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Abstract
Metabolic syndrome is associated with disturbances in gut microbiota composition. We

aimed to investigate the effect of Lactobacillus casei Shirota (LcS) on gut microbiota com-

position, gut barrier integrity, intestinal inflammation and serum bile acid profile in metabolic

syndrome. In a single-centre, prospective, randomised controlled pilot study, 28 subjects

with metabolic syndrome received either LcS for 12 weeks (n = 13) or no LcS (n = 15). Data

were compared to healthy controls (n = 16). Gut microbiota composition was characterised

from stool using 454 pyrosequencing of 16S rRNA genes. Serum bile acids were quantified

by tandemmass spectrometry. Zonulin and calprotectin were measured in serum and stool

by ELISA. Bacteroidetes/Firmicutes ratio was significantly higher in healthy controls com-

pared to metabolic syndrome but was not influenced by LcS. LcS supplementation led to

enrichment of Parabacteroides. Zonulin and calprotectin were increased in metabolic syn-

drome stool samples but not influenced by LcS supplementation. Serum bile acids were

similar to controls and not influenced by LcS supplementation. Metabolic syndrome is asso-

ciated with a higher Bacteroidetes/Firmicutes ratio and gut barrier dysfunction but LcS was

not able to change this. LcS administration was associated with subtle microbiota changes

at genus level.
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Introduction
The obesity epidemic is a challenging threat to public health in the 21st century. The World
Health Organisation states that by 2014 approximately 1.9 billion adults are overweight (BMI
25–29.9 kg/m2), and more than 600 million are obese (BMI 30 kg/m2 or more). [1] Obesity and
insulin resistance are major risk factors for the development of metabolic syndrome (MetS),
type 2 diabetes mellitus (T2DM), and conditions such as cardiovascular morbidity and mortal-
ity. [2, 3]

The pathogenesis of obesity is multifactorial and is seen as interplay between individual
phenotype and environmental factors. However, recent preclinical and clinical studies show an
important influence of the intestinal microbiota on obesity and associated metabolic disorders
(MetS, T2DM, metabolic liver diseases, cardiovascular diseases). [4] The cecum microbiota of
obese mice was found to be significantly different with a higher prevalence of Firmicutes and a
corresponding lower prevalence of Bacteroidetes (lower Bacteroidetes/Firmicutes ratio) in obese
compared to lean mice. [5] This finding of altered gut microbiota was then confirmed and
extended to humans. [6] However, others did not find this association in obesity or MetS. [7–
10] Further studies have shown an association of gut microbiota changes with insulin resis-
tance and diabetes. [11, 12] This suggests that the microbiota might be involved in the patho-
genesis of obesity, insulin resistance and T2DM, possibly by having an impact on gut barrier
integrity and inflammation. [4] Also, hydrophobic bile acids have been proposed as a novel
mechanism for high fat diet induced gut barrier dysfunction. [13, 14] Probiotic interventions
have been shown to be effective in modulating gut barrier integrity and gut microbiota in ani-
mals and thereby modulating chronic inflammation and metabolic disorders in animal models.
[15, 16] Despite several mechanistic studies and encouraging results in animals [17, 18] inter-
ventional data on probiotics use in humans with MetS are rare. [19]

The aim of our study was to investigate the effect of Lactobacillus casei Shirota (LcS) on gut
microbiota composition, gut barrier integrity, intestinal inflammation and the serum bile acid
profile in MetS.

Patients and Methods

Patients and Controls
The study was conducted according to the Declaration of Helsinki and all procedures involving
human subjects were approved by the Ethics Committee of the Medical University of Graz
(20–037 ex 08/09). The study was registered at ClinicalTrials.gov (NCT01182844). Due to an
unexpected organizational delay in the registration process of the study the initial release of the
protocol in ClinicalTrials.gov took place after the first patient was randomized. The authors
confirm that they have not performed and are not conducting any other trials with this inter-
vention (Lactobacillus casei Shirota). Written informed consent was obtained from all subjects.
The primary and parts of the secondary outcomes were already published [20, 21]. The gut
microbiome analysis was delayed due to lack of funding. The Ethics Committee of the Medical
University was informed about the delay in analysis and about all changes in the study proto-
col. These changes were methodological changes since the methods for gut microbiome analy-
sis and gut permeability analysis have advanced since the start of the study. Furthermore the
analysis of bile acids has been added to the protocol and was approved by the Ethics Commit-
tee of the Medical University.

According to the modified NCEP-ATP-III-guidelines [22] patients with MetS were identi-
fied from the outpatient clinic at the Division of Endocrinology and Metabolism at the Medical
University of Graz. Patients treated with antibiotics within the previous 7 days, with current
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anti-hyperglycemic treatment, any immunomodulatory therapy 1 month prior to study entry,
concomitant use of pre-, pro-, or synbiotics, inflammatory bowel disease (Crohn`s disease,
ulcerative colitis) or celiac disease or those with clinical signs of infectious diseases were
excluded from participation. We performed a single-centre, permuted-block randomised con-
trolled 12 weeks prospective intervention trial. Patients were randomised to receive either food
supplementation with a milk drink containing LcS (3 bottles a day, à 65ml, containing LcS at a
concentration of 108/ml, Yakult light1, Yakult Austria, Vienna, Austria) for twelve weeks
(n = 13, LcS group) or no intervention (n = 15, standard therapy group).

Patients were randomised with the “Randomizer1” software using permutated blocks
(Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz,
Austria). All patients were advised to consume no other probiotic supplements during the
study period and received a list of probiotic products available in Austria, which they had to
avoid for the study period. Participants were also advised not to change their diet and physical
activity pattern while being in the study. A food frequency questionnaire was used to confirm
unchanged diet habits. [20] Subjects of the LcS group were provided with a pack of the milk
drink every two weeks. At these time points intervention adherence was assessed.

Stool and serum samples were collected at baseline and after 12 weeks. Stool samples from
16 healthy, lean controls without evidence of metabolic syndrome were used as a comparison
for gut microbiota analysis and zonulin levels. For stool calprotectin established reference
ranges from the kit description were used. Serum samples from 11 healthy, lean controls were
used to compare bile acid profiles, zonulin, and calprotectin levels in serum.

DNA-isolation, 454 library preparation and sequencing
Stool samples were immediately frozen and stored at -80°C until semi-automated DNA isola-
tion. Approximately 175mg of stool was homogenized in MagnaLyser Green Bead tubes by
using the MagnaLyser Instrument (Roche Diagnostics, Mannheim, Germany) according to
manufacturer’s instructions. Total genomic DNA was isolated with the MagNA Pure LC DNA
Isolation Kit III (Bacteria, Fungi) in a MagNA Pure LC 2.0 Instrument (Roche Diagnostics,
Mannheim, Germany) according to manufacturer’s instructions. Enzyme cocktail II (Roche
Diagnostics, Mannheim, Germany) with 100μg lysozyme (Karl Roth GmbH, Karlsruhe, Ger-
many) per 100μl sample was used according to manufacturer’s instructions.

The 16S rRNA gene was amplified using FLX 454 one way read (Lib-L kit, Primer A, Primer
B, Roche 454 Life Science, Branford, CT, USA) (S1 Table) fusion primers with the template
specific sequence F27—AGAGTTTGATCCTGGCTCAG and R534—ATTACCGCGGCTGC
TGGC targeting the V1-V3 hypervariable regions [23, 24] as described previously in Kump
et al. 2013. [25]

Zonulin and calprotectin
A ready-to-use solid-phase sandwich ELISA (Immundiagnostik AG, Bensheim, Germany) was
used to detect zonulin (zonulin Serum or Stool ELISA) and calprotectin (PhiCal1 calprotectin
Serum or Stool ELISA) in serum and stool samples. The tests were performed according to the
manufacturer’s instructions. For stool sampling the Stool Sample Application System (Immun-
diagnostik AG, Bensheim, Germany) was used according to the manufacturer’s manual.

Bile acids
All bile acids (cholic acid, CA; deoxycholic acid, DCA; chenodeoxycholic acid, CDCA; litho-
cholic acid, LCA; ursodeoxycholic acid, UDCA) were assessed as unconjugated acids and as
taurine and glycine conjugates using a tandem mass spectrometry method as described
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previously. [26] All sub-fractions of bile acids (free acids and their corresponding conjugates)
were analysed by three different multiple-reaction monitoring experiments within one HPLC
run. HPLC was performed on a reversed-phase (C18) column that used a methanol/water gra-
dient for chromatographic solution of isobaric bile acids. Deuterated internal standards and
correlation of peak area ratios in linear regression were used for quantification of all sub-frac-
tions of bile acids.

Data analysis. Raw sequencing data generated on the Genome Sequencer FLX system
were de-noised with Acacia 1.52. Afterwards reads were pre-processed with several quality
parameters to trim primer and barcode sequences and filter low quality reads according to sug-
gestions described in Huse et.al. [27]. Data analysis was performed in QIIME 1.7.0 [28] and
included following steps: clustering of high quality reads into operational taxonomic units
(OTUs) using UCLUST [29] and similarity of 0.97; taxonomy assignment of the OTUs with
RDP classifier [30] and confidence score of 0.8 based on GreenGenes [31]16S rRNA database;
representative sequence alignment with PyNAST [32]; detection and removal of chimeric
sequences with ChimeraSlayer; [33] generating a phylogenetic tree with FastTree [34]. Addi-
tionally singletons (OTUs with one read present only in one sample) were removed to avoid
overestimation of the sample richness and diversity. Finally, the resulting OTU table and
accompanied phylogenetic tree were further used for calculation of alpha and beta diversity.
Alpha diversity indices were determined with the R statistical programming language extended
with Vegan and BiodiversityR community ecology packages whereas beta diversity was done in
QIIME involving data rarefaction to the smallest sample size and selecting two distance mea-
surements, weighted UniFrac and Bray-Curtis distance for the Principal Coordinates Analysis
(PCoA) diagrams and between samples comparisons. Testing whether groups of the samples
were significantly different was assessed with the non-parametric MANOVAmethod imple-
mented in the Vegan package (Adonis) or with Student’s t-Test and ANOVA as implemented
in R environment.

We searched for Lactobacilli, because sequencing only a fragment of the 16S rRNA gene
does not allow us to determine species with a high confidence.

Searching for Akkermansia was done using taxonomic information in the OTU table.
All other statistical analyses were performed using SPSS 18.0 software (SPSS Inc, Chicago).

The Mann-Whitney-U test or the unpaired student’s t-test were used for the comparison of dif-
ferences between groups and the paired student’s t-test or the Wilcoxon signed-rank test for
the before and after treatment measurements, as appropriate for normally and not-normally
distributed variables, respectively. Differences with a p-value below 0.05 were considered statis-
tically significant and for multiple tests we used Benjamini & Hochberg correction.

Results

Patients
Thirty-five subjects were screened for the study between January and August 2010; 30 patients
were finally included, whereof 28 finished the study (2 dropped out due to withdrawal of
informed consent). Five patients did not fulfill the inclusion criterion of fasting glucose above
100 mg/dl at the day of screening any more. Thirteen patients were randomized to the probi-
otic group and 15 to the standard therapy group (Fig 1). Baseline characteristics of patients
with MetS and a healthy control group are shown in Table 1.

Gut microbiota
We generated 539,934 raw sequences with a mean length of 362bp. After de-noising and qual-
ity filtering, 390,021 reads (mean length 393bp) remained for downstream analysis. Chimeric
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sequences (18.5%) and singletons (2.71%, reads occurring only once in a single sample) were
removed and not used for further analysis. The average number of reads per sample was 5,208
(SD 1,786; range 1,716–11,252). Rarefaction curves confirmed that sequencing effort was not
sufficient to cover all rare taxa, but still the curve trends were approaching saturation, and did
not show any specific group dependent characteristics.

Comparison between MetS patients and healthy controls. Bacteroidetes/Firmicutes ratio
was significantly lower in patients with MetS (median: 0.75; quartiles: 0.44–1.00; p<0.0001)
compared to healthy controls (median: 1.77; quartiles: 0.89–2.42; Fig 2A). We could recognize
two groups of samples, where Bacteroides (68%) or Prevotella (15%) was most abundant as well

Fig 1. Flow diagram of the study progress.

doi:10.1371/journal.pone.0141399.g001
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as different other genera making the rest of the samples (17%). No statistical differences in the
Bacteroides and Prevotella groups’ distribution between patients and controls were detected.
No significant differences in UniFrac (p = 0.70) or Bray-Curtis (p = 0.48) distances between
baseline and end of therapy were found. Evenness and diversity (Shannon and Simpson Index)
of gut microbiota in MetS showed similar distribution compared to healthy controls (Table 2).

Akkermansia, a possibly relevant genus in the pathophysiology of MetS, was detectable in
higher abundance in only one individual in the standard therapy group at baseline and at the
end of the study (21.40% and 24.28%, respectively).

Effect of supplementation of LcS in MetS. Variations (UniFrac distances) in microbiota
composition found in the LcS group between baseline and end of the study were similar to vari-
ations in the standard therapy group. Diversity of gut microbiota in MetS was not influenced
by LcS supplementation. We also could not detect any significant changes in microbiota
between the LcS and standard therapy group at any time point using Adonis multivariate anal-
ysis. Weighted UniFrac PCoA plots showed no clear separation of the groups between the two
time points and in comparison with the healthy controls (Fig 2B).

By looking at the most abundant genera however (present with more than 1% in at least
50% of the samples) we found a significantly increased proportion of Parabacteroides at the
end of the study when compared to baseline in the LcS group (p = 0.002). (Fig 2C)

Lactobacillus genus was not detectable with our method.

Gut wall integrity and inflammation
Zonulin and calprotectin were studied as markers of gut barrier disruption and intestinal
inflammation. Serum levels of zonulin and calprotectin were not elevated in patients compared
to healthy controls. However, zonulin and calprotectin were significantly higher in stool sam-
ples of patients compared to controls (p<0.001) or compared to the median of healthy controls

Table 1. Patient characteristics. Data are given as mean±SD.

LcS (n = 13) Standard therapy (n = 15) Healthy (n = 16)

base EOS base EOS

Sex (female/male) 4/9 4/9 6/9 6/9 7/9

Age (years) 51±11 51±11 55±9 55±9 25±4***

Height (cm) 175±8 175±8 169±8 169±8 172±8

Weight (kg) 109±15 108±17 91±14** 91±15 69±11***

Blood pressure systolic (mmHg) 148±19 142±16 147±18 139±11 n.a.

Blood pressure diastolic (mmHg) 95±12 92±12 94±18 88±9 n.a.

Body mass index (kg/m2) 35±5 35±6 32±4* 32±4 23±3***

Waist circumference (cm) 113±12 112±12 106±8 106±9 76±8***

Total cholesterol (mmol/l) 220±69 219±59 209±43 211±34 4.9±1

High density lipoproteins (mmol/l) 43±17 40±16 47±19 42±12 1.6±0.3*

Low density lipoproteins (mmol/l) 128±49 132±45 119±27 126±29 2.7±0.9

Triglycerides (mmol/l) 214±169 202±123 170±106 159±66 1.2±0.5*

*p<0.05

**p<0.01

***p<0.001 compared to the other groups at baseline

n.a. not available; EOS: end of study; base: baseline; healthy: healthy controls.

doi:10.1371/journal.pone.0141399.t001
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from the kit description (p = 0.017). Both zonulin and calprotectin levels were not influenced
by LcS administration. Baseline data for zonulin and calprotectin are shown in Table 3.

Fig 2. Gut microbiota composition in MetS patients and controls. Bacteroidetes/Firmicutes ratio (a) PCoA Plot (Weighted UniFrac, b) and abundance of
Parabacteroides (c) concerning LcS supplementation.

doi:10.1371/journal.pone.0141399.g002

Table 2. Evenness and diversity of gut microbiota in MetS and healthy controls. Data are given as
median (quartiles).

MetS patients (n = 28) Healthy controls (n = 16) p-value

J-evenness 0.62 (0.56–0.66) 0.65 (0.59–0.66) 0.238

Shannon 3.8 (3.5–4.2) 3.9 (3.5–4.1) 0.839

Simpson 0.91 (0.88–0.95) 0.92 (0.87–0.95) 0.985

MetS: metabolic syndrome.

doi:10.1371/journal.pone.0141399.t002
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Bile acids
Total bile acids in serum were within the normal range in 26 out of 28 patients. In two patients,
total bile acids were slightly elevated (8.2 and 6.9μmol/l; upper limit of normal: 6.5μmol/). No
difference in individual bile acids or total bile acids was found between patients with MetS and
healthy controls. Proportions of primary (cholic acid, CA; chenodeoxycholic acid, CDCA) and
secondary (deoxycholic acid, DCA; litocholic acid, LCA; ursodeoxycholic acid, UDCA) as well
as proportions of taurine- or glycine conjugated bile acids were unaltered in MetS when com-
pared to healthy controls. Absolute and relative amounts of individual bile acids, primary, sec-
ondary or proportions of taurine- or glycine conjugated bile acids did not change after
consumption of LcS for 12 weeks. No compelling evidence for a correlation between serum bile
acids and markers of gut barrier disruption and inflammation was found.

Discussion
We found that the Bacteroidetes/Firmicutes ratio, markers of gut barrier disruption and inflam-
mation of patients with MetS differ significantly from healthy controls. Supplementation with
LcS increased the abundance of Parabacteroides but did not influence any other markers inves-
tigated in this study. Serum bile acid profile in MetS was not different to healthy controls.

We could confirm previously published findings of increased Firmicutes and decreased Bac-
teroidetes in obesity and MetS. [35–38] The gut microbiota has been shown to influence energy
extraction from diet, regulation of lipogenesis and innate immunity and therefore plays an
important role in the pathogenesis of MetS. [39] We could find the presence of two genera
(Bacteroides and Prevotella) remaining stable over the study period and not influenced by LcS.
This confirms previous findings, showing no changes of the two genera, that other authors
defined as enterotypes, during a 6-months controlled diet intervention. [9, 40]

An interesting species–Akkermansia muciniphila–has been associated with weight gain,
insulin resistance and inflammatory changes. [41, 42] In our study we were not able to repro-
duce this finding.

The supplementation with LcS led to a significant increase in Parabacteroides (phylum Bac-
teroidetes). From our data we cannot explain this finding, we can only hypothesize that LcS
might lead to ecological rearrangements in gut microbiota leading to this increase in Parabac-
teroides. Parabacteroides derive energy mainly from fermentation from carbohydrates or pro-
teins, however the amount of carbohydrates in the milk drink is probably too small to be
responsible for this increase. It is unclear, if an increase of Parabacteroides is beneficial. A shift
from Firmicutes towards Bacteroidetes could be seen as beneficial in metabolic disorders [43]

Table 3. Zonulin and Calprotectin concentrations in serum and stool of MetS patients and controls.
Data are given as median (quartiles).

MetS patients (n = 28) Normal range#

Serum zonulin (ng/ml) 45 (39–50) 52 (47–60)

Serum calprotectin (ng/ml) 555 (432.5–771.3) 570 (490–1050)

Stool zonulin (ng/ml) 75 (55–105) 31 (26–38) ***

Stool calprotectin (μg/ml) 29 (14.1–102.5) 25*

# Data from 11 healthy controls for serum parameters, data from 25 healthy controls for zonulin in stool,

median of healthy controls from the kit description for calprotectin

*** p<0.001 compared to MetS

* p = 0.017 compared to MetS.

doi:10.1371/journal.pone.0141399.t003

No Impact of LcS on Gut Microbiota and Barrier in MetS

PLOS ONE | DOI:10.1371/journal.pone.0141399 October 28, 2015 8 / 14



and dietary supplementation of resistant starch has been shown to increase Parabacteroides
[44], whereas a reduction was associated with recurrence in Crohn´s disease. [45] Contrary, in
non-alcoholic steatohepatitis, a higher abundance of Parabacteroides was observed. [46] Since
we previously published that supplementation with LcS did not influence clinical and biochem-
ical parameters of glucose metabolism, inflammation and innate immune response [20, 21],
the relevance of our observation is unclear and cannot be answered by our study design. For
more detailed information concerning abundance of gut microbiota see S2 Table.

We have chosen to study Lactobacillus casei Shirota for several reasons. This commercially
available milk drink delivers a relatively high bacterial number in a relatively small volume. LcS
has been proven to survive the passage through the stomach and is still present in the lower
intestinal tract [47–49]. Within previous studies LcS appeared to be effective in modulating
natural killer cell [50] and neutrophil function [51]. Previous studies detected LcS in stool
(both by PCR and culture) already after 7 days of ingestion of an LcS containing milk drink
[52–54]. In those studies, different milk drinks with 5–15 times higher daily concentrations of
LcS compared to our study were used. LcS was also detected in stool of European subjects, tak-
ing the same product we used in our study, using culture techniques for LcS detection. [55, 56]
With the methodology we used we could not detect an increase in Lactobacillus genera by pro-
biotic supplementation in stool samples. This is not unexpected considering the number of
reads, the concentration of the product (6.5 x 109 per day) and the dilution of the probiotic
milk drink in the gut with a bacterial count of about 1014 cells. Therefore methodological limi-
tations (limited number of reads per sample), differences in patient population and/or in the
product can explain the different findings between our study and previous data.

In animal models increased gut permeability is associated with increased translocation of
bacterial products and contributes to insulin resistance. [17] In a previous study we could show
that subjects with MetS have increased gastroduodenal and small intestinal permeability com-
pared to healthy controls. [20] Zonulin is the only physiological mediator known to regulate
intestinal permeability reversibly by modulating intercellular tight junctions [57–59] and a pos-
itive correlation between zonulin, obesity and insulin resistance has been found recently. [60]
Calprotectin, a protein expressed in neutrophil granulocytes, is a marker of intestinal inflam-
mation. In accordance with our previous finding of increased gut permeability in MetS [20],
zonulin and calprotectin levels were significantly elevated in stool but similar in serum of MetS
patients compared to healthy controls. In contrast to animal and human studies that showed
decreased faecal calprotectin levels by administration of a probiotic [61, 62], we could not find
any influence of LcS supplementation on zonulin or calprotectin levels.

Bile acids have been proposed as potential modulators of gut permeability. In a mouse
model high fat diet has been shown to decrease UDCA but increase DCA. In this model DCA
increased gut permeability by a direct, non-inflammatory mechanism. [13, 14] Ex vivo data
suggest that selected bile acids modulate intestinal permeability via rearrangement at the tight
junction level.[63] In contrast to high fat diet models, genetically obese mice did not show
increased gut permeability or bile acid pool hydrophobicity. [64] Furthermore, bile acids may
directly impact on glucose metabolism. Dietary increase of bile acid pool size in a rat model
resulted in a reduction of fat mass through an increase in energy expenditure. [65] A reduction
of bile acid pool size increased body weight gain and worsened glucose intolerance induced by
the high fat diet and led to a pronounced worsening of the changes in liver and adipose tissue.
[66]

Human data are scarce. A biosynthetic bile acid precursor is increased in patients with MetS
and T2DM, but this study did not investigate gut permeability. [67]. We could not find differ-
ences in the serum bile acid profiles between MetS patients and healthy controls. Bile acid
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composition was not influenced by LcS treatment. Unfortunately we were not able to analyze
bile acids in stool due to lack of material.

Our study has some limitations: Due to the small sample size individual differences might
have outweighed the effects of LcS administration. Furthermore our healthy controls were sig-
nificantly younger than our patient cohort. Age impacts on gut microbiota composition, but
during adulthood the microbiota composition is relatively stable. [68] The Bacteroidetes/Firmi-
cutes ratio decreases after infancy and rises again over the age of 70, but is reported to be stable
in the age range of our controls and patients. [69]

This study suggests that investigating gut microbiota composition is challenging and inter-
ventions are difficult. Further studies are necessary to unravel the underlying mechanisms and
find targeted therapeutic approaches for the complex interplay of gut microbiota and host
metabolism.
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