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The psychosis high-risk state is accompanied by alterations in functional brain activity during working memory
processing. We used binary automatic pattern-classification to discriminate between the at-risk mental state
(ARMS), first episode psychosis (FEP) and healthy controls (HCs) based on n-back WM-induced brain activity.
Linear support vector machines and leave-one-out-cross-validation were applied to fMRI data of matched
ARMS, FEP and HC (19 subjects/group).
The HC and ARMS were correctly classified, with an accuracy of 76.2% (sensitivity 89.5%, specificity 63.2%, p =
0.01) using a verbal workingmemory networkmask. Only 50% and 47.4% of individuals were classified correctly
for HC vs. FEP (p= 0.46) or ARMS vs. FEP (p= 0.62), respectively. Without mask, accuracy was 65.8% for HC vs.
ARMS (p= 0.03) and 65.8% for HC vs. FEP (p = 0.0047), and 57.9% for ARMS vs. FEP (p = 0.18). Regions in the
medial frontal, paracingulate, cingulate, inferior frontal and superior frontal gyri, inferior and superior parietal
lobules, and precuneus were particularly important for group separation.
These results suggest that FEP and HC or FEP and ARMS cannot be accurately separated in small samples under
these conditions. However, ARMS can be identified with very high sensitivity in comparison to HC. This might
aid classification and help to predict transition in the ARMS.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Working memory deficits are considered to be a central manifesta-
tion of the pathophysiology of schizophrenia (Forbes et al., 2009) and
behavioural deficits in working memory processing (Pflueger et al.,
2007) are already evident before the onset of the disorder in individuals
with an at-risk mental state (ARMS) (Fusar-Poli et al., 2012d). Alter-
ations in functional brain activity (Smieskova et al., 2012a) during
working memory processing have been reported in ARMS subjects. In
comparison to healthy controls (HCs), subjects at high risk for psychosis
exhibited reduced prefrontal and parietal activation during the n-back
task (Fusar-Poli et al., 2010).
tre (MIAC), University Hospital
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. This is an open access article under
There is increasing evidence that vulnerability to psychosis is associ-
ated with dysfunctional connectivity (Schmidt et al., 2013b). For exam-
ple, Crossley et al. (2009) demonstrated a progressive increase in
dysfunctional frontotemporal connectivity during a working memory
task from HC to ARMS individuals and further to patients with FEP. Be-
yond connectivity, ARMS is also associated with abnormalities of re-
gional brain structure (Fusar-Poli et al., 2012e; Smieskova et al., 2010),
activity (Broome et al., 2010), and neurochemistry (Allen et al., 2012;
Fusar-Poli et al., 2011b) that are qualitatively similar to but less severe
than those in patients with overt psychosis (Fusar-Poli et al., 2007b).
There is also evidence suggesting that within ARMS individuals, pre-
frontal dysfunction during WM is related to grey matter abnormalities
in the same regions (Fusar-Poli et al., 2011a).

However, it is still unclear whether functional brain activity during
workingmemory processing can beused for the individual classification
and prognosis of patients at high clinical risk.
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At present, individuals considered at high-risk for psychosis are
clinically identified according to the PACE (Personal Assessment
and Crisis Evaluation Clinic, Melbourne) criteria if they present
with “attenuated” psychotic symptoms, full-blown psychotic symp-
toms that are brief and self-limiting (Riecher-Rossler et al., 2007a;
Riecher-Rössler et al., 2009; Yung et al., 2004), or a significant de-
crease in functioning in the context of a family history of schizophre-
nia (Fusar-Poli et al., 2012b). This can lead to the correct prediction
of a subsequent transition to a first psychotic episode in only 29%
(Fusar-Poli et al., 2012a) of ARMS individuals after 2 years and in
35 (Nelson et al., 2013)–49% (Klosterkotter et al., 2001) after
3–10 years. Thus, in practical terms, it is difficult to predict which
subjects with an ARMS will later develop psychosis on the basis of
their presentation of clinical features and neuropsychological
markers (Fusar-Poli et al., 2012c).

Multivariate automatic pattern classification of individuals at
high-risk may be a promising approach to predicting the develop-
ment of psychoses in individuals with ARMS (Lao et al., 2004;
Mandl et al., 2013a). These methods categorise individuals by identi-
fication of the multivariate statistical properties of the data that dis-
criminate between groups of subjects (Klöppel et al., 2008b; Lao
et al., 2004). In this context, support vector machines (SVMs) have
emerged as a powerful tool, as these machines can learn to catego-
rise complex, high dimensional training data and to generalise the
learned classification rules to new data (Koutsouleris et al., 2012;
Noble, 2006). SVMs use information from all available voxels,
which are combined to reflect differences between groups (Klöppel
et al., 2008a), in order to create classifiers that allow the clinician
to make predictions for newly acquired (or unseen) data (Klöppel
et al., 2008b; Rizk-Jackson et al., 2011). SVMs have been successfully
applied to structural MRI data and can distinguish between ARMS
subjects and healthy controls (HCs) with high accuracy (Borgwardt
et al., 2013b; Koutsouleris et al., 2012; Koutsouleris et al., 2009a). A
limited number of studies have employed MRI data to investigate
neurofunctional classifiers in individuals at risk of psychosis, in
order to demonstrate that subtle differential functional patterns
subserving emotional processing may make a major contribution to-
wards identifying individuals who tend towards psychosis (Modinos
et al., 2012; Modinos et al., 2013).
2. Aims of the study

Despite substantial evidence ofworkingmemory deficits both, at the
time of first episode of the disease (Mesholam-Gately et al., 2009), and
predating the onset of psychosis (Fusar-Poli et al., 2012c), so far it has
not been assessed if discriminative information regarding vulnerability
for psychosis resides in working memory alterations. In this study, we
sought to examine whether subjects with an ARMS can be identified
on the basis of their individual response within a working memory
network of regions activated in a verbal identity-monitoring variant of
the n-back task (Owen et al., 2005). We used previously collected con-
trast images of fMRI data (Smieskova et al., 2012a) and applied pattern
classification using linear SVMs and leave-one-out cross-validation
(Klöppel et al., 2008b, 2009).

Based on previous structural (Borgwardt et al., 2013b; Koutsouleris
et al., 2009a, 2012) and functional (Modinos et al., 2012, 2013) SVM
MRI studies of subjects with an ARMS, we hypothesised that prefrontal
activations could make a predominant contribution to the classification
of the ARMS. On the assumption that increasing task demand increases
the magnitude of neurofunctional abnormalities in ARMS (Fusar-Poli
et al., 2007b), we expected robust discrimination of ARMS and HC,
with high classification accuracies. On the other hand, we expected
that it would be much more difficult to differentiate ARMS and FEP pa-
tients on the basis of their working memory activations (Borgwardt
et al., 2013a).
3. Methods

3.1. Participants

Subjects with an ARMS and FEP patients were assessed at the
time of MRI scan. Inclusion required one or more of the following:
(a) “attenuated” psychotic symptoms, (b) brief limited intermittent
psychotic symptoms (BLIPS), or (c) a first degree relative with a psy-
chotic disorder plus at least two indicators of a clinical change, such as
a marked decline in social or occupational functioning. All ARMS indi-
viduals were antipsychotic-naive. Subjects were assessed using the
‘Basel Screening Instrument for Psychosis’ (BSIP) (Riecher-Rossler
et al., 2007b), the Brief Psychiatric Rating Scale (BPRS) (Lukoff et al.,
1986), the Scale for the Assessment of Negative Symptoms (SANS)
(Andreasen, 1989), and the Global Assessment of Functioning (GAF).
The BSIP evaluates “prodromal” symptoms occurring in the previous
5 years; nonspecific “prodromal” signs (Riecher-Rossler et al., 2007b)
occurring in the previous 2 years; previous or current psychotic symp-
toms, psychosocial functioning over the last 5 years, substance depen-
dency; and psychotic disorders in first and second degree relatives
(Riecher-Rossler et al., 2008). The group of individuals with an ARMS
corresponds to the Personal Assessment and Crisis Evaluation (PACE)
criteria by Yung et al. (1998). The FEP patients met the operational
criteria for FEP according to Breitborde et al. (2009). Current and previ-
ous psychotropicmedication, alcohol, nicotine, cannabis, and consump-
tion of other illegal drugs were investigated by using a semi-structured
interview adapted from the Early Psychosis Prevention and Interven-
tion Centre (EPPIC) Drug and Alcohol Assessment Schedule (http://
www.eppic.org.au). The exclusion criteria for these subjects were: his-
tory of previous psychotic disorder treated with antipsychotics; psy-
chotic symptomatology secondary to an “organic” disorder; substance
abuse according to the ICD-10 research criteria; psychotic symptom-
atology associated with an affective psychosis or a borderline personal-
ity disorder; age under 18 years; insufficient knowledge of the German
language; and IQ less than 70 (Lehrl et al., 1995).

In ARMS subjects, clinical follow-up occurred on average 4.8 ±
8.6months (range=0–24months) after their baselineMRI scans. During
the follow-up period, 4 ARMS subjects (21%) made a transition to a first
episode of psychosis, according to the PACE criteria (Yung et al., 1998).
HCs were recruited from the same geographical area as the other groups.
All subjectswere representative of the local population of individuals pre-
sentingwith anARMSor FEP in termsof age, sex, handedness, and alcohol
and cannabis consumption. These individuals had no current psychiatric
disorder, no history of psychiatric illness, head trauma, neurological ill-
ness, serious medical or surgical illness, substance abuse, and no family
history of any psychiatric disorder as assessed by an experienced psychi-
atrist in a detailed clinical semi-structured interview. All participants pro-
vided written informed consent, and the study was approved by the
Research Ethics Committee.

3.2. MR image acquisition

Functional data were acquired on a 3 T scanner (Siemens
Magnetom Verio, Siemens Healthcare, Erlangen, Germany) using
an echo planar sequence with a repetition time of 2.5 s, echo time
of 28 ms, matrix 76 × 76, 126 volumes and 38 slices with 0.5 mm
interslice gap, that gave a resolution of 3 × 3 × 3 mm3, and a field
of view of 228 × 228 cm2.

3.3. n-back working memory task

A well-established n-back working memory task (Smieskova et al.,
2012a) was administered to patients and controls. With an inter-
stimulus interval of 2 s, all subjects were presented with a series of
black letters on awhite background in a prismaticmirror. Each stimulus
was presented for 1 s. The size of the letterswas 8 cmprojected onto the
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screen at the end of the scanner. During the baseline (0-back) condition,
subjectswere required to press the buttonwith the right handwhen the
letter “X” appeared. During 1-back and 2-back conditions, participants
were instructed to press the button if the currently presented letter
was the same as that presented 1 (1-back condition) or 2 (2-back con-
dition) trials previously. The three conditions were presented in 10
alternating.

30 s blocks (2× 1-back, 3 × 2-back, and 5 × 0-back),matched for the
number of target letters per block (i.e. 2 or 3), in a pseudo-random
order. The reaction times and response accuracywere recorded on-line.

3.4. Image preprocessing

3.4.1. fMRI analysis
We pre-processed and analysed the MR images using the Statistical

Parametric Mapping software (SPM8; Wellcome Department of
Cognitive Neurology, London, United Kingdom). All MRI volumes were
realigned to the first volume, corrected for motion artefacts, mean ad-
justed by proportional scaling, with affine and non-linear registration,
normalised into standard space (MNI template), and smoothed using
an 8mmFWHMGaussian kernel (Modinos et al., 2013). Maximum like-
lihood parameter estimates were calculated at the first level at each
voxel using the general linear model. Our design matrix included an
autoregressive AR(1) model of serial correlations and a high-pass filter
with a cutoff of 128 s. We convolved the onset times for each block in
seconds with a canonical haemodynamic response function. The first
level design matrix included four conditions (with onset times of 0-
back, 1-back, 2-back, and errors in seconds) in a block design and amul-
tiple regressor for motion corrections. Each task condition (1-back and
2-back) was then contrasted against the baseline condition (0-back)
in each subject. For SVManalysiswe used 2-backmore than 0-back con-
trasts known to comprise information about attention-independent
modality with a higher load level of working memory.

For the fMRI n-back analyses only the correct responses were used.
Clinical and sociodemographic differences were previously analysed
and published by Selnes et al. ( 2012) and Smieskova et al. (2012a). Ad-
ditionally, behavioural performances during the 2-back working mem-
ory condition were previously analysed by Schmidt et al. (2013a)
using signal detection theory. The sensitivity index was calculated
using the formula z(Hits) − z(False Alarms). The equal weighting of
hits and false alarms provides an objective measure of sensitivity that
is independent of participant response bias. The sensitivity index values
were further subjected to a 1-way ANOVA. When the ANOVA null hy-
pothesis of equal means was rejected, we used Bonferroni-corrected
post-hoc t tests.

3.5. Pattern classification analysis

3.5.1. SVM prediction scores
The pattern classification of the contrast images obtained under the

2-back N 0-back condition was based on three different 2-class predic-
tion models: HC versus ARMS, HC versus FEP, and ARMS versus FEP,
using linear SVM combinedwith a leave-one-out cross-validation strat-
egy (Klöppel et al., 2008b).

An anatomical region of interest mask was created using WFU
PickAtlas (theory of the Talairach brain atlas) toolbox implemented in
SPM8 (Maldjian et al., 2003). The mask included the main regional
loci of brain activation of verbal identity-monitoring variant of the
n-back task identified by a meta-analysis: lateral premotor cortex
(BA6), dorsal cingulate/medial premotor (SMA) (BA 32,6), dorsolateral
prefrontal (BA46,9), ventrolateral prefrontal (BA44), frontal pole
(BA10), medial posterior parietal (BA7), inferior parietal lobule
(BA40), medial and lateral cerebellum, and thalamus (Owen et al.,
2005).

For comparison, pattern classification without this mask was also
performed.
3.6. Support vector machine (SVM)

LIBSVM, a library for SVMs (http://www.csie.ntu.edu.tw/-cjlin/
libsvm), running under MatLab 7.1 (MathWorks, USA), was used for
pattern classification analysis.

The SVM methodology has been detailed elsewhere (Klöppel et al.,
2008b). In brief, SVMs include a training step to learn about systematic
differences in the datawith respect to the two groups that are to be clas-
sified. In the context of machine learning, individual BOLD images are
treated as points located in a high dimensional space, where the total
number of dimensions is determined by the number of voxels within
the mask. SVMs are trained to establish a decision rule that should be
sufficiently general to allow discrimination of new (testing) data.
Scans enter the training process alongside their label. New scans can
then be tested against trained sets and in turn categorised as members
of a particular clinical group (Klöppel et al., 2008b).

A linear kernel matrix was created from the images, which can be
viewed as a similarity measure among subjects belonging to a
characterised group. The images cluster in subspaces containing im-
ages that are very similar, so that image normalisation into a stan-
dard space is an important pre-requisite.

The use of an SVM for image classification is an example of linear dis-
crimination. As a binary classifier, it divides the space of BOLD images
into two classes separated by a hyperplane. The optimal separating hy-
perplane (Forbes et al., 2009) produced by an SVM is defined by those
images that are closest to the separating boundary between them, i.e.
the images that are most ambiguous, called ‘support vectors’. After
training, an OSH contains learned differences between classes; for ex-
ample, in the present case, this may be ARMS and HC images. The
trained classifier can be used on scans that have not yet been presented
to the SVM algorithm. This information is used in the prediction step to
assign any new (or previously retained) image to one of the learned
classes. Leave-one-out cross-validation iteratively leaves successive im-
ages out of the training data set for subsequent class assignation until
each one has been used tomake a prediction. Thereby, themethod per-
mits the estimation of the overall classification accuracy and the poten-
tial generalisability of a prediction model (Klöppel et al., 2008b).

Weight vector maps were created to show the brain regions that
best discriminate between groups. In order to test how well SVMs
can differentiate different stages of psychosis, 6 separate prediction
models for different 2-group predictions were created — with or
without a mask (Models I–VI; see Table 3 for listing) (results for con-
trast IV — see Fig. 2).

Statistical inferences were made at a significance level of p b 0.05.
p-Values were calculated using random labelling and permutation test-
ing. The statistical significance of classification accuracywasdetermined
by permutation testing (for a total of N = 100 permutations). This in-
volved repeating the classification procedure with training group labels
randomly allocated by the computer N times in order to generate a null
distribution of accuracies. The fraction of permutations achieving a
higher accuracy than the true labels provides an estimate of the signifi-
cance of the obtained accuracy relative to chance.

The slack parameter Cwas optimised for each instance during leave-
one-out cross-validation by performing a parameter search, where the
highest classification accuracy determined the optimal value of C.
3.7. Statistical analysis of demographic data

Population variables are expressed as means and standard devia-
tions (ordinal scales) or as totals and percentages (nominal scales).
Group comparisons were performed via analysis of variance (ANOVA)
for parametric data and via chi-square tests for non-parametric data.
The Tukey-HSD correction was calculated for ANOVA post-hoc analysis.
A statistical level of p b 0.05 was considered significant. Statistical anal-
ysis was performed with IBM SPSS Version 19.0.

http://www.csie.ntu.edu.tw


Table 2
Most important activation regions (top 5%) discriminating between groups (ARMS
and HC).

Anatomical region Hemisphere MNI coordinates wi

x y z

ARMS N HC
Middle frontal gyrus L −28 60 16 18.6

−46 48 10 12.7
Paracingulate
Paracingulate (BA10)

L −8 50 −6 13.7
R 6 54 0 7.75

Cingulate R 10 42 14 8.66
Precentral/inferior frontal gyrus (BA44) L −56 6 20 13.6
Precentral gyrus

(BA6)
R 52 0 34 8.05

Medial frontal gyrus (BA9) R 6 52 18 6.39
L −10 32 30 6.44

Superior frontal gyrus
(BA10)
(BA9)

L 0 14 58 8.75
−40 52 20 33.1
−42 44 28 18.8

HC N ARMS
Middle frontal gyrus R 32 4 62 38
Inferior parietal lobule (BA40) L −38 −52 58 53

R 54 −46 48 42.1
Superior parietal lobule (BA7) L −20 −60 62 41.5
Precuneus L 0 −60 58 50.8

R 30 −68 54 45.1
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4. Results

4.1. Sample characteristics

Groups were well-matched for age (F(2,54) = 0.549, p = 0.581),
sex (χ2(2) = 2.927, p = 0.231), and handedness (χ2(2) = 0.538,
p= 0.764). They differed in positive symptoms (sum of suspiciousness,
hallucinations, delusions, and conceptual disorganisation scores of
BPRS; F(2,40) = 27.587, p b 0.0001), negative symptoms (total score
of SANS, F(2,52) = 22.226, p b 0.0001), and global functioning (total
score of GAF; F(2,54) = 38.237, p b 0.0001). The FEP and ARMS groups
had more positive (p = 0.007 and p b 0.001) and negative symptoms
(p = 0.0001), and worse global functioning (p = 0.001) than those of
HC, as calculated in ANOVA with Tukey3s honest significance difference
tests. The FEP and ARMS groups did not differ regarding antidepressant
medication (37% in both groups) at the MRI date. Additionally, 32% in
the FEP group was receiving antipsychotic medication. Groups did not
differ with respect to alcohol, cannabis and cigarette consumption at
MRI. Study population characteristics are summarised in Table 1.

Tukey-HSD correction (at p = 0.05) was calculated for post-hoc
analysis in SPSS 19.0.

4.2. Pattern classification results

Table 2 shows the regions most relevant to discriminating between
ARMS and HC (as given by SVM weights).

If the analysis was constrained to the verbal n-back network (mask),
of the three predictionmodels, the highest accuracy (SE 89.5%, SP 63.2%,
tA 76.2%, p = 0.01) was found for ARMS vs. HC (model I), only 2 ARMS
individuals of 19 were wrongly classified as HC. Low accuracies were
observed in models II (SE 52.6%, SP 47.4%, tA 50.0%, p = 0.46) and III
(SE 42.1%, SP 52.6%, tA 47.4%, p = 0.62); here, half of the individuals
were wrongly classified. Without analysis mask, classification accura-
cies were equal for model IV (SE 73.7%, SP 57.9%, tA 65.8%, p = 0.03)
and model V (SE 73.7%, SP 57.9%, tA 65.8%, p = 0.0047), and low for
model VI (SE 52.6%, SP 63.2%, tA 57.9%, p = 0.18) (Table 3).

Fig. 1 shows the weight vector map with the most discriminating
brain regions between the groups (top 5%). The threshold of classifica-
tion strength was set to show the top 5% of the weight vector scores,
as done in previous studies addressing other aspects of pattern classifi-
cation and psychosis proneness (Modinos et al., 2013; Modinos et al.,
2012).
Table 1
Study population characteristics.

FEP (n = 19) ARMS (n = 19) H

BPRS positive symptoms 11.73 (4.6) 7.07 (2.3) 4.

BPRS total (SD) 49.50 (16.5) 37.89 (6.5) 24

SANS total (SD) 21.17 (13.1) 17.06 (12.4) 0.

GAF total (SD) 54.95 (17.0) 60.21 (13.5) 88

Antipsychotic n AN/AF/Med 9/4/6 18/1/0 19

Antidepressants n (%) 7 (37%) 7 (37%) 0

Alcohol n
No/Mod/Uncon

4/14/1 3/12/4 0/

Cannabis currently (%) 6 (32%) 7 (37%) 4

Smoking (cig /day) 10.11 (10.97) 7.29 (9.9) 3.

Abbreviations: Alcohol n, number of subjects consuming alcohol; No, no alcohol; Mod, moderat
on the date ofMRI; AF, antipsychotic free; AN, antipsychotic naive; Med, antipsychoticmedicate
chiatric Rating Scale; BPRS positive symptoms= BPRS 9+ BPRS 10+ BPRS 11+ BPRS 15, sum
isode psychosis patients; GAF, Global Assessment of Functioning; HC, healthy control = H un
intelligence test) and SANS, Scale for the Assessment of Negative Symptoms.
Fig. 2 shows the classification scores, i.e. the projection of subjects
onto theweight vector with positive patterns (blue circles) discriminat-
ing for group I, and negative patterns (red crosses) for group II for HC
versus ARMS ((A) no mask, (B) verbal n-back mask), HC versus FE
((C) no mask, (D) verbal n-back mask), and ARMS versus FE ((E) no
mask, (F) verbal n-back).

Models (group I vs. group II): HC–ARMS (A) nomask and (B) verbal
n-back mask; HC–FE (C) no mask and (D) verbal n-back mask and
ARMS–FE (E) no mask and (F) verbal n-back.

5. Discussion

The present study combines task-induced fMRI data and machine
learning to explore whether functional brain activity during n-back
working memory processing demonstrates a functional correlation
with susceptibility for psychosis. Using SVM we demonstrate that peo-
ple at high-risk for psychosis can be correctly classified with accuracies
C (n = 19) Statistics Post-hoc

00 (0.0) F(2,40) = 27.587
p b 0.0001

FEP N HC, FEP N ARMS, ARMS N HC

.58 (1.2) F(2,52) = 27.966
p b 0.0001

FEP N HC, FEP N ARMS, ARMS N HC

00 (0.0) F(2,52) = 22.226
p b 0.0001

FEP N HC, ARMS N HC

.63 (4.5) F(2,54) = 38.237
p b 0.0001

FEP b HC, ARMS b HC

/0/0 χ2(4) = 21.157
p b 0.0001
χ2(2) = 24.281
p b 0.0001

17/2 χ2(4) = 6.598
p = 0.159

(21%) χ2(2) = 1.411
p = 0.487

00 (6.0) F(2,54) = 2.853
p = 0.066

e intake of alcohol; Uncon, uncontrolled drinking; Antipsychotic, antipsychotic medication
d; ARMS, at-riskmental state individuals=A under the Post-hoc column; BPRS, Brief Psy-
of suspiciousness, hallucinations, delusions, and conceptual disorganisation; FEP, first ep-
der the Post-hoc column; MWT, intelligence quotient test (multiple choice-vocabulary-



Table 3
Results of SVM classification using n-back (2-back N 0-back) BOLD contrast maps for im-
age analysis.

Model Sensitivity (%) Specificity (%) Correctly classified (%)

Mask I HC–ARMS 89.5 63.2 76.2
II HC–FE 52.6 47.4 50.0
III ARMS–FE 42.1 52.6 47.4

No mask IV HC–ARMS 73.7 57.9 65.8
V HC–FE 73.7 57.9 65.8
VI ARMS–FE 52.6 63.2 57.9
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of up to 74–90%. The best performance was achieved when the analysis
was restricted to brain regions within the verbal working memory net-
work (Owen et al., 2005).

A large number of fMRI studies focusing on the neural basis of verbal
working memory show a remarkably consistent network of neural
areas active when verbal workingmemory tasks are carried out (for re-
viewseeOwen et al., 2005). Themain componentsmakingup thework-
ing memory network within the lateral prefrontal cortex are the dorsal
lateral prefrontal cortex (BA9, 10 and 46, mostly bilateral), the ventral
lateral prefrontal cortex (BA44; Brodmann3s area) and BA45) and the
premotor cortex (BA6, mostly bilateral). In the frontal lobe there are
also secondary motor areas (BA6), which include parts of the anterior
cingulate cortex (ACC) when activated. Bilateral activations in the pos-
terior parietal lobes are found in the dorsal areas of the supra-
marginal gyrus (BA40) and in the cerebellum. The exact activation pat-
terns vary, depending on the characteristics of the given verbal working
memory task.

Restricting the SVM analysis to these regions, we accurately
identified differential activation patterns between ARMS subjects
and HC (cf. Table 2). This is in line with our hypothesis that a net-
work of working memory activations, within the lateral prefrontal
cortex contributes predominantly to the identification of high-risk
subjects.
Fig. 1.Weight vector maps showing the most discriminating brain regions between HC and AR
more to classifying individuals with ARMS are shown in red/yellow, while regions that contribu
(B) views; z= (−4, 20, 28, 51, 56, 59, 64). (C) Classification score, found by the projection of e
ARMS, and negative patterns (red crosses) for controls (p = 0.032).
The low accuracies found by classifying ARMS versus FEP (Table 3,
models III and VI) support our second hypothesis that increasing task
demand increases the magnitude of neurofunctional abnormalities in
ARMS and makes it nearly impossible to distinguish ARMS from FEP
using SVM (Borgwardt et al., 2013b).

Lawrie et al. (2002) predicted that individuals with schizophrenia
would exhibit decreased connectivity between dorsal lateral prefrontal
cortex (Brodmann3s areas 9 and 10) and superior temporal gyrus (STG)
which is involved in auditory processing. Most of the fMRI studies
reviewed in ameta-analysis of the neurofunctional correlates of vulner-
ability to psychosis (Fusar-Poli et al., 2007b) reported reduced dorsal
lateral prefrontal cortex activation in FEP subjects during cognitive
tasks, which suggests that hypofrontality in the dorsolateral prefrontal
cortex may be a feature of FEP. Three studies of working memory in
FEP reported decreasing activation in the dorsolateral prefrontal cortex
during the hard level of the task (Mendrek et al., 2004; Rasser et al.,
2005; Riehemann et al., 2001), and only one study reported greater pre-
frontal activation in FEP subjects (Fusar-Poli et al., 2007b). In contrast, a
number of genetic high-risk studies reported relatively greater prefron-
tal activation in high-risk subjects than in controls (Callicott et al., 2003;
Seidman et al., 2006; Thermenos et al., 2004), which most probably re-
flects a compensatory response to maintain adequate performance
(Fusar-Poli et al., 2007b).

Notably, in the present study, FEP patients could not be distin-
guished fromHCs. Previous fMRI studies have shown that antipsychotic
treatment canmodulate brain activity during cognitive tasks (Fusar-Poli
et al., 2007a; Snitz et al., 2005) and,more specifically, functional connec-
tivity in circuits that are involved in mediating the cognitive symptoms
in schizophrenia (Stephan et al., 2001).

In FEP patients after 6 weeks of treatment with second-generation
antipsychotic drugs, frontoparietal–temporal network connectivity dur-
ing resting state was no longer significantly different from controls (Lui
et al., 2010). Antipsychotic treatment also normalises frontoparietal
connectivity during a working memory task in FEP patients (Schmidt
MS (n = 19 per group) using the verbal n-back mask (top 5%). Regions that contributed
tedmore to the classification of controls are shown in blue/green, in axial (A) and coronal
ach subject onto the weight vector, with positive patterns (blue circles) discriminating for



Fig. 2. Classification score, i.e. projection of subjects onto theweight vector with positive patterns (blue circles) discriminating for group I, and negative patterns (red crosses) for group II.
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et al., 2013a), indicating an improved cognitive performance after anti-
psychotic medication (see also the Limitations section).

This is consistent with studies in early-psychosis patients (Keefe
et al., 2007a) and in those with chronic schizophrenia (Keefe et al.,
2007b), which reported significant improvements in neurocognition
after the treatment with antipsychotics.

Over the past years, the prodromal phase of psychosis has been in-
tensively studied using MRI. Potential MRI-based biomarkers of
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vulnerability to psychosis have been described in only a few studies
(Borgwardt et al., 2013b; Broome et al., 2010; Koutsouleris et al.,
2012; Koutsouleris et al., 2009a; Modinos et al., 2012), despite in-
creasing evidence supporting structural and functional brain alter-
ations prior to the onset of schizophrenia (Schmidt et al., 2013b;
Smieskova et al., 2012a; Smieskova et al., 2010; Smieskova et al.,
2012b). Deficits in neurocognitive tasks indexing working memory
in high-risk subjects were shown in a quantitative meta-analysis
(Fusar-Poli et al., 2012b). Those subjects at high-risk who later de-
veloped psychosis, showed poorer performance in working memory
than those who did not develop the illness. Thus, impairments in
working memory specifically predicted the later transition to psy-
chosis (Fusar-Poli et al., 2012b).

Our previously published conventional fMRI analysis showed that
functional working memory abnormalities may occur prior to the tran-
sition to psychosis (Smieskova et al., 2012a). Significant activations
were found in the bilateral SPL and MFG during the n-back task in all
groups (Smieskova et al., 2012a), consistent with previous n-back stud-
ies in ARMS individuals (Broome et al., 2010; Fusar-Poli et al., 2011a).
Furthermore, Schmidt et al. (2013b) showed that effective connectivity
between frontal and parietal regions modulated by a high-load WM
condition was gradually reduced from HCs to individuals with an
ARMS for psychosis and further to non-treated FEP patients (Schmidt
and Borgwardt, 2013; Schmidt et al., 2014).

The main potential of SVM-based classification is that it might be
useful for predicting the clinical transition to psychosis at the individual
level.Most recently, automatic pattern classificationmethods have been
considered to promote a potentially accessible and objective way to im-
prove clinical decision making (Mandl et al., 2013b), andmay present a
measure of the risk of developing psychosis in individualswith anARMS
if sufficiently accurate (Borgwardt et al., 2013b).

Recent efforts have investigated the diagnostic value of neuroimag-
ing biomarkers in the very earliest stages of the illness. For example Sun
et al. (2009) used a cortical patternmatchingmethod to compareHCs to
patients with recent-onset psychosis. Patients showed lower grey mat-
ter density, particularly in the prefrontal, cingulate and lateral temporal
brain regions relative to the controls, and the pattern classification anal-
ysis using a leave-one-out cross-validation was able to discriminate be-
tween the two groups with an accuracy of 86.1%.

Consistent with this finding, structural MRI studies discriminated
between HCs and those with an ARMS based on grey matter volume
with 82% accuracy (Borgwardt et al., 2013b; Koutsouleris et al., 2012;
Koutsouleris et al., 2009b). Furthermore, pattern classification based
on brain activation during emotional processing classified subjects
with susceptibility to psychosis with accuracies up to 69.4% (Modinos
et al., 2012).

Focusing on changes along the psychosis timeline, SVMs based on
structural greymatter patterns have discriminated between individuals
who did, and did not, transition from the ARMS to full blown psychosis
with accuracies of up to 92% (Borgwardt et al., 2013a; Koutsouleris et al.,
2012; Koutsouleris et al., 2009a).

Mourao-Miranda et al. (2012) used an SVM whole-brain classifica-
tion approach to predict future illness course at the individual level
from MRI data obtained at the first psychotic episode. The authors
were able to classify ‘continuous psychosis’ from ‘episodic psychosis’
and ‘continuous psychosis’ fromHCswith accuracies of 70% and 67%, re-
spectively, but theywere unable to distinguish ‘episodic psychosis’ from
HCs.

Very recently, Kambeitz-Ilankovic et al. (2015) showed that cortical
surface-based pattern classification predicted good vs. poor outcome
status at follow-up with an accuracy of 82% as determined by nested
leave-one-cross-validation. Neuroanatomical prediction involved corti-
cal area reductions in the superior temporal, inferior frontal and inferior
parietal areas and was not confounded by functional impairment at
baseline, or antipsychotic medication and transition status over the
follow-up period.
The classification accuracies based on these structural studies sug-
gest, that longitudinal measures may in the future also further improve
classification based on SVM analysis of fMRI data.
5.1. Limitations

There are some limitations to this study that should be taken into
account.

Firstly, the rather small sample sizes of the present study may have
limited the HC versus psychosis classification, and thus the findings
may have been influenced by the heterogeneity of the psychosis sub-
group. To account for this, we controlled for the potential effects of co-
variates, such as age, gender, and education.

Secondly, to ensure that the data used for testing does not overlap
with those used for training two completely different sets of data
would be best practice. However, this also increases the total amount
of data to be acquired. Therefore, in order to obtain a relatively unbiased
estimate of generalisability (Hastie et al., 2001), here we used leave one
cross-validation, in which the total sample is split into training and test-
ing data several times using different partitions and the resulting accu-
racies of classification are averaged across repetitions (Lemm et al.,
2011).

Thirdly, although we performed pattern classification in matched
groups with possibly low antipsychotic rates, we cannot fully exclude
the confounding effects of antipsychotic medications (Ettinger et al.,
2011; Fusar-Poli et al., 2013). Individuals who performed the task
badly had been excluded from the fMRI n-back analysis (Selnes et al.,
2012; Smieskova et al., 2012a). Furthermore, instead of evaluating the
number of omissions or error rates, Schmidt et al. (2013a) analysed
the 2-back working memory performances using signal-detection
theory. The sensitivity index provides an objective measure indepen-
dent of the individual3s response bias. When equally weighting hit
rates and false alarms, the 2-back working memory performance did
significantly distinguish non-treated FEP patients from HCs, whereas
the working memory performance in ARMS individuals came out in
the middle of both groups. Moreover, no significant difference was
found in antipsychotic-treated FEP individuals compared with HCs, in-
dicating an improved cognitive performance after antispychotic medi-
cation (Yao et al., 2013).

Fourthly, other factors such as cannabis use and smoking might
have played a confounding role. However, the latter seems to be
rather unlikely, as we did not find significant differences between
groups (Table 1).

Fifthly, it would have been interesting to perform a transition analy-
sis. However, given the low number of n= 4 individuals with psychosis
resulting from ARMS after 33.3 months of clinical follow-up, this was
not possible in the present study. Transition analysis may in the future
further improve classification accuracy.

Generally, it is unclear whether supervised MRI-based pattern rec-
ognition can achieve the level of sensitivity and specificity needed in
order to be integrated into clinical applications. In the present study,
only 63% of controls were correctly classified, which limits the diagnos-
tic applicability of the model to the healthy population. However, the
sensitivity of detecting the ARMS was nearly 90%. In the future, feature
selection methods and the use of an independent test data set may fur-
ther increase classification accuracy. However, a reduced number of
voxels would also limit the interpretation of the results, in particular if
different regions are compared.

Brodersen et al. applied linear SVM to n-back fMRI data (2 N 0 back)
in 41 patients with chronic schizophrenia and 42 HCs (Brodersen et al.,
2014). Parameter estimates from a dynamic causal model (DCM) of a
visual–parietal–prefrontal network were used to define a model-based
feature space for the subsequent application of supervised and unsuper-
vised (Gaussian mixture modelling) learning techniques. Accuracy was
55% when local activity was used, but rose to 62% when functional
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connectivity was used and was even better (78%) with DCM-based ef-
fective connectivity estimates. With DCM parameters, an unsupervised
approach showed nearly the same accuracy (71%).

Automatic pattern classification based on functional working mem-
ory data might contribute to monitor disease development in people at
clinical high-risk for psychosis and improve clinical decisions in clinical-
ly diagnosed ARMS. Furthermore, the shift from single predictive
models to ensembles of classifiers may produce more generalisable di-
agnostic biomarkers by averaging the diagnostic decisions of numerous
predictive models (Koutsouleris et al., 2010).

Because it is difficult to predictwhichhigh-risk individualswill go on
to develop psychosis (Fusar-Poli et al., 2012a) there is a clear clinical
need for other markers that could be used to help clinicians identify
the subgroup of subjects that will benefit most from preventive inter-
ventions (Fusar-Poli et al., 2013). Our results reveal that SVM analysis
of working memory-related fMRI data can identify ARMS subjects
with high accuracy when the analysis is restricted to a distributed and
subtle set of brain regions within the verbal working memory network.

Thismight have implications for clinical decisionmaking concerning
the early detection of individuals at high-risk of developing psychosis.
Thus, in addition to the abnormalities in neuroanatomical patterns
(Koutsouleris et al., 2009a), including measures of neuro-functional ac-
tivity may improve the classification accuracy for people at high-risk for
psychosis.
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