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Abstract
Animal experiments report contradictory findings on the presence of a behavioural and neu-

ronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and

navigation. We performed a pointing experiment in humans on the imagined 3-D direction of

the location of various invisible goals that were distributed horizontally and vertically in a

familiar multilevel hospital building. The 21 participants were employees who had worked

for years in this building. The hypothesis was that comparison of the experimentally deter-

mined directions and the true directions would reveal systematic inaccuracy or dimensional

anisotropy of the localizations. The study provides first evidence that the internal represen-

tation of a familiar multilevel building was distorted compared to the dimensions of the true

building: vertically 215% taller and horizontally 51% shorter. This was not only demon-

strated in the mathematical reconstruction of the mental model based on the analysis of the

pointing experiments but also by the participants’ drawings of the front view and the ground

plan of the building. Thus, in the mental model both planes were altered in different direc-

tions: compressed for the horizontal floor plane and stretched for the vertical column plane.

This could be related to human anisotropic behavioural performance of horizontal and verti-

cal navigation in such buildings.

Introduction
Most swimming and flying species move and navigate in both the horizontal and vertical direc-
tions within their 3-D environment. They use path integration, continuously integrating direc-
tion and distance to envisaged goals. The honeybee integrates image motion across its eyes [1]
Fish store horizontal and vertical components separately in their internal representation of
space [2]. The vertical component may be less critical for survival in ground-based animals like
rats or dogs compared to, e.g., bats [3]. However, animal experiments report contradictory
findings as to whether there is a behavioral and neuronal anisotropy [4] exhibited in vertical
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and horizontal capabilities of spatial orientation and navigation, particularly with respect to
the comparability of available reference frame cues [5]. Evidence was reported that rats give
priority to the vertical dimension of space when relevant for orientation [6]. On the other
hand, it has been shown that they exhibit a behavioural anisotropy when distributing their
time freely between vertical and horizontal movements; they seem to prioritize the horizontal
in both foraging and detour tasks [7]. The representation of the 3-D world is based on the
activity of place cells in the hippocampus (information on position [8]), grid cells in the ento-
rhinal cortex (information on distance [9,4]), and head direction cells (information on direc-
tion [10]). Rats climbing a wall showed impaired path integration by grid cells in the vertical
domain [10]. The authors argue that these results can be simply accounted for by considering
the different reference frames used by the rat. They present experimental evidence of the capa-
bility of rats to orient and navigate in the vertical domain [11].

Our current study on 3-D orientation and spatial memory in humans was stimulated by an
accidental observation made in dogs living for several days with their owners in a multilevel
hotel [12]. The dogs had difficulties finding the right floor but correctly ran to the correspond-
ing “right door” on the “wrong floor”. Our main question was whether humans also show an
anisotropy of spatial memory for horizontal and vertical dimensions in a familiar multilevel
building, i.e., a huge 15-floor university hospital (Fig 1). This can be investigated by two differ-
ent experimental approaches: by a real navigation task in a familiar multilevel building [13] or
by imagining and pointing to different landmarks within this building. Both experimental
approaches have been shown to be complementary rather than equivalent and to yield different
results in the horizontal plane of a virtual town [14]. Here we chose the second approach and
designed a pointing experiment on the imagined 3-D direction of the location of various well-
known but invisible goals that were distributed horizontally and vertically. The participants
were employees who had worked for years in the building and were familiar with the localiza-
tion of all targets. The hypothesis was that comparison of the assumed and the true directions
might reveal systematic inaccuracy or dimensional anisotropy of localizations. Further, these
localizations would allow the construction of a virtual 3-D model of our spatial memory and
the internal representation of the building in our mind.

Materials and Methods
All participants had worked regularly at the University Clinic for at least 5 years. They gave
their verbal consent to participate in this study. They were just asked to participate in a direc-
tion-pointing experiment, which did not require written consent and required the participants
to be naïve as to the aims and procedure of this psychophysical experiment. The consent was
documented in the trial protocol. The experiment was approved by the Institutional Review
Board of the ethics committee of the Ludwig-Maximilians University Munich in accordance
with the Helsinki Declaration.

Participants
Twenty-one healthy volunteers (8 females, age range 27–58, mean 44.3, SD 10.0) took part in
this study(all were right-handed except for one female). All had normal or corrected-to-normal
vision and no motor impairment that could affect finger-arm pointing. Participants had no
neurological or psychiatric pathologies. They preferred to use the stairs to navigate between
floors when less than five levels, but preferred the elevator for more than five levels.
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Design and procedure
All experiments were conducted in the same office where the enclosing walls prevented visibil-
ity of the targets (see Figs 1 and 3 for location). The examinee position for the pointing experi-
ments was on the right side of the ground floor; it was chosen because this was a familiar
meeting room. An optical tracking system (Qualisys, 8 cameras, frame rate 200 Hz) was used
to track the pointing movements. Participants wore infrared reflective markers attached to
their right index finger, right hand wrist and elbow, left and right shoulders, and forehead and
faced along the short axis of the main building. The tracking system was installed to follow the
whole movement range of all participants. All experiments were done under conditions of
open eyes and a brightly illuminated test room.

For the calibration procedure the participants were instructed as follows: “In the first part of
the experiment we will tell you at which corner of the room you have to look and point. Stand
still, with lowered arms. Then point at the mentioned corner for 2 seconds, and then lower
your arm.” The corners were defined as lower-right, upper-right, lower-middle, upper-middle,
lower-left and upper left corner, corresponding to the heading position of the participants.

Pointing experiment: Instructions for the actual experiment were “In the second part, we
will mention 15 various locations in the hospital such as wards, entrance, lecture halls in differ-
ent horizontal directions and on different vertical levels (Table 1). The proportion of more ver-
tically placed targets to targets placed more horizontally was balanced. Please point and look
toward these targets. Imagine that a laser-pointer is attached to your index finger and its beam
is to be directed to the assumed location of the mentioned target in the hospital. If you think
you are pointing to the correct place, keep gaze and arm steady for 2 seconds and then lower
your arm for the next condition.” The targets were distributed over the whole building (coordi-
nate ranges along the long axis of main building -270 m to 226 m, along the short axis 2 m to
236 m, along the vertical axis -8 m to 38 m; absolute target distances 11 m to 358 m), and all
participants were familiar with the locations (Fig 1).

Drawings: After the pointing experiment, participants were asked to draw a schematic front
view and ground plan of the main building. The drawings were used to compare ratios of
width, height, and length of the building with those derived from pointing (see sections below).

Fig 1. Pointing locations. Pointing locations as seen from above overlaid on an architectural ground plan of
the hospital building. Note that the targets were not placed more toward the corners of the building but rather
were distributed all over the building.

doi:10.1371/journal.pone.0141257.g001
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Data processing
The recorded trajectories of the markers were labelled according to their attached joint offline
in the QTM (Qualisys Tracking Manager) software. The end of each pointing episode was
determined when the position of the wrist marker began to move downwards minus 0.2 s. The
recorded and labelled data were exported to Matlab for further analysis. One hundred data
points (0.5 s) before the end of a pointing episode were accumulated and averaged to calculate
the pointing direction. Pointing direction was determined as follows (for methodological
details see [15,16]). First, the mean error of the pointing direction toward the calibration cor-
ners was determined by using two different methods:

1. the direction starting at the mid-eye towards the pointing finger,

2. the direction defined by the shoulder towards the pointing finger.

Fig 2. Pointing directions.Horizontal (azimuth, black dots) and vertical (elevation, red stars) mean pointing
directions (error bar gives circular SD) plotted over mean target direction. Accurate pointing directions would
agree with the dashed blue line. Orientation of the participants during the pointing task coincided with the
short axis of the main building (tall red building part in Fig 3) and with zero azimuth angle. Note that horizontal
pointing angles were on average smaller than target angles, indicating a reduction of perceived length of the
building, while the opposite was the case for vertical angles, indicating an overestimation of the building’s
height.

doi:10.1371/journal.pone.0141257.g002
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The errors for the two methods were calculated for each participant and the method with
the smallest error was used to define the participant’s individual pointing method. All calcula-
tions were done using Matlab Release 2013 or higher (Mathworks, USA) and its Optimization
Toolbox.

Calibration
The measured pointing directions to the corners of the room were used to calibrate the point-
ing angles of the experiment. Since the exact position of each corner relative to the head of the
participant was known, it was possible to calculate the hypothetically exact pointing direction
to the corners. The pointing directions are expressed in azimuth (Az horizontal) and elevation
(El vertical) angles. The difference between an exact pointing direction and the measured
pointing direction was used to calculate a calibration matrixMβ, according to the ordinary

Fig 3. 3-Dmodel of the hospital building. A: original building. B: building reconstructed from the averaged pointing directions of the participants assuming a
linear transformation of the building. C: building reconstructed from pointing but allowing for linear and quadratic transformation. Green flag indicates the
position of the participants in the building. Red: main building. Note that the mental model appears to be compressed for the horizontal floor plane, stretched
for the vertical column plane, and curved toward the subjective straight ahead.

doi:10.1371/journal.pone.0141257.g003

Human 3-D Spatial Memory

PLOS ONE | DOI:10.1371/journal.pone.0141257 October 28, 2015 5 / 12



least squares estimation:

Mb ¼ ðDT � DÞ�1 � DT � Pc ð1Þ

where D is a 3xN matrix containing the difference between exact and measured pointing angles
(difference of Az, difference of El) and a vector of ones, which represents an offset. Pc is a
matrix containing all measured pointing angles. The i-th column of Pc is a vector containing
the pointing angles for the i-th target.

The calibration matrix allowed adjustment of the pointing angles for the experiment with:

~p0 ¼ Mb �~pm ð2Þ

where p!m is a vector containing the measured pointing angles during the experiment and~p0

contains the calibrated pointing angles. The pointing angle was transformed into a unit vector
with the appropriate pointing direction for further processing.

Data analysis
Pointing angles indicated by azimuth and elevation were averaged over targets or subjects
using circular statistics (CircStat toolbox for Matlab [17]).

To further understand the errors in pointing angles, a transformed building that best
matched the subjects’mean pointing directions was calculated. An optimization procudure
(Matlab function lsqnonlin) was used to search for a linear transformation T of the normalized

target directions~ti derived from the target coordinates that would minimize the angles between
the normalized average pointing directions~pi and the transformed and normalized directions

of the targets~t0i ¼ T � t!i so that
X

i

arccosð~pi � T �~tiÞ ¼ min ð3Þ

The linear transformation represented by the transformation matrix T allowed for rotation,
shearing, and scaling. By adding a quadratic term, a second transformation function was

Table 1. Names and coordinates of the target positions relative to the location of the participant.

Name Abbr. X [m] Y [m] Z [m]

Nurses’ room, Ward I2 I2 -36.85 -165.40 4.00

Nurses’ room, Ward G8 G8 -37.75 -66.43 24.50

Nurses’ room, Ward H8 H8 -36.00 -109.61 24.50

Conference room G12 G12 -29.66 -66.93 37.70

X-ray conference room RK -105.13 52.83 -4.00

Registration desk, Outpatients NP -79.69 -117.37 0.00

Lecture hall 1 HS1 -130.90 -225.12 0.00

Lecture hall 6 HS6 -43.20 -225.67 0.00

Main entrance HE -16.60 108.53 -4.00

Conference room 2, entrance K2 -2.00 -90.36 0.00

Porter’s desk PH -236.08 269.62 -4.00

Hairdresser’s FL -7.98 7.05 0.00

Top end of escalator RT -32.22 84.19 0.00

Foto department, entrance FA -25.95 -215.94 -8.00

Emergency, ramp onset NH -144.75 -24.58 -8.00

doi:10.1371/journal.pone.0141257.t001
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generated to allow for a non-linear distortion. The same approach was used to calculate an
individual transformation matrix for each participant corresponding to his or her respective
pointing directions.

For 3-D modelling the ground plan of the building (Fig 1) was used to create a 3-D model
with the AutoCAD software (Autodesk Inc., USA). The previously calculated general linear
transformation was applied to the 3-D model using Matlab, and the aspect ratios of the result-
ing main building of the new model were determined by calculating its length, height, and
width. To generate the figures, the transformed model was imported back to AutoCAD. The
aspect ratios of length-height (L/H) and length-width (L/W) determined from the individual
transformation matrices were then compared to the corresponding aspect ratios derived from
the participants’ drawings.

Results
According to the calibration procedure, approximately 57% of the participants (12 of 21) used
the eye-finger pointing strategy. The average unsigned pointing error during the calibration
procedure was 8.6±1.2°.

Averaged horizontal and vertical pointing directions over all subjects are shown in Fig 2
(see S1 File for individual data). Horizontal pointing directions were smaller than true target
directions, indicating a compression of the perceived building along its long axis. In contrast,
vertical pointing directions were larger, as if the height of the building had been overestimated.
To quantify this relation the respective linear regressions were calculated for each subject. The
average slope of horizontal pointing directions was 0.63±0.28 (including two outliers with neg-
ative slopes), for vertical pointing directions 1.73±0.48. Both average slopes are significantly
different from unity (accurate pointing) and from each other (t-tests, all p<0.0001).

From the pointing directions, it was estimated how the building would look, if pointing
were accurate on average. To this end, a linear or linear-quadratic transformation was applied
to the target coordinates, minimizing the difference between the transformed target directions
and average pointing directions. The transformed buildings are shown in Fig 3 together with
the original building for comparison. The linear transformation was then applied to the data of
each participant in order to derive individual transformations. From the transformed buildings
the aspect ratios of length-height and length-width were calculated and averaged. Fig 4 com-
pares these values with the true aspect ratios and those derived from the drawings of the partic-
ipants (see Table 2 for values). A repeated measures ANOVA of the ratios (factor 1: L/H or L/
W; factor 2: from pointing or from drawing) shows a highly significant effect of L/H vs. L/W
(F(1,20) = 47.7, p<0.0001) but no effect of drawing vs. pointing (F(1,20) = 3.17, p = 0.09 n.s.)
or interaction between the two factors.

Discussion
The major finding of this study was that the internal representation of the familiar multilevel
building appeared to be distorted and convexly curved from the subject’s viewpoint: it seemed
vertically taller and horizontally shorter (see Fig 3). This holds not only for the group average
but for the great majority of single subjects tested (exceptions: one outlier in the pointing task
and one in the drawing task, each for the ratio L/W). It was demonstrated both for the mathe-
matical reconstruction based on the analysis of the pointing experiment and the drawings of
the front view and ground plan of the building. Distortions of the internal model of the build-
ing were horizontally and vertically reciprocal, i.e., 215% taller and 51% shorter in the pointing
experiment and 61% taller and 46% shorter in the drawings.
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Our current understanding of neural representation of the surrounding 3-D space is based
on the assumption that cognitive maps are continuously encoded by place cells, grid cells, and
head direction cells [18]. The formation of such cognitive maps depends on a cascade of
increasingly complex associative processes involving object location, subject location, and then

Table 2. Aspect ratios of the main building (see also Fig 3).

length:height length:width

True aspect ratio 3.40 7.85

Averaged individual pointing ratios 1.08±0.29 3.83±2.58

Ratio derived from averaged pointing data 1.03 3.19

Average individual drawing ratios 2.11±0.47 4.17±2.12

doi:10.1371/journal.pone.0141257.t002

Fig 4. Aspect ratios of the main building. A: Front view (top row) and top view (bottom row) of the main building. Left column: true proportions of the
building. Middle column: Transformed building according to averaged pointing directions. Right column: Transformed building according to averaged aspect
ratios from participants’ drawings. Note that depictions are shown at equal height. B: Bar graph of aspect ratios. Left length:height, right: length:width. Left bar
(light gray): true aspect ratio of the building, middle bar (gray): averaged ratios of transformed buildings according to individual pointing directions, right bar
(dark gray): ratio taken from individual drawings. Error bars denote standard deviation.

doi:10.1371/journal.pone.0141257.g004
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the formation of building blocks for learning temporo-spatial sequences [19]. Orientation and
navigation depend on the interplay of various cognitive processes [20]. One such process is
landmark-based piloting, i.e., (1) identify individual landmarks, (2) use these landmarks to
determine your (?) current position and heading, (3) access long-term knowledge about the
spatial relationships between locations, and (4) use this knowledge to plan a route to the navi-
gational goal [21]. The parahippocampal place area seems to be critical for landmark recogni-
tion, the retrosplenial/medial parietal region, for localization and orientation, and both medial
temporal lobe and retrosplenial/medial parietal lobe regions, for long-term spatial knowledge
[21].

Furthermore, the posterior hippocampus plays a significant role in both the encoding and
retrieval of spatial memory, orientation, and navigation [22]. It has different functions than the
anterior hippocampus; whereas the posterior hippocampus is mainly involved in cognitive
functions, the anterior is more involved in emotional processes [23]. There is also a hippocam-
pal separation for processing vestibular inputs (anterior hippocampus) and visual inputs
(posterior hippocampus) [24]. The separation of vestibular and visual information in the hip-
pocampal formation has a twofold functional consequence: missing input from one system
may be partially substituted by the other, and the task-dependent sensorial weight can be
shifted to the more reliable modality for navigation [24]. The latter is reflected by the structural
and functional plasticity of the hippocampal formation observed in professional dancers and
slackliners. They have smaller anterior (vestibular) volumes as a result of long-term suppres-
sion of destabilizing vestibular input, but larger posterior (visual) volumes as a result of
increased utilization of visual cues for balance [25].

There seem to be several separate vestibular pathways connecting the hippocampus with the
parietal cortex to subserve spatial learning and spatial memory [26]. The posterior parietal cor-
tex and the parahippocampal place area are believed to integrate multisensory spatial represen-
tation and the planning of goal-directed movements [27,28,22]. It is not yet fully understood
how the neural mechanisms in the parahippocampal place area, retrosplenial cortex, and
medial temporal lobe interact to form a global representation of the 3-D world [21].

To the best of our knowledge, this study is the first to analyze the 3-D internal representa-
tion in humans of a complex building. This representation serves as a cognitive map not only
for pointing but also for navigation. It remains open as to whether the participants formed a
continuous vertical representation of the building’s floor plan, for we did not systematically
interview them on this question. Their spontaneous reports differed considerably: some sub-
jects said that they imagined the building’s shape from outside, others imagined parts or blocks
of the building with the location of the particular invisible goal they had to point to, and a few
worked in two steps, i.e., first imagining the location of the goal relative to the horizontal floor
and then estimating the vertical position up or down, which was similar to the”direction strat-
egy and floor strategy” [29]. We did not intend to contribute new knowledge about the cortical
structures and functions involved in encoding spatial localizations. Instead, we were interested
in the actual performance of retrieving landmarks in horizontal versus vertical dimensions in
order to reconstruct an internal representation of the entire 3-D building. Earlier studies
focused on how horizontal and vertical navigation influences spatial memory of virtual multi-
floored environments [30] and of real buildings [31]. The learning effect of navigation in the
horizontal (floor) plane on the spatial memory of a real building was better than was that along
the vertical levels (column) The authors attributed this to the structural differences in the hori-
zontal and vertical planes [31]. In virtual reality, however, horizontal (floor) recognition was
not reliably superior to column recognition, but learning along a floor route produced a better
spatial memory performance [30].
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The resulting horizontally and vertically distorted internal representation is supported by
the subjects’ drawings of the front view and ground plan of the building. The drawings, i.e., the
imagination of the building, confirm the 3-D reconstruction: both planes are altered differently
(compressed for the horizontal floor plane and stretched for the vertical column plane). While
the compression observed in the horizontal plane can be related to general effects in magnitude
estimation such as the regression effect [32], the vertical stretching shows quite the opposite
tendency. Questions arise as to how to interpret these results with respect to the anisotropy of a
weaker performance of navigation in the vertical versus the horizontal dimension, which was
described in rodents [4,7], dogs [12], and humans [13]. PET measurements in the latter study
showed increased glucose metabolism in the right hippocampus, bilateral retrosplenial cortex,
and pontine tegmentum during horizontal navigation [13]. In contrast, vertical navigation acti-
vated the bilateral hippocampus and the vestibular insular cortex.

An anisotropic navigation performance may be due to the different cues provided during
way finding on a horizontal floor versus the traversing of the building vertically by a stairwell.
The stairwell provides fewer landmarks during locomotion and predominantly relies on path
integration, i.e., the performed path is compared with the internal representation of the path
along the floors. The horizontal plane provides many more landmarks on the way to the desti-
nation. These landmarks may allow us to re-compute the distance to the destination, which
may correct for the shorter imagined distance of the initial route plan. This may be related to
the specific strategies for navigating multilevel buildings: the direction strategy, which relies on
routes that first head towards the horizontal position of the goal and a floor strategy that relies
on routes that first head towards the vertical position of the goal [29]. These authors found that
experienced subjects preferred the floor strategy, which also resulted in a better way-finding
performance.

The imagined building in our study appeared to be convexly curved. This impression may
be due to the eccentric position of the participant which causes a bias of the most distant targets
inhorizontal directions toward the subjective straight ahead (see Fig 3).

The finding of our current study that an internal representation of a familiar multilevel
building is distorted raises several questions. For example, does this representation depend on
the subject’s position (viewpoint) and if so, how? Does the shape of the representation change
during true locomotion or imagined locomotion within the building? This is relevant because
of the so-called ‘Event-Horizon-Effect’. Previous research using virtual or real environments
has revealed that walking through doorways causes a location-updating effect with a decline in
memory, suggesting a segmentation of internal representations of space [33,34]. This is also
reflected by grid cell behaviour in rat experiments in which the firing pattern was initially com-
partmentalized but after longer experience in the same environment reflected the connected
environments [35].

Supporting Information
S1 File. Pointing data. Supplementary information contains a semicolon-delimited CSV data
file with pointing data (in deg) generated by Matlab. Each row contains data of one participant
(15 columns horizontal angles and 15 columns vertical angles, one column for each target,
same order as in Table 1). Missing values are denoted by the string 'NaN'.
(XLS)
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