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Abstract The present study aimed to investigate the effect of ZnO nanoparticles on alanine

transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehy-

drogenase (LDH) enzyme expressions in C2C12 cells. ZnO nanoparticles are widely used in the sev-

eral cosmetic lotions and other biomedical products. Several studies report on ZnO nanoparticle

mediated cytotoxicity. However, there are no reports on the effect of ZnO nanoparticles on

ALT, AST, ALP and LDH enzyme expressions in C2C12 cells. A cytotoxicity assay was carried

out to determine the effect of ZnO nanoparticles (1–5 mg/ml) on C2C12 cell viability at 48 and

72 h. ZnO nanoparticles increased ALT, AST, ALP and LDH enzyme mRNA expression and their

activities in C2C12 cells. In conclusion, the present study showed that ZnO nanoparticles increased

these enzyme activities and its mRNA expression in C2C12 cells in a dose-dependent manner.
ª 2015 TheAuthors. Production and hosting by Elsevier B.V. on behalf ofKing SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nanoparticles are key scientific tools that have been used in

several biotechnological and pharmacological fields.
Nanostructural ZnO has been used in the various biomedical
applications in the modern world. Metal oxide nanoparticles

are believed to be safe for applications because they are more
stable and with salient properties (Zhao and Castranova,
2011). Titanium dioxide (TiO2) and ZnO are widely used as
UV blockers in cosmetic lotions (Becheri et al., 2008). ZnO
nanoparticle increases antibacterial activity (Nagarajan and

Rajagopalan, 2008), and it has been used in cotton fabric, rub-
ber and food packaging industries (Qun et al., 2007). Oral and
intra-peritoneal administration of ZnO nanoparticles showed

its distribution in the mice liver, spleen, kidneys and adipose
tissue (Li et al., 2012). It is systemically absorbed, which ele-
vates the zinc level in the liver, adipose tissue and pancreas
(Umrani and Paknikar, 2014). However, the cytotoxicity of

nanoparticles, and its interaction with the biological system
is still unclear (Snyder-Talkington et al., 2012).

C2C12 cells are mouse myoblast cells obtained from C3H

mice. C2C12 cells are useful to study the expression of various
proteins, and to explore mechanistic pathways. In addition,
they are useful to study the differentiation of myoblast and

osteoblast (Yaffe and Saxel, 1977). Our previous studies
reported the cytotoxicity of ZnO nanoparticles on antioxidant
enzyme activities and mRNA expression in the co-cultured
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C2C12 and 3T3-L1 cells (Muthuraman et al., 2015), and the
dose-dependent effect of ZnO nanoparticles on oxidative
stress, and antioxidant enzyme activity in adipocytes

(Muthuraman et al., 2014). However, there are no reports on
the effect of ZnO nanoparticles on the ALT, AST, ALP and
LDH expressions in C2C12 cells. Therefore, the study is

unique, and helps to understand the cytotoxicity of ZnO nano-
particle in C2C12 cells.

2. Materials and methods

ZnO nanoparticles (35 nm particle size) were purchased from
Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).

Laboratory wares were purchased from Falcon Lab ware
(Becton-Dickinson, Franklin Lakes, NJ, USA). C2C12 cells
(mouse, muscle) were purchased from ATCC.

2.1. Cell culture

C2C12 cells were incubated at a density of 9000 cells/cm2 and
grown in DMEM containing 10% FBS and 1% penicillin/

streptomycin at 37 �C in 5% CO2. Confluent C2C12 cells
(3rd passage) were induced to differentiate with a standard dif-
ferentiation medium consisting of DMEM supplemented with

2% horse serum and 1% antibiotics. Cultures were re-fed
every 2 days to allow 90% cells to reach complete differentia-
tion. Cells with differentiation medium were considered as the

control. Differentiated cells with ZnO nanoparticles were
considered as treatment.

2.2. Sulforhodamine B (SRB) assay

SRB assay is widely used for the cell viability and proliferation
The cytotoxic effect of ZnO nanoparticles on C2C12 cells was
measured by the SRB assay (Vichai and Kirtikara, 2006).

C2C12 cells were seeded at a density of 2.5 · 104 cells/well into
96-well plates, and allowed to adhere for 24 h at 37 �C. Cells
were treated with ZnO nanoparticles at different concentra-

tions (1–5 mg/ml) for 48 and 72 h. At the end of the treatment,
cells were fixed with acetone, and air dried. After being fully
dried, each well was added with 100% of SRB solution

(0.4% w/v), and incubated for 3 h at room temperature.
Microplate was washed with 1% of acetic acid, and then dried
under a drying oven. Stained C2C12 cells were observed for
morphology using inverted light microscope. Finally, 10 mM

of Tris-base was added and kept incubation for overnight.
Following complete dissolution of SRB in Tris-base, the absor-
bance was measured at 540 nm.

2.3. Enzyme activities

ALT and AST are transaminase enzymes. It is measured by kit

(Biovision, Life Science) method and expressed as units/liter
(Waller-Evans et al., 2013). These enzymes catalyze reversible
transamination and products were measured at 570 nm. ALP

enzyme assay kit (Abcam, ab83369) uses p-nitrophenyl phos-
phate (pNPP) as a substrate which turns yellow measured at
405 nm (Grog and Pearse, 1952). LDH enzyme activity is
determined by measuring the absorbance at 340 nm resulting

from the oxidation of NADH. One unit represents the
oxidation of one micromole of NADH/minute at 25 �C and
pH 7.3 (Hess et al., 1958).

2.4. qRT-PCR

Total RNA was isolated from all the samples (Chomczynski
and Mackey, 1995). The first-strand c-DNA was synthesized

from 1 lg of the total RNA using the M-MLV reverse tran-
scriptase with the anchored oligo d(T)12–18 primer. qPCR
was performed using a cDNA equivalent of 10 ng of total

RNA from each sample with primers specific for ALT (for-
ward:50-TTCAAGCAGAGAGACAGGAG-30, reverse: 50-T
GAGGGAAGGAATACATGG-30), AST (forward:50-TGTT

CAGCTTCACTGGGTTG-30, reverse: 50-CCCAGTCCTGG
TAAATGTGG-30), ALP (forward: 50-CCAACTCTTTTGTG
CCAGAGA-30, reverse: 50-GGCTACATTGGTGTTGAGC
TTTT-30), LDH (forward:50-ATCCAGACTCCTGTTGCC

CATTCA-30, reverse: 50-TTCGCCCTTGAGTTTGTCCTC
CAT-30) and a housekeeping gene GAPDH (forward: 50-GG
TCACCAGGGCTGCTTTT-30, reverse: 50-ATCTCGCTCCT

GGAAGATGGT-30). The reaction was carried out in 10 ll
using SYBR Green Master Mix (Bioneer) according to the
manufacturers’ instructions. Relative ratios were calculated

based on the 2�44CT method (Pfaffl, 2001). PCR was monitored
with the use of Mini Opticon Real Time PCR System (Bio-
Rad).

2.5. Statistical analysis

All values were expressed as mean ± SEM. Statistical analysis
was done using SPSS 17. The statistical significance of differ-

ences between means was assessed by an ANOVA and
Student’s t-test. Differences between control and treated were
calculated. p< 0.05 was found to be to be significant.

3. Results

3.1. Cytotoxicity

C2C12 cells incubated with different concentrations (1–5 mg/

ml) of ZnO nanoparticles for 48 and 72 h, showed a dose-de-
pendent effect that was evident from the SRB assay (Fig. 1).
ZnO nanoparticles would be toxic to normal cells at 5 mg/

ml. Therefore, 2, 3 and 4 mg/ml of ZnO nanoparticles were
used for further investigations.

3.2. ALT

C2C12 cells exposed to different concentrations (2, 3 and
4 mg/ml) of ZnO nanoparticles, increased ALT enzyme activ-
ity by 92.3%, 115.4% and 169.2% at 48 h, whereas by 50%,

116.7%, 150% at 72 h, respectively (Fig. 2).

3.3. AST

C2C12 cells exposed to different concentrations (2, 3 and
4 mg/ml) of ZnO nanoparticles, increased AST enzyme activity
by 45%, 70% and 125% at 48 h, and by 38.5%, 73%, 107.7%

at 72 h, respectively (Fig. 3).
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Figure 1 Effects of various concentrations of ZnO nanoparticles

on cell viability. C2C12 cells were seeded at seeding densities of

2.5 · 104 cells/ml into 96 well plates and treated with 1–5 mg/ml of

ZnO nanoparticles at 48 and 72 h. Values are expressed as

mean ± SEM, n= 6. Viability is expressed as percentage of cell

survival relative to aspartame untreated control (cell viabil-

ity = 100%). *p< 0.05.
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Figure 2 Measurement of ALT enzyme activity in the C2C12

cells exposed to different concentrations of ZnO nanoparticles.

Data represent mean ± SEM, *p< 0.05.
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Figure 3 Measurement of AST enzyme activity in the C2C12

cells exposed to different concentrations of ZnO nanoparticles.

Data represent mean ± SEM, *p< 0.05.
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Figure 4 Measurement of ALP enzyme activity in the C2C12

cells exposed to different concentrations of ZnO nanoparticles.

Data represent mean ± SEM, *p< 0.05.
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3.4. ALP

C2C12 cells exposed to different concentrations (2, 3 and

4 mg/ml) of ZnO nanoparticles, increased ALP enzyme activ-
ity by 37.1%, 68.6% and 100% at 48 h, whereas by 45%,
72.5%, 91% at 72 h, respectively (Fig. 4).

3.5. LDH

C2C12 cells exposed to different concentrations (2, 3 and
4 mg/ml) of ZnO nanoparticles, increased LDH enzyme
activity by 62.5%, 137% and 187.2% at 48 h, and by 73.9%,
106.3%, 128.3% at 72 h, respectively (Fig. 5).

3.6. mRNA expression

C2C12 cells exposed to 2, 3 and 4 mg/ml of ZnO nanoparticles
for 48 & 72 h showed significant changes in ALT, AST, ALP

and LDH mRNA expressions in a dose-dependent manner.
ALT mRNA expression was increased 1.14, 1.28 and 1.85-fold
at 48 h, and 1, 1.25 and 1.62 at 72 h, respectively. AST mRNA
expression was increased by 0.62, 0.75 and 1.37-fold at 48 h,

and 0.4, 1 and 1.55-fold at 72 h, respectively. ALP mRNA
expression was increased by 0.45, 1.17 and 1.33-fold at 48 h,
and by 0.57, 1 and 1.14-fold at 72 h respectively. LDH

mRNA expression was increased by 0.89, 1.33 and 1.55-fold
at 48 h, and by 0.8, 1 and 1.5-fold at 72 h, respectively
(Fig. 6 and 7).
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Figure 5 Measurement of LDH enzyme activity in the C2C12

cells exposed to different concentrations of ZnO nanoparticles.

Data represent mean ± SEM, *p< 0.05.
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4. Discussion

ZnO nanoparticles have been widely used in food products and
in biomedical applications (Van Tassel and Goldman,

2011). Copper oxide nanoparticles showed dose-dependent
cytotoxicity and oxidative stress in the airway epithelial cells.
TiO2 nanoparticles produced oxidative stress and apoptosis

in animal cells (Shukla et al., 2013). Reduced zinc concentra-
tion are associated with several metabolic and antioxidant
enzymes (Kumar et al., 2011). High level of zinc is essential
for cells and zinc is a component of many enzymes and tran-

scription factors (Boreiko, 2010). Alteration of cellular zinc
homeostasis associated with loss of viability, oxidative stress
and dysfunction of mitochondria (Kao et al., 2012). Deng

et al. (2009) reported that the ZnO nanoparticles caused neural
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Figure 6 Up-regulation of ALT, AST, ALP and LDH mRNA expre

ALT, AST, ALP and LDH mRNA were related to GAPDH, and p

mean ± SEM, n = 6. *p< 0.05.
stem cell toxicity in the culture medium. pH-triggered intra-
cellular release of ionic Zn2+ is responsible for the cytotoxicity
of ZnO nanowires (Müller et al., 2010). The adipose tissue

expansion and adipocyte enlargement are associated with
oxidative stress (Gregor and Hotamisligil, 2007). ZnO nano-
particles administration in mice showed its tissue distribution

in the liver, spleen, kidneys and adipose tissue (Li et al.,
2012). Elevated zinc level in the liver, adipose tissue and pan-
creas following absorption (Umrani and Paknikar, 2014),

induction of oxidative stress, DNA damage and cell death
was also reported (Kumar et al., 2011).

Cytotoxicity of ZnO nanoparticles is due to their increased
solubility. High concentration of metal oxide nanoparticles in

the environment and food chain may affect human health (De
Berardis et al., 2010). Increase of inflammation in the lymph
nodes, the cells involved in the inflammatory reaction is due

to nanoparticles (Qian, 2011; Su et al., 2009). Enzymatic per-
oxidation of fatty acids leads to the generation of the reactive
oxygen species (Cohen et al., 2011). ROS is derived from

mitochondria and endoplasmic reticulum (Wang and Joseph,
1999). The cells are affected when exposed to a higher concen-
tration of reactive oxygen species (Dawei et al., 2010). ZnO

nanoparticles are not toxic at low concentration, but at higher
concentration increase ROS through increased MDA content
(Syama et al., 2013). In our previous study, MDA content
was altered significantly even at low concentrations of ZnO

nanoparticles. LDH was present in adipose tissues of rat,
and their distribution was significantly altered by metabolic
stress (Moore and Yontz, 1969), increased LDH activity was

reported in H1355 cells (Kao et al., 2012). Our results showed
that the ZnO nanoparticles increase LDH activity in cells.

Cytotoxicity of ZnO nanoparticles is due to dissolution out-

side the cell. Our study demonstrates that the induction of
oxidative stress is the vital part of the cytotoxicity of ZnO
nanoparticles. In summary, ALT, AST, ALP and LDH

enzyme mRNA expressions and their activities were signifi-
cantly increased in a dose-dependent manner. The present
3 4

O nanoparticles (mg/ml) 

ALT AST
ALP LDH

*
*

*

*
* *

*

*

ssion by ZnO nanoparticles in C2C12 cells at 48 h. Expressions of

resented as fold. Relative expression values were normalized as



0

0.5

1

1.5

2

2.5

3

Control 2 3 4

N
or

m
al

iz
ed

 m
R

N
A

 e
xp

re
ss

io
n 

(f
ol

d 
in

cr
ea

se
)

Concentration of ZnO nanoparticles (mg/ml) 

ALT AST
ALP LDH

*
*

*

* * *

*

*
*

*

*

*

Figure 7 Up-regulation of ALT, AST, ALP and LDH mRNA expression by ZnO nanoparticles in C2C12 cells at 72 h. Expressions of

ALT, AST, ALP and LDH mRNA were related to GAPDH, and presented as fold. Relative expression values were normalized as

mean ± SEM, n= 6. *p < 0.05.
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study showed that the ZnO nanoparticles significantly pro-
duced cytotoxicity in C2C12 cells.
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