þ þ Z1ðtÞ
x2ðtÞ ¼ 1; 9775x2ðt � 1Þ � 0; 9801x2ðt � 2Þ þ 0; 75x5ðt � 1Þ þ Z2ðtÞ
x3ðtÞ ¼ 1; 9775x3ðt � 1Þ � 0; 9801x3ðt � 2Þ þ 0; 75x4ðt � 1Þ þ 0; 75x5ðt � 1Þ þ Z3ðtÞ
x4ðtÞ ¼ 1; 9775x4ðt � 1Þ � 0; 9801x4ðt � 2Þ þ 0; 75x2ðt � 1Þ þ 0; 75x5ðt � 1Þ þ Z4ðtÞ
x5ðtÞ ¼ 1; 9775x5ðt � 1Þ � 0; 9801x5ðt � 2Þ þ Z5ðtÞ

ð2Þ

The source signals were modeled by auto regressive second order processes with indepen-
dent noises. The noise η(t) was white Gaussian random noise with zero mean and unit vari-
ance. The signals were modeled with AR coefficients yielding a peak at 8 Hz in the frequency
spectrum. In total six simulations were performed, three for both EC and EO conditions. For
EC the simulations were performed separately for each modality (EEG, MEG and EEG+MEG)
and then repeated for the EO. In all the simulations 360,000 data points have been simulated
with a sampling frequency of 1,200 Hz. The simulation was repeated for 100 realizations. The
reported results from the simulation are the mean of all the 100 realizations. The fitted model
system a vector auto regressive process of model order 20 was used, thus, a considerably over
fitting of the true model order which is of order 2. All the directed interactions simulated in the
six simulations are taken from the real source analysis connectivity data from the healthy sub-
jects in the alpha frequency band. The direct connectivity is guaranteed by non-zero coeffi-
cients in the model system.

The source dipoles were simulated with both radial and tangential orientations for all the
three modalities namely EEG, MEG and the combined approach. The co-ordinates of the
dipoles were derived by taking a rectangular grid of current dipoles which are placed on three-
dimensional voxels. The voxel co-ordinates were derived by considering a rectangular grid of
27×23×27 voxels with distance 5 mm. An average human brain was then laid over these voxels
and the 8723 voxels which were covering this brain were marked. Out of these voxels, the 3564
voxels which cover the grey matter of the brain were taken as the voxels used in the model. The
brain model was derived from the average probabilistic MRI atlas from the Montreal neurolog-
ical institute [57]. The source signals from these dipoles were inserted in neighboring voxels
(n = 10 voxels for EEG; n = 6 voxels for MEG; n = 4 voxels for EEG+MEG) to create a current
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distribution instead of single voxel activation in all the modalities and conditions (in order to
simulate more closely to the resting state data). The AR processes of order two as the generat-
ing source in the active voxels for each corresponding modality and additionally a propagation
of the source into the inactive voxels by neighbor-interaction and additionally self-interaction.
In detail, the following equation for the time series in the inactive voxels

j
* ðu; tÞ ¼ ai � j

* ðu; ti � 1Þ þ bi
X

u02NðuÞ
j
* ðu0 ; ti � 1Þ i ¼ 1; 2; ð3Þ

where N(υ) is the set of neighboring voxels of υ. The strength of the self-interaction and the
neighbor interaction are defined by the parameters a and b respectively. While the order of the
AR processes is given by i in the above Eq (3).

In all the three modalities EEG, MEG and EEG+MEG both the radial and tangential dipoles
were simulated for the source signals as shown in S1 Fig The MNI location of the source
dipoles were obtained from the source analysis grand averaged healthy subject’s data by taking
the maximum voxel in each source and used for the simulation. The dipoles were simulated on
both hemispheres for all the sources found in the alpha frequency band for EC and EO
condition.

The difference in connectivity strength between the sources was tuned with the help of the
independent noises η(t) in each source signal. In order to estimate RPR, the signal was defined
as the power at a peak frequency of 8 Hz (EC), while the noise was defined as the power at 8 Hz
(EO). In order to simulate the data closer to the real data the RPR was estimated from the
grand average of the pooled source signals and implemented in the simulation. The RPR of the
different sources for each of the modalities is given in S1 Table.

Results

3.1 Analysis of spectral and source absolute mean power
The total data length was not different within the subjects (F1,29 = 1,86; p = 0,76). The IAF was
not different between the subjects (one-sample t-tests), and the mean and standard deviation
for all frequency bands were not different (S2 Table). Based on these findings, all results are
reported according to the pre-defined frequency bands. All analysed bands showed signifi-
cantly higher source and spectral absolute mean power for the EC compared to the EO condi-
tion in both recording modalities, EEG and MEG. The bar graphs of global spectral mean
power differences between EEG and MEG are shown in Fig 1 and the source mean power is
shown in Fig 2. In a comparison between the recording modalities for the spectral absolute
mean power, values in the EEG data was significantly higher (S3 Table) than in MEG data
across all the frequency bands for the EC condition. In the EO condition the same trend was
observed across all except the beta frequency band (Fig 1). In the combined approach, the
source absolute mean power was significantly higher (S4 Table) compared to the separate EEG
and MEG analyses in all frequency bands except the beta band. Although not significant, it
should be noted that the beta and gamma band (S6 Fig) data exhibited the same behaviour as
the other frequency bands for both EC and EO conditions. Between EEG and MEG, EEG data
showed significantly higher (S5 Table) source absolute mean power than MEG (Fig 2).

3.2 Coherent network of sources
The grand average results of all subjects for the analysis of significant coherent sources at the
frequencies analyzed are displayed for both EC and EO conditions (Figs 3 and 4, respectively).
In these Figs, the first source in each frequency band represents the highest power source and
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Fig 1. Results of the spectral absolute power for eyes open and eyes closed condition.Mean band
power (with standard deviation) is shown for EEG (black bars) and MEG (white bars). A) Eyes open condition.
B) Eyes closed condition. Significant recording method differences are indicated by * (p < 0.05).

doi:10.1371/journal.pone.0140832.g001

Fig 2. Results of the spectral source absolute power for eyes open and eyes closed condition.Mean
band power (with standard deviation) is shown for EEG (black bars), MEG (white bars), and EEG+MEG (grey
bars). A) Eyes open condition. B) Eyes closed condition. Significant recording method differences are
indicated by * (p < 0.05).

doi:10.1371/journal.pone.0140832.g002
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the following sources represent the coherent sources with the first source as the reference. In all
the healthy subjects, the network of sources were identified for each of the recording modalities
separately and then combined. For EEG, MEG, and the combined approach, similar networks
of sources were identified for both conditions. For EC condition the following pattern of power
and coherence was shown (see Fig 3): Delta activity was associated with coherent sources in the
premotor cortex (source 1, BA6), middle cingulate cortex (source 2, BA32) and dorso-lateral
prefrontal cortex (source 3, BA46); theta activity was related to the sources in the middle cingu-
late cortex (source 1, BA32), parietal cortex and precuneus (source 2, BA39 and BA7), medial
prefrontal cortex (source 3, BA9) and dorso-lateral prefrontal cortex (source 4, BA46); alpha
activity was attributed to the sources in the parietal cortex and precuneus (source 1, BA39 and
BA7), occipital cortex (source 2, BA17), dorso-lateral prefrontal cortex (source 3, BA46),
motor cortex (source 4, BA4), and thalamus (source 5, BA23); beta activity correlated with
sources in the occipital cortex (source 1, BA17), parietal cortex and precuneus (source 2, BA39
and BA7), premotor cortex (source 3, BA6), dorso-lateral prefrontal cortex (source 4, BA46),
inferior frontal gyrus (source 5, BA44), as well as thalamus (source 6); and gamma activity cor-
related with sources (S7 Fig) in the dorso-lateral prefrontal cortex (source 1, BA46), motor cor-
tex (source 4, BA4), middle cingulate cortex (source 2, BA32) and thalamus (source 5, BA23).

For EO condition the neural oscillations were related to the following sources (see Fig 4):
delta activity was associated with sources in the premotor cortex (source 1, BA6), parietal cor-
tex (source 2, BA39), insula (source 3, BA16), and caudate nuclei (source 4); theta activity was
related to sources in the medial and lateral prefrontal cortex (source 1, BA9 and BA10), inferior
frontal gyrus (source 2, BA44), as well as orbitofrontal cortex (source 3, BA11); alpha activity
was attributed to sources in the occipital cortex (source 1, BA17), middle cingulate cortex
(source 2, BA32), medial prefrontal cortex (source 3, BA9), dorso-lateral prefrontal cortex
(source 4, BA46), and thalamus (source 5); beta activity correlated with sources in the middle
and posterior cingulate cortex (source 1, BA30 and BA31), premotor cortex (source 2, BA6),
medial and dorso-lateral prefrontal cortex (source 3, BA9 and BA46) and thalamus (source 4);
and gamma activity correlated with sources (S7 Fig) in the premotor cortex (source 2, BA6),
occipital cortex (source 1, BA17), dorso-lateral prefrontal cortex (source 3, BA46) and parietal
cortex (source 2, BA39).

Fig 3. First column represents the recordingmethod EEG in each frequency band showing the grand
average statistical map of network of sources for the eyes closed (EC) condition. Second column
represents the recording method MEG for each frequency band separately. Third column represents the
combined approach (EEG+MEG). The numbers indicate the order of sources found for each frequency band
separately.

doi:10.1371/journal.pone.0140832.g003
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No significant difference was found for the strength of coherence between conditions EO
and EC (F2,58 = 1,86; p = 0,73). In case of the total interaction strength, EEG showed signifi-
cantly (EEG vs. MEG—F2,56 = 26,43; p = 0,002; EEG vs. EEG+MEG—F2,56 = 28,21; p = 0,004;
MEG vs. EEG+MEG–F2,56 = 29,16; p = 0,005) higher mean coherence values in all frequency
bands compared to MEG and the combined EEG+MEG approach (Tables 1 and 2). The com-
bined approach showed higher significant mean coherence values to the MEG alone.

In within subject statistics, for EO and EC conditions there were significant differences
(F2,56 = 32,68; p = 0,001) for all the sources in all the frequency bands. However, for the record-
ing modalities and for EO and EC conditions, there were no significant differences for both the
maximum power (S5 Table) and coherence source (S6 Table) in all the frequency bands. We
repeated the source analysis for all the 29 subjects for only the alpha frequency band by taking
64 EEG channels and 64 MEG sensors into consideration. We found the same network of corti-
cal and sub-cortical sources for both the recording modalities.

Fig 4. First column represents the recordingmethod EEG in each frequency band showing the grand
average statistical map of network of sources for the eyes open (EO) condition. Second column
represents the recording method MEG for each frequency band separately. Third column represents the
combined approach (EEG+MEG). The numbers indicate the order of sources found for each frequency band
separately.

doi:10.1371/journal.pone.0140832.g004

Table 1. The mean and standard deviation of coherence and RPDC values between all the sources
from all the subjects (separately for each recordingmethod) for the condition EC.

Coherence (mean) EEG MEG COMB (EEG+MEG)

Delta 0.31±0.05 0.19±0.04 0.28±0.04

Theta 0.26±0.03 0.15±0.03 0.24±0.02

Alpha 0.25±0.06 0.17±0.02 0.21±0.02

Beta 0.21±0.03 0.14±0.06 0.18±0.03

Gamma 0.24±0.04 0.18±0.05 0.21±0.02

RPDC (mean) EEG MEG COMB (EEG+MEG)

Delta 0.18±0.02 0.12±0.04 0.23±0.04

Theta 0.15±0.03 0.10±0.03 0.20±0.02

Alpha 0.15±0.05 0.13±0.02 0.20±0.03

Beta 0.12±0.04 0.10±0.02 0.17±0.02

Gamma 0.12±0.03 0.10±0.03 0.20±0.02

doi:10.1371/journal.pone.0140832.t001
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3.3 Directional interactions between the networks of sources
The information flow between sources (same naming as in Fig 3) of brain activity for each fre-
quency analysed is illustrated for both EC and EO data (Figs 5 and 6, respectively). In the fol-
lowing paragraph we will discuss only differences in the RPDC between the recording
modalities.

During both the EC resting state and the EO condition, the direction of information flow
for EEG, MEG and combined approach was not different between the sources for all the fre-
quency bands. However, the combined approach showed significantly stronger connections in
comparison to either of the modalities alone (indicated as bold lines: Figs 5 and 6) in each of
the frequency bands. The mean RPDC values for the different frequency bands and for each of
the modalities are shown in Table 1 for EC and Table 2 for EO condition. Finally, there was a
significant difference between the recording modalities in the strength of direction of informa-
tion flow (S7 Table). The TRT analyses emphasized the robustness of the above-mentioned
results, as any significant causal interaction identified by RDPC were identified as strong (but

Table 2. The mean coherence values and RPDC values between all the sources from all the subjects
(separately for each recordingmethod) for the condition EO.

Coherence (mean) EEG MEG COMB (EEG+MEG)

Delta 0.25±0.04 0.17±0.05 0.21±0.03

Theta 0.19±0.03 0.12±0.04 0.17±0.05

Alpha 0.21±0.02 0.15±0.03 0.18±0.03

Beta 0.18±0.02 0.11±0.03 0.14±0.02

Gamma 0.17±0.03 0.10±0.02 0.13±0.02

RPDC (mean) EEG MEG COMB (EEG+MEG)

Delta 0.18±0.04 0.14±0.04 0.22±0.02

Theta 0.20±0.02 0.16±0.04 0.26±0.02

Alpha 0.14±0.03 0.10±0.03 0.18±0.05

Beta 0.17±0.02 0.14±0.02 0.22±0.04

Gamma 0.16±0.03 0.13±0.03 0.20±0.03

doi:10.1371/journal.pone.0140832.t002

Fig 5. This figure illustrates the information flow between the coherent sources in the brain for the EC
condition using EEG (first row), MEG (second row) and COMB (EEG+MEG) (Third row). The numbering
of the sources are the same as in the previous Figs 3 and 4. The dotted lines indicate weaker interactions
found between the sources for the recording methods EEG and MEG separately. The bold line with the arrow
heads indicates significant higher directional interaction between the sources for only the combined approach
(EEG+MEG).

doi:10.1371/journal.pone.0140832.g005
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not weak) asymmetry by the TRT. By using the simulation we were able to show that the RPR
plays an important role for the increase in connection strength in the RPDC analysis for the
combined approach (S3 and S4 Figs).

3.4 Relative-power-ratio ratio (RPR) and spatial resolution
The scalp level relative RPR on the selected electrodes/sensors showed significant difference
between the two recording modalities. In all the five frequency bands the pattern remained
similar (EEG>MEG—F2,56 = 41,06; p = 0,002). The source level RPR also indicated the same
pattern for each frequency band and for each source significant difference between the record-
ing modalities (EEG+MEG>EEG—F2,56 = 28,64; p = 0,006; EEG+MEG>MEG—F2,56 = 38,47;
p = 0,002; EEG>MEG—F2,56 = 27,46; p = 0,002). The source level RPR showed that the com-
bined approach had a significantly higher RPR compared to each of the recording modalities
alone. EEG measurements showed higher scalp and source level RPR in comparison to the
MEG alone. We were able to validate the results on the scalp and source level for both EEG and
MEG recording methods and the simulation is depicted in S5 Fig In EEG and MEG recording
modalities both the cortical and sub-cortical sources showed no significant difference for the
number of voxels activated (S8 Table). However, the combined approach (EEG+MEG) had a
significantly lower number of voxels activated for both cortical and sub-cortical sources in all
frequency bands (S8 Table). By using the simulation we were able to show that the RPR plays
an important role for the generation of focal source maps and also increases the coherence
strength in the source analysis for the combined approach (S2 Fig).

The spectral and source level RPR showed the same trend of EEG>MEG (F2,58 = 26.63;
p = 0.004) between the two recording modalities (S4 Fig). However, the spatial resolution got
worse for MEG in comparison to all the 275 sensors but did not reach significance.

Discussion
The main findings of the present study are: In both EEG and MEG recording modalities, all the
analysed bands showed significant higher source and spectral absolute mean power for the EC

Fig 6. This figure illustrates the information flow between the coherent sources in the brain for the EC
condition using EEG (first row), MEG (second row) and COMB (EEG+MEG) (Third row). The numbering
of the sources are the same as in the previous Figs 3 and 4. The dotted lines indicate weaker interactions
found between the sources for the recording methods EEG and MEG separately. The bold line with the arrow
heads indicates significant higher directional interaction between the sources for only the combined approach
(EEG+MEG).

doi:10.1371/journal.pone.0140832.g006
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compared to the EO condition. Comparative analysis of the spectral absolute mean power
between the different recording modalities found EEG to be significantly higher than MEG
across all frequency bands for the EC condition. The same trend was observed across all fre-
quency bands, with the exception of the beta and gamma band, for the EO condition. For the
source absolute mean power the combined approach had significantly higher power compared
to both EEG and MEG. Between EEG and MEG, EEG showed significantly higher power than
MEG in all the frequency bands, with the exception of the beta and gamma band, for both EC
and EO conditions. In respect to the total interaction strength, EEG showed significantly
higher mean coherence values in all frequency bands compared to the other two recording
modalities MEG and the combined EEG+MEG approach. In the within subject statistics for
between conditions EO and EC there were significant differences for all the sources in all the
frequency bands. However, for the between recording modalities test there was no significant
differences for the maximum power and coherence source in all the frequency bands.

During EO and EC resting state, the direction of information flow for EEG, MEG and the
combined approach was no difference between the sources for all the frequency bands. How-
ever, the combined approach showed significantly stronger connections in each of the fre-
quency bands. Finally, there was a significant difference between the recording modalities in
the directionality for all frequency bands and sources, irrespective of the resting state. The
RPDC values in all the five frequency bands showed a similar pattern (EEG+-
MEG>EEG>MEG) for both the conditions.

The scalp level RPR on the selected electrodes/sensors showed significant differences
between the three recording modalities. In all the five frequency bands the pattern remained
similar for both conditions (EEG+MEG> EEG>MEG) for this task. The source level RPR
also indicated the same pattern for each frequency band and for each source with significant
differences between the recording modalities for both conditions (EEG+MEG> EEG>

MEG). Both, the scalp and source level RPR showed that the combined approach had a signifi-
cantly higher RPR compared to the individual recording modalities. While EEG showed higher
scalp and source level RPR in comparison to the MEG alone. For both EEG and MEG record-
ing modalities the cortical and sub-cortical sources showed no significant difference in the
number of activated voxels. However, the combined approach (EEG+MEG) had a significantly
lower number of activated voxels for both cortical and sub-cortical sources in all the frequency
bands.

4.1 Differences in absolute mean power and functional correlation
At the spectral level, the absolute mean values from delta, theta and alpha frequency bands was
significantly higher for EEG compared to MEG in both conditions while the beta and gamma
frequency was only significant in the EC condition. Comparisons of both conditions at the
spectral level have been extensively studied using both EEG and MEG separately [16, 17]. The
previous studies have demonstrated a greater power for EC condition compared with EO con-
dition for all five frequency bands. In this study we had the advantage of comparing the abso-
lute mean power at the source level across all frequency bands, under two conditions (EC and
EO), in both EEG and MEGmodality, as well as in a combined EEG+MEGmodality. Except
for the beta and gamma frequency, the trend (EEG+MEG>EEG>MEG) was similar in all
other recorded frequency bands. The above discussed results were confirmed by using individ-
ual (i.e., IAF-based) band definitions rather than fixed pre-defined frequency bands [55]. Simi-
lar results were described in our previous study, which compared the spectral power between
children and adults using EEG [18], as well as in previous studies utilizing MEG [58, 59]. Sev-
eral EEG-fMRI studies have also shown absolute mean power differences between both EC and
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EO conditions during the resting state[60, 61]. These previous findings provide a strong basis
for our study and indicate that the observed differences are not specific to the recording
method used. In addition, these differences between the EC and EO conditions are also shown
in studies using only fMRI [21, 62, 63].

The network of coherent sources for both the EC and EO conditions showed similar net-
works for both the recording modalities separately and combined. These networks were also
found in our previous study using EEG alone in adults [18] and are also described in an earlier
MEG study [64] and several fMRI resting state studies, with or without EEG [65, 66]. The func-
tional correlation or coherence in both EC and EO conditions has been studied in either EEG
[67–69] or MEG [70, 71] recording modalities, although primarily at the spectral level. In our
previous study we identified differences in the coherence between children and adults in EEG
[18] in both conditions. But, in this study we were able to compare the coherence strength
between the recording modalities at the source level. The results showed the coherence strength
with this trend (EEG>EEG+MEG>MEG) in all the frequency bands and in both conditions.
The differences in trend for the recording modalities in power and coherence can be discussed
from a recent model, which proposed that the decline in power and increase in coherence are
complementary processes that support cognitive gains in the brain [72]. The changes in coher-
ence in relation to power, namely between the recording modalities EEG and MEG, are also
discussed in this review for resting state [73] and also other tasks in scalp and at the source
level [1, 15]. The above studies indicate that the differences in the power and coherence are
possible between the recording modalities. As the combined approach had higher mean source
power, but low coherence because of the MEG, the combined recording method has a reduc-
tion in the strength of coherence. We hypothesize the differences we see in power and coher-
ence between the recording modalities EEG and MEG are mainly due to these reasons. In
respect to power, EEG captures the majority of the radial electric field, which are three times
stronger for cortically spread sources, that is present in the resting state task. This is in compar-
ison to the tangential magnetic field, which is weaker, and mainly captured by MEG[2, 74]. For
coherence, the resting state involves long range connectivity spanning the whole brain, which
is better observed in EEG compared to MEG, and focal cortical dynamics, which can be more
clearly observed by MEG [74]. The effects of volume conduction, electrodes and sensors dis-
tance, spread and focal sources have been extensively tested with simulations and real data, and
it is described that in certain brain states, EEG could dominate MEG in terms of power and
coherence[75–77]. One more important point is the local magnetic fields which have the origin
in sub-cortical regions may be distorted this could in turn have effects on the spatial accuracy
in MEG[73]. The point spread function of the MEG strictly depends on the distance of the sen-
sors from the sources which is always larger compared to the EEG[74]. To emphasize the com-
mon question of whether MEG is superior or inferior to EEG could be a question in the wrong
direction. The right question to answer is whether MEG can add substantial information to the
EEG. In this study and this particular task with the estimated parameters showed that the EEG
could perform better to MEG.

4.2 Differences in effective connectivity
The most prominent finding of this study is that the combined approach showed stronger
interactions to that of using the recording modalities separately, in each of the frequency bands
for both EC and EO states. There was no significant difference in the directions of information
flow between the sources for both EEG and MEG in all the frequency bands. These results were
also confirmed by the time reversal technique, which showed that in the case of EEG there was
no zero lagged coherences (weak symmetries) detected but only strong symmetries [18, 50].
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The connections which are exhibited in all the three recording modalities EEG, MEG and EEG
+MEG will not be discussed in detail, because all these connections are well described in earlier
resting state studies using either of these recording modalities [18, 78, 79], or fMRI[60, 80].
However, in this study we can confirm that the causalities found are similar in the two different
recording modalities measured. In addition, when analyzed together they provide us the surety
of the identified effective connectivity within the network of sources with an independent
recording method. But, the between recording modalities statistical test with the reference
voxel showed the same trend (EEG+MEG>EEG>MEG) as in the mean source power over all
the recording modalities. This in turn indicates that the causality benefits from the combined
approach more so than in each of the recording method alone.

4.3 Differences in RPR and spatial resolution
The scalp RPR followed the same trend EEG>MEG as in power, coherence and directionality
between the recording modalities when analyzed separately. This is not only true for this study
but is also shown in earlier studies with epileptic focal or distributed sources and simulation
studies [30, 31, 74]. EEG is better at capturing the distributed sources in the resting state than
focal cortical sources with fewer electrodes compared to MEG on the scalp [8, 81]. The same
holds true for the source level RPR, that EEG has a better RPR than MEG which is dependent
on a task that induces sources which are spread over the cortex and not focal [82]. The com-
bined approach (EEG+MEG) had the best RPR at the source level compared to both the
recording modalities alone. The advantages of combining them to get the best possible RPR for
source localization algorithms [7, 9, 13] has not only been proven in epilepsy [83], but also in
cognitive tasks [84].

The spatial resolution showed that between EEG and MEG there was no significant differ-
ence in the number of activated voxels when analyzed separately. The number of electrodes or
sensors is not the important factor but the RPR plays the major role in the accuracy of location
of sources both in cortical [6, 8, 11] and sub-cortical regions [10, 82]. However, the combined
approach showed a better spatial resolution in comparison to the individual recording modali-
ties indicating that both these recording modalities give complimentary information which is
vital in the accuracy of identifying the sources. The combined approach can be used to test and
compare both the recording modalities alone. This will help in the selection of a recording
method for a specific task, and will be easier for the research groups who have limited access to
simultaneous acquisition systems.

4.4 Limitations of the study
This study has several limitations which need to take into consideration while interpreting the
results of this study. Firstly, all the comparisons are performed with a 64-channel EEG system
and a 275 sensor MEG system. In order to circumvent this discrepancy, and ensure the
observed differences are not merely due to the number of electrodes/sensors used [8, 85], we
repeated the source analysis for all the 29 subjects for only the alpha frequency band by taking
64 EEG channels and 64 MEG sensors into consideration. We found the same network of corti-
cal and sub-cortical sources for both the recording modalities. The spectral and source level
RPR showed the same trend of EEG>MEG (F2,58 = 26.63; p = 0.004) between the two record-
ing modalities (S4 Fig). However, the spatial resolution got worse for MEG in comparison to
all the 275 sensors but did not reach significance. Secondly, in this study no realistic head
model was used. Only semi-realistic head models with individual electrodes and sensors loca-
tions were applied. The advantages of using individual MRI for boundary element or finite ele-
ment methods in localizing electrical sources are shown in previous studies [86, 87]. The
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realistic head model will possibly increase the localization accuracy for EEG. The head model-
ling makes adverse effects on the interpretation of the results on the individual subject level.
However, we want to point out that by taking the combined approach for the forward model-
ling, and also standard isotopic conductivity values [88], we are comparing the group differ-
ences and not claiming any individual subject’s results. The first inconsistency of the number
of MEG sensors and the number of EEG channels in our data was tested only for the alpha fre-
quency. The results from the other frequency bands should be interpreted with care and in
future studies to have equal number of sensors would be ideal. The second inconsistency of the
semi-realistic model for EEG should be dealt with care even though we discuss only group dif-
ferences and not at individual subject level.

Finally, this study reveals sub-cortical sources using DICS (i.e., the thalamus). The identifi-
cation of deep regions in the brain with scalp recordings is still under debate. Several studies
using MEG [22, 27, 89] and EEG [24–26, 90] have shown that this beam former approach is a
powerful tool for locating deep sub-cortical sources[15, 18, 91].Furthermore, it is worthy to
mention that these results should be further tested with other multi-beam former analysis [92]
and alternative comparative source analysis algorithms which have been applied to low RPR
signals and proven to be better than DICS [93].

Conclusion
In this study we demonstrate that the combined approach (EEG+MEG) has several advantages
over each of the recording modalities alone for this specific resting state task. The outcome of
this study could be used as an initial standardization procedure for future clinical studies in
this research area; depending on both the recording tools and methods available and the ques-
tions to be answered. All the differences in power, causality, RPR and spatial resolution lead to
the conclusion that the combined EEG+MEG approach is better than EEG or MEG alone and
that EEG outperforms MEG. For the parameter coherence EEG outperforms both the com-
bined EEG+MEG approach and MEG alone.

Supporting Information
S1 Fig. Shows the 2D representation of the simulated five dipoles for each condition eyes
closed (EC) (first two columns), eyes open (EO) (third and fourth column) and for all the
three recording methods EEG (first row), MEG (second row) separately and the combined
approach (third row). The left hemisphere is shown in first and third column and the right
hemisphere is shown in the second and the fourth column.
(TIF)

S2 Fig. Shows the simulations results of the source analysis for each condition eyes closed
(EC) (first three columns), eyes open (EO) (second three columns) and for the alpha fre-
quency band separately for each recording method. First column represents the recording
method EEG, second column represents the recording method MEG and the third column rep-
resents the combined approach (EEG+MEG). The numbers indicate the order of sources
found for alpha frequency band.
(TIF)

S3 Fig. This figure illustrates the results of the information flow from the simulation
between the coherent sources in the brain for the EC condition using EEG (first row), MEG
(second row) and COMB (EEG+MEG) (Third row). The numbering of the sources are the
same as in the previous Figs 3 and 4. The dotted lines indicate weaker interactions found
between the sources for the MEG and dashed line increased connectivity for the EEG modality.
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The bold line with the arrow heads indicates significant higher directional interaction between
the sources for only the combined approach (EEG+MEG).
(TIF)

S4 Fig. Simulation results showing the mean RPDC values for eyes open and eyes closed
condition. MEG (black bars), EEG (white bars), EEG+MEG (grey bars).
(TIF)

S5 Fig. Results of the spectral and source RPR for. MEG (black bars), EEG (white bars).
(TIF)

S6 Fig. Results of the spectral and source absolute power of the frequency band gamma for
eyes closed (EC) and eyes open (EO) condition.Mean band power (with standard deviation)
is shown for EEG (black bars), MEG (white bars), and EEG+MEG (grey bars). Significant
recording method differences are indicated by � (p< 0.05).
(TIF)

S7 Fig. First column represents the recording method EEG for the frequency band gamma
showing the grand average statistical map of network of sources for the eyes closed (EC)
condition. Second column represents the recording method MEG for the gamma band sepa-
rately. Third column represents the combined approach (EEG+MEG). The numbers indicate
the order of sources found for gamma frequency band separately. Additionally, the figure illus-
trates the information flow between the coherent sources in the brain for the EC condition
using EEG (first row), MEG (second row) and COMB (EEG+MEG) (Third row). The dotted
lines indicate weaker interactions found between the sources for the recording methods EEG
and MEG separately. The bold line with the arrow heads indicates significant higher directional
interaction between the sources for only the combined approach (EEG+MEG).
(TIF)

S1 Table. The relative-power-ratio (RPR) values for all the sources separately for each
recording method for the condition EC and EO.
(DOCX)

S2 Table. The individual alpha frequencies (IAF) t-values and p-values for each frequency
band separately.
(DOCX)

S3 Table. The t and p values of the statistics on the spectral absolute power for Eyes closed/
Eyes open condition (EEG Vs. MEG) for each frequency band separately.
(DOCX)

S4 Table. The t and p values of the statistics on the source absolute power for Eyes closed/
Eyes open condition for each frequency band separately.
(DOCX)

S5 Table. The t and p values of the statistics on the maximum source power for Eyes closed/
Eyes open condition for each frequency band separately.
(DOCX)

S6 Table. The t and p values of the statistics on the maximum source coherence for Eyes
closed/Eyes open condition for each frequency band separately.
(DOCX)
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