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Abstract
Large genome-wide association studies (GWAS) have identified many genetic loci associ-

ated with risk for myocardial infarction (MI) and coronary artery disease (CAD). Concur-

rently, efforts such as the National Institutes of Health (NIH) Roadmap Epigenomics Project

and the Encyclopedia of DNA Elements (ENCODE) Consortium have provided unprece-

dented data on functional elements of the human genome. In the present study, we system-

atically investigate the biological link between genetic variants associated with this complex

disease and their impacts on gene function. First, we examined the heritability of MI/CAD

according to genomic compartments. We observed that single nucleotide polymorphisms

(SNPs) residing within nearby regulatory regions show significant polygenicity and contrib-

ute between 59–71% of the heritability for MI/CAD. Second, we showed that the polygeni-

city and heritability explained by these SNPs are enriched in histone modification marks in

specific cell types. Third, we found that a statistically higher number of 45 MI/CAD-associ-

ated SNPs that have been identified from large-scale GWAS studies reside within certain

functional elements of the genome, particularly in active enhancer and promoter regions.

Finally, we observed significant heterogeneity of this signal across cell types, with strong
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signals observed within adipose nuclei, as well as brain and spleen cell types. These results

suggest that the genetic etiology of MI/CAD is largely explained by tissue-specific regulatory

perturbation within the human genome.

Author Summary

Coronary artery disease (CAD) and its subcomponent, myocardial infarction (MI), are the
leading causes of infirmity and death worldwide. Large-scale genetic association studies
have identified many genetic markers associated with CAD and MI. However, it has been
difficult to determine the precise functional effects of these markers. Furthermore, it is
unknown which cell types are biologically important in the development of MI/CAD. By
intersecting findings from large-scale genetic association studies with functional genomic
annotations, we show that genetic markers located in genomic regions that regulate
expression of genes make up a large proportion of the genetic risk of MI/CAD. Further-
more, we show that this effect is particularly strong in certain tissues, including adipose,
brain and spleen tissue. These results highlight the role of tissue-specific regulatory mecha-
nisms in the genetic etiology of MI/CAD.

Introduction
Coronary artery disease (CAD) and myocardial infarction (MI) remain among the leading
causes of infirmity and death worldwide despite advances in and widespread adoption of medi-
cal therapies treating this disease. Studies have shown a large genetic component for CAD,
with the heritability estimated to be 30–60% [1]. Large-scale genome-wide association studies
(GWAS) have identified common single nucleotide polymorphisms (SNPs) at 45 loci associ-
ated with MI/CAD risk [2–8]. Although these newly discovered loci have led to important new
biological insights for MI/CAD [9,10], the proportion of the heritability explained by these loci
represents approximately 15% of the estimated heritability [8]. Therefore, a large proportion of
the genetic effects are apparently not explained by known loci. This phenomenon has been
similarly observed with GWAS for other complex diseases [11].

Previously, we modeled the genetic architecture of MI and CAD using GWAS data [12].
Using simulated genetic models, we inferred that a polygenic model comprised of thousands of
associated common variants with small effects explains the majority of the heritability (propor-
tion of total liability-scale variance explained is 0.48, 76% of family-study h2) for MI/CAD [12].
Furthermore, recent work has partitioned heritability of complex diseases into broad categories
of the genome [13]. Pooling 11 common diseases, including CAD, Gusev et al. have shown that
heritability is disproportionally represented in regulatory elements, specifically in DNase I
hypersensitivity sites (DHS) (h2g = 79% for SNPs in DHS regions). However, a specific analysis
of CAD yielded a wide interval of the true enrichment of DHS, with genotyped estimates of h2g
= 10.9 to 71.3% (95% confidence intervals) for SNPs in DHS regions. Hence, other than being
broadly distributed throughout the genome, the molecular consequences of MI/CAD-associ-
ated common variants largely remain undefined. Furthermore, it is unclear which cell or tissue
types are influenced the most by MI/CAD-associated SNPs.

We addressed these unresolved issues by leveraging data from the National Institutes of
Health (NIH) Roadmap Epigenomics Project [14,15] and the Encyclopedia of DNA Elements
(ENCODE) Consortium [16]. These projects have comprehensively catalogued biochemical
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functional regions such as those critical for transcription, transcription factor binding, chroma-
tin structure and histone modification in different cell types, providing unique opportunities to
scrutinize links between non-protein-coding DNA sequence variants and gene function. Stud-
ies have shown that SNPs in these functional DNA elements can regulate gene expression [17]
and common disease-associated loci [18,19].

Using these data, we partitioned the genetic risk of MI/CAD into different categories, to dis-
cern drivers in specific cell types that may biologically influence MI/CAD. First, we investigated
components of polygenicity and heritability in distinct genomic compartments. Second, we
tested for differences in polygenicity, enrichment measures and heritability across diverse cell
types within three histone modification marks. Third, we examined clusters of 45 loci discov-
ered from recent GWAS meta-analyses [8] for MI/CADmapping to the three histone marks in
different cell types. Finally, we investigated whether specific biological networks were expressed
differently in certain cell types.

Results

Relative contribution of genomic compartments to MI/CAD risk
We imputed two GWAS datasets, the Myocardial Infarction Genetics Consortium (MIGen)
and the Wellcome Trust Case Control Consortium (WTCCC) CAD, using reference haplo-
types from the 1000 Genomes Project [20]. We imputed ~7 million SNPs with a high imputa-
tion quality metric (>0.5) in both datasets. First, we investigated the relative contributions of
different genomic compartments to MI/CAD risk. We partitioned the human genome into
three distinct variant sets: “genic noncoding”, “genic coding” and “intergenic” (S1 Table) (see
Materials and Methods). For each variant set, we performed two different analyses: 1) poly-
genic risk score analysis, where we test association of a genetic score comprised of multiple
SNPs and 2) SNP-heritability analysis, where we estimate the variance in liability to MI/CAD
[21] (see Materials and Methods).

In the polygenic risk score analysis, we observed that the ‘genic’ variant set, defined as geno-
mic regions within 10 kilobases (kb) upstream and downstream of a gene, showed a substan-
tially stronger signal than SNPs in intergenic regions (defined as genomic regions outside of
10 kb of a gene) (Fig 1 and S1 Fig). Similar results were observed amongst genomic regions
with window sizes of 20 kb and 50 kb (S2 and S3 Figs). Among this set of variants, both associa-
tion (Fig 1) and the phenotypic variance explained by the polygenic risk scores before and after
normalization by the number of SNPs (S1–S3 Figs) were the most significant in regions adja-
cent to the protein-coding DNA regions, called “genic noncoding” regions. We observed that
polygenic risk scores were strongly associated with MI/CAD in “genic noncoding” regions
(P<10−10), explaining 1 to 1.5% of the phenotypic variance. By comparison, polygenic risk
scores in regions within protein-coding DNA regions, called “genic coding” regions, were less
strongly associated (P<10−5) and explained approximately 0.5% of the variability. Similar pat-
terns were observed after normalizing by the number of SNPs in the polygenic risk score.
These patterns were particularly evident for P value thresholds<10−5 (see Materials and Meth-
ods). The association signal remained among the variant sets with discovery P value thresholds
greater than or equal to 0.05 after excluding regions within ±1 megabase of the 45 known SNPs
associated with MI/CAD risk [8] (S4 Fig).

We further examined the role of different genomic compartments on the heritability for
MI/CAD risk by testing whether SNPs in the three compartments make up a large portion
of the heritability for MI/CAD (Table 1 and S2 Table). Consistent with findings from our
polygenic risk score analysis, we observed that most of the heritability resides within the
“genic” regions. In a meta-analysis of the MIGen and WTCCC CAD studies, SNPs in “genic
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noncoding” regions explained approximately 58.9% (variance in liability = 0.25, P = 1×10−9) of
the total heritability, resulting in a fold enrichment of variance of 1.2. In contrast, the heritabil-
ity of MI/CAD explained by SNPs residing within “genic coding” regions was estimated to be
only 10% of the total (variance in liability = 0.042, P = 0.07). SNPs residing within “genic

Fig 1. Contributions of three genomic compartments to the polygenicity of MI/CAD. Polygenic risk score analysis was performed across three different
genomic compartments. The top bar plot represents the strength of association for the polygenic risk score analysis whereas the bottom bar plot represents
the number of SNPs within each of the compartments. The strongest polygenic association signals were within noncoding regions adjacent to protein-coding
genes (“genic noncoding”). MI, myocardial infarction; CAD, coronary artery disease; SNP, single nucleotide polymorphism. Genic coding, variants that code
amino acid sequence within ±10 kilobases of the 30 or 50 untranslated regions of a gene. Genic noncoding, variants that do not code amino acid sequence
within ±10 kilobases of the 30 or 50 untranslated regions of a gene. Intergenic, variants that are beyond ±10 kilobases of the 30 or 50 untranslated regions of a
gene.

doi:10.1371/journal.pgen.1005622.g001
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coding” regions accounted for only 0.5% of the total number of variants, resulting in a high
fold enrichment of variance of 19.1. Despite the enrichment of variance estimates for both
“genic coding” and “genic noncoding”, neither category statistically deviated beyond expecta-
tion (P = 0.088 and P = 0.23 respectively). On the other hand, a statistically significant deple-
tion of variance in liability was observed in the “intergenic” regions compared to expectation
(observed variance in liability = 0.13, expected variance in liability = 0.22 [0.52 fraction of
SNPs of total × 0.42 total variance in liability], difference in observed and expected variance in
liability P = 0.0089). Similar results were observed amongst genomic regions with window sizes
of 20 kb and 50 kb (S3 and S4 Tables). Heritability estimates with a prevalence of 3% of early-
onset MI/CAD showed reduced heritability (variance in liability = 0.35) explained by the geno-
mic compartment whereas P values and enrichment of variance remained the same (S5 Table).

Strength of polygenic association signal within regulatory elements
Given the high polygenicity for MI/CAD explained by SNPs in noncoding regions surrounding
protein-coding regions, we further examined whether polygenicity is stronger within specific
regulatory elements. Using data from the NIH Roadmap Epigenomics Project (see URL), we
specifically examined three histone modification marks that are indicative of active promoters
(H3K4me3/H3K9ac) or enhancers (H3K27ac). A polygenic association signal comprised of
SNPs with association P<0.05 for MI/CAD was stronger in the histone marks, beyond what we
expect by chance after randomly sampling “genic noncoding” regions outside of the marks
(Mann-Whitney test P = 1.1×10−95) (S5 Fig).

Genetic contribution of regulatory elements between specific cell types
We next tested for differences in polygenicity, enrichment and heritability estimates between
different cell or tissue types within the three histone modification marks (Fig 2). We observed

Table 1. Heritability of MI/CAD explained by three genomic compartment sets. We calculated the SNP-heritability in three genomic compartment sets
for MI/CAD in a meta-analysis of the MIGen andWTCCC CAD studies using the Genome-wide Complex Trait Analysis (GCTA) software. We observed
increased enrichment in variance in both “genic coding” and “genic noncoding” regions.

Genomic
compartments

Variance1 V-SE1 V-P1 Number of
SNPs

% Variance of
total

% SNPs of
total

Enrichment of
variance2

Deviation from expected
variance P3

Genic coding 0.042 0.023 0.07 37,142 10.0 0.5 19.1 0.088

Genic noncoding 0.25 0.041 1×10−9 3,355,483 58.9 47.3 1.2 0.23

Intergenic 0.13 0.034 0.0001 3,703,319 31.1 52.2 0.6 0.0089

Whole genome as
sum

0.42 7,095,944 100.0 100.0 1.0

Heritability estimates were inferred independently first in MIGen and WTCCC CAD from a single model involving three variance components (“genic

coding”, “genic noncoding” and “intergenic”) using the GCTA software [22,23]. Heritability estimates shown here are from a meta-analysis of the Variance

and standard error (V-SE) from these models using as weights the inverse variance from these models.
1Variance and V-SE are estimates from the ratio of genetic variance to phenotypic variance for the specified variance component whereas the P value

(V-P) is from the likelihood ratio test of a reduce model with the specified genetic variance component dropped from the full model, from the restricted

maximum likelihood method in the GCTA software [22,23].
2Enrichment of variance was calculated as the % variance of total divided by % SNPs of total. MI, myocardial infarction; CAD, coronary artery disease;

SNP, single nucleotide polymorphism.
3P value from difference in the observed variance minus the expected variance (variance of whole genome as sum multiplied by % SNPs of total). Genic

coding, variants that code amino acid sequence within ±10 kilobases of the 30 or 50 untranslated regions of a gene. Genic noncoding, variants that do not

code amino acid sequence within ±10 kilobases of the 30 or 50 untranslated regions of a gene. Intergenic, variants that are beyond ±10 kilobases of the 30

or 50 untranslated regions of a gene.

doi:10.1371/journal.pgen.1005622.t001
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heterogeneity on the polygenicity of MI/CAD between cell types (Fig 2A). For example, SNPs
in the H3K27ac and H3K9ac in bone marrow derived mesenchymal stem cell cultured cells
and SNPs in the H3K4me3 regions in mesenchymal stem cell derived adipocyte cultured cells
were amongst the strongest signals. Meanwhile, SNPs in any of the three histone marks in
hematopoietic CD3, Treg, CD4, CD25, CD45RA primary cells were amongst the weakest

Fig 2. Polygenic, enrichment and heritability analysis of three histonemodification marks across cell types.We performed three different analyses to
test for cell type specific effects on the genetic risk for MI/CAD. Analyses were conducted on SNPs residing in the three histone marks (H3K27ac, H3K4me3,
H3K9ac) that were present in the different cell types. (A) Polygenic risk score analysis. We performed polygenic risk score association analysis on SNPs with
MIGen discovery association P<0.05. Negative logarithm of P values from association testing of the polygenic risk score performed in theWTCCC CAD was
shown. Cell types were sorted based on the strength of polygenic association. Orange vertical line represents a significant level with 5% alpha error. (B)
Enrichment of association. Enrichment analyses were performed by comparing the proportion of significant variants passing a specific association P
threshold of a variant set with that of a baseline set. Different association P thresholds 5×10−7, 5×10−6, 5×10−5 from the CARDIoGRAM study were tested
[24]. The variant sets in this analysis were SNPs in the specified histone marks that were present in the indicated cell type. For the baseline set, we test SNPs
in regions that are outside of these histone marks within 10 kilobases (kb) of the protein coding regions of the genome. To reduce the effects of linkage
disequilibrium, these baseline SNPs were selected to be 5 kb away from the histone marks. In the plot, each triangular point represents the strongest
enrichment result for each mark in each cell type across the three possible association P thresholds. (C) Heritability analysis. Heritability analysis was
performed within histone marks in the MIGen study. Each point in the plot represents the variance in liability generated from a joint model involving two
variance components using the Genome-wide Complex Trait Analysis software [22,23]. The two variance components include 1) SNPs in the specified
histone mark that was present in the indicated cell type and 2) all other SNPs outside of these regions. The variance in liability is an estimate from the ratio of
genetic variance to phenotypic variance for the specified variance component (i.e. the specified variance component is all SNPs within the specified histone
mark) whereas the P value is from the likelihood ratio test of a reduce model with the specified genetic variance component dropped from the full model, from
the restricted maximum likelihood method in the Genome-wide Complex Trait Analysis software [22,23]. MI, myocardial infarction; CAD, coronary artery
disease; SNP, single nucleotide polymorphism.

doi:10.1371/journal.pgen.1005622.g002
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signals. Enrichment analyses showed strong excesses for highly associated SNPs (P<10−5),
compared with matched random SNPs, for mesenchymal stem cells, heart tissues such as fetal
heart and ventricle, and intestinal mucosa including rectal and colonic mucosa, among others
(Fig 2B). Cell-type specific effects were also generally consistent for heritability estimates
(Fig 2C). The cell-type specific enrichment signals were strongest among strongly associated
SNPs (Fig 2B).

When tested for ENCODE data, statistically significant polygenicity and high heritability
estimates were observed for variants residing in specific active chromatin regions, including
enhancers and weak transcription regions (about 3 and 11% of reference genome, respectively)
across several cell lines, including skeletal muscle and vascular cell lines (S6 Fig). Polygenicity
and heritability estimates were substantially weaker for variants in inactive chromatin states
than those in active states (S7 Fig), with the notable exception of the quiescent state. Heritabil-
ity estimates for variants in a quiescent state were particularly high although the variants in
this state accounted for>60% of the reference epigenome (S7 Fig). However, the enrichment
of variance (% variance of total divided by % SNPs of total) in the quiescent state was low (on
average 0.76 [0.50−0.92] in different cell lines) compared with those for enhancers (on average
6.5 [3.2−10.3]) and weak transcription (1.9 [1.1–2.8]). In general, we note that ENCODE
cell line chromHMM state results were largely driven by the sizes of these genomic compart-
ments (i.e. % SNPs), which would be expected if alignment of MI/CAD genetic effects and
ChromHMM stats were random.

Disproportionate number of MI/CAD-associated SNPs in regulatory
elements in specific cell types
These observations have implications for fine-mapping loci discovered from large-scale
GWAS. In particular, the results suggest that causal variants within GWAS loci are overrepre-
sented in regulatory elements adjacent to protein-coding regions of the genome. Therefore, we
investigated 45 independent, lead SNPs discovered from recent GWAS meta-analyses [8] for
MI/CAD and tested whether a disproportionate number of these SNPs overlapped histone
marks across diverse cell lines and tissues. We generated 10,000 random sets of SNPs that were
selected to match the query GWAS SNPs based on similar minor allele frequency (±0.05 fre-
quency), number of SNPs in linkage disequilibrium (LD) with the query SNP (±10% of number
of SNPs in LD with query SNP using r2>0.5), distance to nearest gene (±10% of distance of
nearest gene from query SNPs) and gene density (±10% of number of genes in loci around the
query SNPs) [25]. We excluded two SNPs (rs3798220 and rs12205331) out of the 45 GWAS
SNPs because we were unable to find appropriate matching null SNPs. We observed that 25
(58.1%) out of 43 GWAS SNPs overlapped one of three histone marks. From the 10,000 ran-
dom null sets, a median of 15 (34.9%) out of the 43 random SNPs (1st quartile of 13 and 3rd

quartile of 17) overlapped histone marks (S8 Fig). Only a very small fraction of random sets
showed a higher number of GWAS SNPs overlapping with histone marks than what we
observed (4 out of 10,000 random null sets) (P = 4×10−4).

Clustering of MI/CAD-associated SNPs in histone marks and cell types
Because histone modification differed between cell types, we next examined whether the 45
MI/CAD GWAS SNPs yielded differential gene regulation across various tissues. We mapped
the 45 GWAS SNPs, along with SNPs in high LD (r2�0.8), that reside within each of the three
histone marks in different cell types. We observed distinct patterns between the different
GWAS loci and cell types (Fig 3 and S9 and S10 Figs). For example, for the histone mark
H3K27ac, 12 of the 45 loci were expressed in more than 80% of the cell types, whereas 13 of the
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45 loci were expressed in less than 20%. Using HaploReg v2 [26], specific cell lines displayed
enrichment with the 45 loci in strong enhancer regions. In particular, cell types related to adi-
pose nuclei, spleen and brain tissue were amongst the strongest enrichment signals for inferred
strong enhancer chromatin states (Table 2). We observed consistent results in these cell lines
when also considering SNPs with less stringent significance levels using polygenic association
analysis (Fig 2). HaploReg analysis for available ENCODE cell lines showed 24-fold enrich-
ment with the 45 loci in enhancer regions in H1 cell lines (P = 3×10−5).

Fig 3. Hierarchical clustering of 45 MI/CADGWAS SNPs and specific cell types for a histonemodification mark (H3K27ac).Wemapped 45 MI/CAD
GWAS SNPs, as well as SNPs in high linkage disequilibrium (r2�0.8), to H3K27ac in different cell types. Hierarchical clustering was based on the presence
or absence of a SNP residing in H3K27ac in different cell types and was performed using the heatmap function in R (R Project for Statistical Computing). We
observed unique patterns between the different GWAS loci and cell types. For example, 12 of the 45 GWAS loci were expressed in more than 80% of the cell
types, whereas 13 of the 45 GWAS loci were expressed in less than 20%. Red color indicates a lead SNP or tag SNPs (linkage disequilibrium value of
r2�0.8) residing in H3K27ac in different cell types (See S9 and S10 Figs for H3K9ac and H3K4me3, respectively). MI, myocardial infarction; CAD, coronary
artery disease; GWAS, genome-wide association study; SNP, single nucleotide polymorphism.

doi:10.1371/journal.pgen.1005622.g003
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Connectivity in a protein-protein interaction network among MI/CAD-
associated SNPs
Finally, to investigate whether specific biological networks are expressed in specific cell types,
we examined connectivity of protein-protein interaction (PPI) networks among the 45 GWAS
loci (45 GWAS SNPs, as well as SNPs in r2�0.8) in different cell lines. Consistent with the
HaploReg v2 and polygenic association analysis, we observed high direct connectivity in a PPI
network involving known lipid genes, particularly apolipoprotein E (APOE), apolipoprotein
C3 (APOC3) and low-density lipoprotein receptor (LDLR) in adipose nuclei (P = 0.002) and
mesenchymal stem cell line derived adipocyte cultured cells (P = 0.001), and apolipoprotein B
(APOB) and Sortilin 1 (SORT1) in adult liver (P = 0.009) (S11 Fig). Specific effects were
observed in PPI networks in other cell types as well, including adult liver (S6 Table).

Discussion
We utilized several complementary human genetic approaches to partition the genetic risk of
MI/CAD into different genomic categories and cell types. Three principal findings emerged:
(1) genetic variants residing in noncoding regions flanking protein-coding genes make up a
large proportion of the heritability for MI/CAD; (2) association signals are enriched in histone
modification marks; and (3) clear cell-type specific effects emerged with genetic effects of MI/
CAD-associated SNPs being enhanced in adipocyte cell lines.

We highlight an important role for genetic variants residing within specific regulatory ele-
ments including promoters and enhancer regions, suggesting that the genetic risk for MI/CAD
is largely driven by variants in key regulatory elements. Because we did not adjust for tradi-
tional risk factors of MI/CAD, our heritability estimates may include the fraction derived from
these risk factors. Furthermore, our heritability estimate of 0.43 for the total genome is consis-
tent with previous family-based studies with estimates of 0.3–0.63 [1,28,29]. Our work is con-
sistent with previous studies that showed that a significantly higher portion of GWAS SNPs
overlap regulatory elements such as transcription factor binding regions and/or DNase I hyper-
sensitive sites [18,30]. These findings have important implications for interpretation of GWAS
signals, particularly for identifying causal variants. Our findings particularly highlight an
important role for promoter and/or enhancer regions in fine-mapping GWAS signals.

Table 2. Significant enrichment of 45 MI/CAD-associated SNPs in specific cell types detected by enrichment analysis. We examined whether 45 MI/
CAD-associated loci were enriched in regions of inferred strong enhancer chromatin states [27] in specific cell types using NIH Roadmap data and two mam-
malian conservation algorithms, GERP and SiPhy-omega, implemented in HaploReg v2 [26]. We observed significant enrichment of MI/CAD-associated
SNPs in specific cell types, including adipose nuclei, spleen and brain tissue. MI, myocardial infarction; CAD, coronary artery disease; SNP, single nucleotide
polymorphism.

Cell types Observed SNPs Expected SNPs Fold P Corrected P

Brain substantia nigra 10 1.3 7.7 1.00×10−6 8.10×10−5

Brain angular gyrus 10 1.7 6.1 4.00×10−6 3.24×10−4

Adipose nuclei 8 1.3 6.2 3.80×10−5 3.08×10−3

Induced pluripotent stem DF 19.11 cell line 7 1 7.2 4.80×10−5 3.89×10−3

Spleen 8 1.4 5.7 6.80×10−5 5.51×10−3

Brain anterior caudate 8 1.5 5.3 1.08×10−4 8.75×10−3

Brain cingulate gyrus 8 1.5 5.3 1.14×10−4 9.23×10−3

Embryonic stem cell line 4 0.3 11.9 3.67×10−4 2.97×10−2

Mobilized CD34 primary cells 5 0.6 8.1 3.78×10−4 3.06×10−2

Brain mid frontal lobe 7 1.5 4.8 5.64×10−4 4.57×10−2

Gastric 6 1 5.8 5.71×10−4 4.63×10−2

doi:10.1371/journal.pgen.1005622.t002
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Our analyses further highlighted the genetic effects of MI/CAD-associated SNPs occurring
in specific cell types, including mesenchymal and adipocyte cell lines. Adipocytes may affect
cardiovascular homeostasis by regulating diverse peptides and nonpeptide compounds, which
have been implicated in cardiovascular disease pathogenicity [31]. Furthermore, obesity is a
casual risk factor for MI/CAD [32]. Here, we demonstrate that alteration of chromatin-medi-
ated gene regulation by DNA sequence variation at key genomic regions within adipocytes is
an important determinant of MI/CAD risk. Our results are consistent with studies that have
shown that adipocytes play an important role in the pathogenesis of obesity, with adverse
effects on inflammation, hemodynamics, and cardiovascular function [33]. We propose that
the adipose-cardiovascular axis is not only an acquired mediator of MI/CAD risk but also a
critical genetic determinant of MI/CAD risk in the general population. Furthermore, we high-
light other loci that are not known to be involved in cardio-metabolism but appear to map to
histone marks in the adipocyte cell lines. For example, SNPs in theMIA3 andMRAS loci are
highly associated with CAD [2–4] but have not been found to be associated with any cardio-
metabolic intermediate trait [34]. Notably, we observe enrichment of MI/CAD-associated
SNPs disrupting regulation in brain and spleen tissue raising new hypotheses in the pathogene-
sis of human atherosclerosis. Hypothalamic-pituitary regulation of the autonomic nervous sys-
tem has a diverse array of impacts on cardiovascular disease determinants including blood
pressure, heart rate, sodium regulation, metabolism, and physiologic responses to stress [35].
Furthermore, proinflammatory mediators within the spleen may have an important role in MI
[36]. Because the spleen consists of a multitude of cell types, including immune B/T cells, mac-
rophages, monocytes, endothelial cells, smooth muscle cells from larger arterioles, chromatin
data of specific cell types in the spleen may be useful to identify specific functional roles related
to MI. The mechanism by which these tissues contribute to a higher enrichment to MI/CAD
associated SNPs may be through tissue-specific regulatory perturbation in functional regula-
tory regions (histone marks and/or chromatin enhancer states) adjacent to protein-coding
regions, specifically in adipose, heart, brain and spleen tissues. Thus we propose that genetic
determinants of early-onset myocardial infarction have biologic roles within distinct tissue
types and these observations should prioritize experimental modeling strategies.

We note the following limitations. We note that the case samples in MIGen and WTCCC
CAD were ascertained based on early-onset MI/CAD that was not fatal (male cases< 50 years
old and female cases< 60 years old). Therefore, the genetic architecture and some of the tissue
types highlighted in this study may be less relevant to the more general, broader CAD pheno-
type. Furthermore, we observed strong enrichment signals in some tissues (such as heart and
intestinal mucosa) that may serve as a proxy for tissues that are biologically relevant to MI/
CAD (such as smooth muscle in arterial walls). This may be due to tissues with similar cell
types (i.e. smooth muscle cells in different tissues) having similar open chromatin structures.
We note that we observed relatively weak signals for immune-related tissues and cell types
despite a recent study suggesting that there was enrichment of tissue-specific eSNPs associated
with CAD in pathways related to the immune system[37]. We have not examined our results
in the context of biological pathways relevant to specific cell types (for example, immune/
inflammation pathways in immune cells), and further investigation on this is warranted.

In summary, we have shown that disease-causing variants for MI/CAD are enriched in pro-
moters and enhancer regions flanking protein-coding genes. Functional data from the NIH
Roadmap Project and ENCODE provide key links to specific cell types such as mesenchymal
stem cell derived adipocyte cultured cells, heart, brain and spleen cells with risk variants for
MI/CAD. Our results highlight the importance of investigating the noncoding regions of the
genome in genetic studies and suggest a key role of tissue-specific regulatory mechanisms on
the etiology of MI/CAD. Identifying critical nodes that are significant drivers of a substantial
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portion of human disease can both inform biological investigation and prioritize therapeutic
efforts.

Materials and Methods
Details regarding material and methods for primary analyses presented in main figures and
tables are provided below and in corresponding figure and table legends. Details about meth-
ods for supplemental figures and tables are provided in the legends in the Supporting
Information.

GWAS data for MI/CAD
We obtained GWAS data for 5,903 samples fromMIGen [5] (2,905 cases and 2,998 controls)
and 4,837 samples fromWTCCC [38] (1,914 cases and 2,923 controls). For quality control,
samples with extreme heterozygosity, gender mismatch or sample call rate<95% and SNPs
with Hardy-Weinberg equilibrium P<10−6, minor allele frequency<1% or SNP call rate
<98% were excluded prior to imputation.

Imputation into the 1000 Genomes reference panel
We prephased MIGen GWAS data using the MaCH software and imputed into the 1000
Genomes Phase I Integrated Release Version 3 Haplotypes panel using minimac [39]. We
imputed WTCCC CAD data using IMPUTE2 [39–41]. To control for imputation quality, we
removed low-frequency SNPs with minor allele frequency<0.5% and used SNPs with high
imputation quality metric (minimac rsq or IMPUTE2 info)>0.5. We tested for association
with additive tests for imputed dosage data using the SNPTEST [40,42] and PLINK [43] soft-
ware. Gender, age and principal components for population structure [44] were used for covar-
iates in the association analysis.

Genomic annotation
A categorization of SNPs was adopted in order to compare their relative aggregate properties
(S1 Table). “Genic” regions were defined as ±10 kb of the 30 or 50 untranslated regions (UTR)
of a gene. “Intergenic” regions were those that were beyond ±10 kb of the 30 or 50 UTR of a
gene. “Genic coding” variants were those that code amino acid sequence (nonsense, missense,
synonymous). “Genic noncoding” variants were those that were resided outside of the coding
region but within the “genic” window size. This includes the region beyond the 3’ or 5’UTR, as
well as the introns. 19.5% of variants in the “genic noncoding” region are also observed in the
DHS regions as defined by Gusev et al [45]. Genomic compartments for the “genic coding”,
“genic noncoding”, and “intergenic” regions were defined to be non-overlapping. Other win-
dow sizes for “genic” regions of ±20 kb and ±50 kb were also tested.

Regulatory element annotation
To examine polygenic effects of specific chromatin marks, we obtained histone modification
marks (histone H3 lysine 4 trimethylation or H3K4me3, histone H3 lysine 9 acetylation or
H3K9ac, histone H3 lysine 27 acetylation or H3K27ac) in diverse cell types or tissues that are
indicative of active enhancers or promoters from the NIH Roadmap Epigenomics Project
[14,15] data repository (see URL). We identified histone mark using the MACS v1.4 software
[46], with a P value cutoff of 10−5 and a false discovery rate cutoff of 0.01. We ran the histone
mark test files with control files matched by individual if available in order to increase specific-
ity. We also obtained chromatin core 15-state data for 16 ENCODE cell lines (Epigenome ID
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E114-E119) (see URL). We examined eight active chromatin states (active transcription start
site [TSS] proximal promoter states [active TSS, flanking active TSS], a transcribed state at the
50 and 30 end of genes showing both promoter and enhancer signatures [transcription at gene
50 and 30], actively transcribed states [strong transcription, weak transcription], enhancer states
[enhancers, genic enhancers], and a state associated with zinc finger protein genes [ZNF and
repeats]) and seven inactive states (constitutive heterochromatin, bivalent regulatory states
[bivalent TSS, flanking bivalent TSS/enhancers, bivalent enhancers], repressed PolyComb
states [repressed PolyComb, weak repressed PolyComb], and a quiescent state) inferred by
ChromHMM [15].

Polygenic risk score analysis across three distinct variant sets
Polygenic risk score (PRSi) for individual i for a given variant set was calculated as
PRSi ¼ P

j2SNPsbj � dij, where βj >0 is the natural log of odds ratio for the risk allele of SNP j

from the association result in the MIGen discovery set and dij is the dosage (0−2) for that same
allele of individual i from the WTCCC CAD validation set, as previously described [12]. Asso-
ciation of polygenic risk scores with disease status was tested using the Wald test and variance
explained was estimated by Nagelkerke’s R2 from logistic regression [47]. Variance explained
after normalization was calculated using Nagelkerke’s R2 divided by the number of SNPs. We
used different discovery P value thresholds in MIGen (association P<5×10−8, 5×10−7, 5×10−6,
5×10−5, 5×10−4, 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1) to define various polygenic risk scores
(Fig 1).

SNP-heritability analysis across three distinct variant sets
The proportion of phenotypic variance explained by each variant set was estimated using the
restricted maximum likelihood method [48] implemented in the Genome-wide Complex Trait
Analysis (GCTA) software, transformed to the underlying liability scale assuming a prevalence
of 6% for CAD [22,23]. We removed one of each pair of individuals with estimated relatedness
larger than 0.05 (grm-cutoff 0.05 in the GCTA software). Given a previous observation that LD
does not substantially influence polygenic risk score analysis [49] or heritability explained by
genotyped SNPs [13], and that imputed SNPs do not produce biased heritability estimates
compared to genotyped SNPs [13], we included all SNPs in our variant sets (Table 1). We per-
formed heritability estimates independently in the MIGen and WTCCC CAD studies, and
then a meta-analysis across both studies using as weights the inverse variance (Tables 1 and
S2–S4). We also estimated heritability with a prevalence of 3% for early-onset MI/CAD
(S5 Table).

Polygenic risk score, enrichment and heritability analysis of three
histone modification marks across cell types
We performed analyses on SNPs within three histone marks (H3K27ac, H3K4me3, H3K9ac)
in different cell types. We performed polygenic risk score analysis as described above. We used
a discovery P value threshold of<0.05 in MIGen to form the polygenic risk score and then vali-
dation in WTCCC CAD (Fig 2A). We performed enrichment analysis by comparing the pro-
portion of significant variants passing a specific association P threshold of a variant set with
that of a baseline set. We tested different association P thresholds P<5×10−7, 5×10−6, 5×10−5.
For the baseline set, we examined variants that resided in the intergenic regions, were not con-
served (Genomic Evolutionary Rate Profiling score [50]<5) and did not overlap with any of
the studied regulatory elements (Fig 2B). We performed heritability analysis as described
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above. We restricted heritability analysis to variants within histone marks for the indicated cell
line using the restricted maximum likelihood method [48] implemented in the GCTA software
(Fig 2C) [22,23]. For all approaches, we performed analyses restricting to SNPs residing in the
three histone marks (H3K27ac, H3K4me3, H3K9ac) that were present in the different cell
types

Enrichment analysis of MI/CAD-associated SNPs in specific cell types
For enrichment analyses, we selected 45 independent SNPs that were shown to be significantly
associated with CAD in a large-scale GWAS meta-analysis (Table 2) [8]. We also included tag
SNPs in strong LD (r2�0.8 in 379 individuals from European populations [85 CEU, 98 TSI, 93
FIN, 89 GBR, 14 IBS] from the 1000 Genomes Project [20]) with the 45 GWAS SNPs. We uti-
lized the NIH Roadmap and ENCODE data and two mammalian conservation algorithms,
GERP and SiPhy-omega, implemented in HaploReg v2 [26] (see URL) to examine if the 45
GWAS loci are enriched in regions of inferred strong enhancer chromatin states [27] in
specific cell types. The background set for enhancer enrichment analysis was “All SNPs in 1000
Genomes phase I data”.

Hierarchical clustering of MI/CAD-associated SNPs, histone
modification marks and specific cell types
For hierarchical clustering analysis, we mapped all 45 MI/CAD GWAS SNPs, along with SNPs
in high LD (r2�0.8) (same SNP set in enrichment analysis), to each of the three histone marks
(H3K27ac, H3K4me3 and H3K9ac), which are associated with active regulatory regions, in dif-
ferent cell types (Fig 3). Hierarchical clustering was performed using the heatmap function in
R (R Project for Statistical Computing). Reordering of the rows and columns to produce the
dendrogram was based on the presence or absence of a SNP residing in a histone mark in dif-
ferent cell types.

Protein connectivity of MI/CAD-associated SNPs in specific cell types
We tested for direct connectivity of genes in GWAS loci in specific cell types. We tested 45 MI/
CAD GWAS SNPs, in addition to SNPs in high LD (r2�0.8) (same SNP set in enrichment anal-
ysis), that overlapped with the three histone marks (H3K4me3, H3K9ac, H3K27ac) in a specific
cell type. DAPPLE [51] was utilized to test for direct connectivity in PPI networks. Gene regu-
latory regions were defined as within 110 kb upstream of transcription start site and 40 kb
downstream of transcription end site of each of the 45 lead SNPs or tag SNPs were included in
the analysis. We performed 1,000 permutations to obtain empirical significance for the
observed connectivity compared with the expected connectivity.

Web resources
NIH Roadmap Epigenomics Project, http://www.roadmapepigenomics.org ENCODE
Chromatin Core 15-State data, http://egg2.wustl.edu/roadmap/data/byFileType/chromhmm
Segmentations/ChmmModels/coreMarks/jointModel/final/ HaploReg v2, http://www.
broadinstitute.org/mammals/haploreg/haploreg.php

Supporting Information
S1 Fig. Explained variability using Nagelkerke’s R2 from polygenic risk score analysis of
select genomic compartments (10 kilobases window for genic regions). Polygenic risk score
analysis was performed across three different genomic compartments. The top bar plot
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represents the explained variability using Nagelkerke’s R2 of the logistic regression models for
the polygenic risk score analysis whereas the bottom bar plot represents the number of SNPs
within each of the compartments. The strongest signals for explained variability were within
noncoding regions adjacent to protein-coding genes (“genic noncoding”). SNP, single nucleo-
tide polymorphism. Genic coding, variants that code amino acid sequence within ±10 kilobases
of the 30 or 50 untranslated regions of a gene. Genic noncoding, variants that do not code
amino acid sequence within ±10 kilobases of the 30 or 50 untranslated regions of a gene. Inter-
genic variants that are beyond ±10 kilobases of the 30 or 50 untranslated regions of a gene.
(PDF)

S2 Fig. Contributions of three genomic compartments to the polygenic risk of MI/CAD
and explained variability using Nagelkerke’s R2 from polygenic risk score analysis of select
genomic compartments (20 kilobases window for genic regions). Polygenic risk score analy-
sis was performed across three different genomic compartments. The top bar plot represents
the explained variability using Nagelkerke’s R2 of the logistic regression models for the poly-
genic risk score analysis whereas the bottom bar plot represents the number of SNPs within
each of the compartments. The strongest signals for explained variability were within noncod-
ing regions adjacent to protein-coding genes (“genic noncoding”). SNP, single nucleotide poly-
morphism. Genic coding, variants that code amino acid sequence within ±20 kilobases of the 30

or 50 untranslated regions of a gene. Genic noncoding, variants that do not code amino acid
sequence within ±20 kilobases of the 30 or 50 untranslated regions of a gene. Intergenic variants
that are beyond ±20 kilobases of the 30 or 50 untranslated regions of a gene.
(PDF)

S3 Fig. Contributions of three genomic compartments to the polygenic risk score of MI/
CAD and explained variability using Nagelkerke’s R2 from polygenic risk score analysis of
select genomic compartments (50 kilobases window for genic regions). Polygenic risk score
analysis was performed across three different genomic compartments. The top bar plot repre-
sents the explained variability using Nagelkerke’s R2 of the logistic regression models for the
polygenic risk score analysis whereas the bottom bar plot represents the number of SNPs
within each of the compartments. The strongest signals for explained variability were within
noncoding regions adjacent to protein-coding genes (“genic noncoding”). SNP, single nucleo-
tide polymorphism. Genic coding, variants that code amino acid sequence within ±50 kilobases
of the 30 or 50 untranslated regions of a gene. Genic noncoding, variants that do not code
amino acid sequence within ±50 kilobases of the 30 or 50 untranslated regions of a gene. Inter-
genic variants that are beyond ±50 kilobases of the 30 or 50 untranslated regions of a gene.
(PDF)

S4 Fig. Polygenic risk score analysis of select genomic compartments after excluding 45
GWAS loci for MI/CAD. Polygenic risk score analysis was performed across three different
genomic compartments. The top bar plot represents the strength of association for the poly-
genic risk score analysis whereas the bottom bar plot represents the number of SNPs within
each of the compartments. The strongest polygenic association signals were within noncoding
regions adjacent to protein-coding genes (“genic noncoding”). GWAS, genome-wide associa-
tion study; MI, myocardial infarction; CAD, coronary artery disease; SNP, single nucleotide
polymorphism. Genic coding, variants that code amino acid sequence within ±10 kilobases of
the 30 or 50 untranslated regions of a gene. Genic noncoding, variants that do not code amino
acid sequence within ±10 kilobases of the 30 or 50 untranslated regions of a gene. Intergenic var-
iants that are beyond ±10 kilobases of the 30 or 50 untranslated regions of a gene.
(PDF)
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S5 Fig. Strength of polygenic association signal within regulatory elements. For analyses of
polygenic association signal within regulatory elements, we constructed a polygenic risk score
comprised of SNPs within each of the three histone modification marks (H3K27ac, H3K4me3
and H3K9ac) with P<0.05 in the MIGen discovery set. We tested for association of this poly-
genic risk score in the WTCCC CAD validation set. As a baseline control set, we also test SNPs
in regions that are outside of these histone marks within 10 kilobases (kb) of the protein coding
regions of the genome. To reduce the effects of linkage disequilibrium, these baseline SNPs
were selected to be 5 kb away from the histone marks. We observed that this signal was stron-
ger in these histone marks beyond what we expect by chance after randomly sampling “genic
noncoding” regions outside of the marks (Mann-Whitney test P = 1.1×10−95). CAD, coronary
artery disease; SNP, single nucleotide polymorphism.
(PDF)

S6 Fig. Polygenic and heritability analysis of eight active chromatin states across cell types
in the ENCODE data.We performed polygenic risk score and heritability analyses to test for
cell type specific effects on the genetic risk for MI/CAD. Analyses were conducted on SNPs
residing in eight active chromatin states inferred by ChromHMM [15] that were present in the
different cell types. (A) Polygenic risk score analysis. We performed polygenic risk score associ-
ation analysis on SNPs with MIGen discovery association P<0.05. Negative logarithm of P val-
ues from association testing of the polygenic risk score performed in the WTCCC CAD was
shown. Cell types were sorted based on the strength of polygenic association. Orange vertical
line represents a significant level with 5% alpha error. (B) Heritability analysis. Heritability
analysis was performed within chromatin states in the MIGen study. Each point in the plot rep-
resents the variance in liability generated from a joint model involving two variance compo-
nents using the Genome-wide Complex Trait Analysis software [22,23]. The two variance
components include 1) SNPs in the specified chromatin state that was present in the indicated
cell type and 2) all other SNPs outside of these regions. The variance in liability is an estimate
from the ratio of genetic variance to phenotypic variance for the specified variance component
(i.e. the specified variance component is all SNPs within the specified chromatin state) whereas
the P value is from the likelihood ratio test of a reduce model with the specified genetic variance
component dropped from the full model, from the restricted maximum likelihood method in
the Genome-wide Complex Trait Analysis software [22,23]. MI, myocardial infarction; CAD,
coronary artery disease; SNP, single nucleotide polymorphism.
(PDF)

S7 Fig. Polygenic and heritability analysis of seven inactive chromatin states across cell
types in the ENCODE data.We performed polygenic risk score and heritability analyses to
test for cell type specific effects on the genetic risk for MI/CAD. Analyses were conducted on
SNPs residing in seven inactive chromatin states inferred by ChromHMM [15] that were pres-
ent in the different cell types. (A) Polygenic risk score analysis. We performed polygenic risk
score association analysis on SNPs with MIGen discovery association P<0.05. Negative loga-
rithm of P values from association testing of the polygenic risk score performed in the
WTCCC CAD was shown. Cell types were sorted based on the strength of polygenic associa-
tion. Orange vertical line represents a significant level with 5% alpha error. (B) Heritability
analysis. Heritability analysis was performed within chromatin states in the MIGen study. Each
point in the plot represents the variance in liability generated from a joint model involving two
variance components using the Genome-wide Complex Trait Analysis software [22,23]. The
two variance components include 1) SNPs in the specified chromatin state that was present in
the indicated cell type and 2) all other SNPs outside of these regions. The variance in liability is
an estimate from the ratio of genetic variance to phenotypic variance for the specified variance
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component (i.e. the specified variance component is all SNPs within the specified chromatin
state) whereas the P value is from the likelihood ratio test of a reduce model with the specified
genetic variance component dropped from the full model, from the restricted maximum likeli-
hood method in the Genome-wide Complex Trait Analysis software [22,23]. MI, myocardial
infarction; CAD, coronary artery disease; SNP, single nucleotide polymorphism.
(PDF)

S8 Fig. Disproportionate number of MI/CAD GWAS SNPs in regulatory elements.We
examined overlap of 45 MI/CAD GWAS SNPs in three histone marks. We generated random
sets to determine statistical significance of this overlap. We excluded two SNPs out of the 45
GWAS SNPs because we were unable to find appropriate matching null SNPs (rs3798220 and
rs12205331). Histogram is drawn based on 10,000 permutations of random sets of 43 variants
from the SNPsnap software [25]. A median of 15 of 43 random SNPs overlap any of three his-
tone marks across diverse cell types and tissues. Random SNPs were selected to match the
query GWAS SNPs based on similar minor allele frequency (±0.05 frequency), number of
SNPs in LD with query SNP (±10% of number of SNPs in LD with query SNP using r2>0.5),
distance to nearest gene (±10% of distance of nearest gene from query SNPs) and gene density
(±10% of number of genes in loci around the query SNPs) [25]. Compared to the random vari-
ant sets, we observed a statistically significant higher number of GWAS SNPs (25 out of 43)
overlapping the histone marks (P = 4×10−4). MI, myocardial infarction; CAD, coronary artery
disease; GWAS, genome-wide association study; SNP, single nucleotide polymorphism; LD,
linkage disequilibrium.
(PDF)

S9 Fig. Hierarchical clustering of 45 MI/CAD GWAS SNPs and specific cell types for a his-
tone modification mark (H3K9ac).We mapped 45 MI/CAD GWAS SNPs, as well as SNPs in
high linkage disequilibrium (r2�0.8), to H3K9ac in different cell types. Hierarchical clustering
was based on the presence or absence of a SNP residing in H3K9ac in different cell types and
was performed using the heatmap function in the R Project for Statistical Computing. We
observed unique patterns between the different GWAS loci and cell types. MI, myocardial
infarction; CAD, coronary artery disease; GWAS, genome-wide association study; SNP, single
nucleotide polymorphism.
(PDF)

S10 Fig. Hierarchical clustering of 45 MI/CADGWAS SNPs and specific cell types for a his-
tone modification mark (H3K4me3).We mapped 45 MI/CAD GWAS SNPs, as well as SNPs
in high linkage disequilibrium (r2�0.8), to H3K4me3 in different cell types. Hierarchical clus-
tering was based on the presence or absence of a SNP residing in H3K4me3 in different cell
types and was performed using the heatmap function in the R Project for Statistical Comput-
ing. We observed unique patterns between the different GWAS loci and cell types. MI, myocar-
dial infarction; CAD, coronary artery disease; GWAS, genome-wide association study; SNP,
single nucleotide polymorphism.
(PDF)

S11 Fig. High connectivity in a protein-protein interaction network among APOE, APOC3,
and LDLR.We tested for direct connectivity of genes in GWAS loci in specific cell types. We
tested 45 MI/CAD GWAS SNPs, in addition to SNPs in high linkage disequilibrium (r2�0.8)
(same SNP set in enrichment analysis), that overlapped with the three histone marks
(H3K4me3, H3K9ac, H3K27ac) in a specific cell type. SNPs that only overlap the three histone
marks in adipose nuclei and mesenchymal stem cell (MSC) derived adipocyte cell types were
tested. DAPPLE [51] was utilized to test for direct connectivity in protein-protein interaction
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(PPI) networks. Gene regulatory regions were defined as within 110 kb upstream of transcrip-
tion start site and 40 kb downstream of transcription end site of each of the 45 lead SNPs or tag
SNPs were included in the analysis. We tested each variant set 1,000 times to obtain empirical
significance for the observed connectivity compared with the expected connectivity. We
observed high direct connectivity in a PPI network comprised of known lipid genes (for exam-
ple, apolipoprotein E [APOE], apolipoprotein C3 [APOC3], low-density lipoprotein receptor
[LDLR]) in adipose nuclei and MSC derived adipocyte cell types.
(PDF)

S1 Table. Functional categorization of variants.
(DOCX)

S2 Table. Heritability of MI/CAD explained by three genomic compartment sets (10 kilo-
bases window for genic regions).
(DOCX)

S3 Table. Heritability of MI/CAD explained by three genomic compartment sets (20 kilo-
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(DOCX)

S4 Table. Heritability of MI/CAD explained by three genomic compartment sets (50 kilo-
bases window for genic regions).
(DOCX)
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