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Introduction
Following central nervous system (CNS) injuries, the inca-
pability of axons to regenerate is due to the combination of 
a non-permissive extrinsic CNS environment (McGee and 
Strittmatter, 2003; Liu et al., 2006; Busch and Silver, 2007) 
and a loss of intrinsic regenerative ability during development 
(Goldberg et al., 2002; Lu et al., 2014). A great number of 
studies identified various cell types and molecules that inhibit 
neuronal elongation in adult CNS. The components of CNS 
myelin, glial scar tissues and certain guidance cues inhibit axon 
elongation and partially contribute to the CNS regeneration 
failure. Removing or blocking inhibitory activities of negative 
molecules, such as myelin or scar associated inhibitors, induces 
limited degree of axon regeneration in vivo. On the other hand, 
the intrinsic growth ability of all the neurons declines during 
development although some neuronal types may grow better 
than others. Numerous factors could regulate the intrinsic 
growth capacity, including certain transcription factors, such 
as cAMP-responsive element binding protein (CREB), signal 
transducer and activator of transcription 3 (STAT3), nuclear 
factor of activated T cell (NFAT), c-Jun activating transcription 
factor 3 (AFT3) and Krüppel-like factors (KLFs), and intracel-
lular signaling proteins, such as PI3 kinase, Akt, phosphatase 
and tensin homolog (PTEN), suppressor of cytokine signaling 

3 (SOCS3), B-RAF, dual leucine zipper kinase (DLK), and insu-
lin/insulin-like growth factor-1 (IGF-1) signaling (Moore and 
Goldberg, 2011; Byrne et al., 2014; Lu et al., 2014). Although 
targeting each of these signals could enhance axon growth 
(Moore and Goldberg, 2011), deletion of the tumor suppressor 
PTEN in conditional knockout (KO) mice appears to result in 
most dramatic regrowth of CNS axons after injuries (Park et 
al., 2008; Liu et al., 2010), suggesting that PTEN/mammalian 
target of rapamycin (mTOR) signaling is critical to regulate 
the intrinsic regenerative ability of young and adult neurons 
(Figure 1) (Park et al., 2010; Lu et al., 2014). Further studies 
on PTEN knockdown by short-hairpin RNA (shRNA) or 
blockade by pharmacological approaches demonstrate various 
degrees of axon regrowth in adult rodents with CNS injuries 
(Zukor et al., 2013; Lewandowski and Steward, 2014; Ohtake et 
al., 2014). This review will update recent research progress in 
axon regeneration and neural repair by PTEN inhibition (Table 
1) and discuss the therapeutic potential of blocking this phos-
phatase for neurological disorders.

PTEN Deletion and CNS Regeneration and 
Neural Repair  
PI3K/Akt pathway plays a critical role in regulating axon for-
mation and extension (Zhou and Snider, 2006). Expression of 
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constitutively active Akt in embryonic chick dorsal root gan-
glion (DRG) neurons increases axon branching, cell hypertro-
phy and growth cone expansion (Grider et al., 2009). Overex-
pression of active Akt by adeno-associated virus (AAV) vector 
remarkably promotes regrowth and reinnervation of lesioned 

dopaminergic axons and partial behavioral recovery in vivo 
(Kim et al., 2011). Activating Akt signaling also enhances axon 
regeneration of Drosophila CNS neurons (Song et al., 2012).

Given that PTEN negatively mediates Akt activity by 
dephosphorylating phosphoinositide substrates, PTEN 

Table 1 Summary of PTEN inhibition on axon growth and neuroprotection

Reference Approach Model Major finding

Chadborn et al. 
(2006)

Expression of  dominant negative PTEN Chick dorsal root ganglion 
explant

Antagonize Sema3A-induced growth cone 
collapse

Park et al. (2008) Deletion by intravitreal AAV Cre injection into 
conditional knockout neonates

Optic nerve crush injury Enhance RGC survival and axon regeneration 
of injured optic nerve axons

Drinjakovic et al. 
(2010)

Down-regulation by overexpressing Nedd4 
protein 

Embryonic Xenopus RGC 
cultures

Increase RGC axon branching

Ning et al. 
(2010)

siRNA or AAV-siRNA Purified motor neuronal 
cultures and SMN-deficient 
mice

Increase growth cones size in vitro and motor 
neuron survival in vitro and in vivo in 
SMN-deficient mice

Christie et al. 
(2010)

siRNA or bpV Sciatic nerve transection Enhance PNS axon growth independent of 
mTOR pathway

Liu et al. (2010) Deletion by AAV Cre injection into the 
sensorimotor cortex in neonates or juvenile mice

Dorsal transection and crush 
spinal cord injury at T8

Robust corticospinal tract regeneration into 
the caudal spinal cord 

Kurimoto et al. 
(2010)

Deletion by intravitreal AAV Cre injection 
combined with oncomodulin and cAMP 
treatments

Optic nerve crush injury in 
conditional knockout mice

Induce long-distance optic axon regeneration

Sun et al. (2011) Deletion of PTEN and SOCS3 by intravitreal AAV 
Cre injections into neonates

Optic nerve crush injury in 
single or double knockout 
mice

Double deletion induces robust and sustained 
axon regeneration

Walker et al.       
   (2012)

Systemic bpV starting post injury in adult rats Cervical unilateral contusive 
spinal cord injury

Activate Akt/mTOR, reduce autophagy and 
enhance recovery 

Zhang et al. 
(2012)

Deletion in dopamine neurons Transplantation into 
dopamine-depleted striata in 
MitoPark mice

PTEN-deleted dopamine neurons become 
less susceptible to cell death and have 
increased axon outgrowth 

de Lima et al. 
(2012)

Deletion combined with Zymosan and CPT-
cAMP treatments

Optic nerve crush injury in 
conditional knockout mice

Induce long-distance axon regeneration and 
partial functional recovery

Zukor et al. 
(2013)

AAV shRNA applied to sensorimotor cortex in 
neonates 

Crush spinal cord injury at 
T8 (induced 6–8.5 week old 
mice)

Enhance regeneration of corticospinal tract 
axons into the caudal spinal cord using 
reactive astrocytes as bridging tissue

Inoue et al. 
(2013)

Deletion of PTEN and Atg-7 Midbrain dopamine neurons 
in knockout mice

Deletion of both PTEN and Atg7 further 
enlarges size of axon terminals

Zhao et al. 
(2013)

Pretreatment with bpV Oxygen-glucose deprivation in 
cultured rat cortical neurons

Reduce neuronal apoptosis and enhance 
vesicle recycling in axons

Mao et al. (2013) One-day delayed bpV treatments for 14 days Middle cerebral artery 
occlusionin adult mice

Not alter infarction size in acute phase, but 
enhance long-term functional recovery

Ohtake et al. 
(2014)

Selective antagonistpeptides targeting PTEN 
functional domains

Dorsal over-transection spinal 
cord injury at T7 in adult 
mice

Promote remarkable 5-hydroxytryptamine 
axon regrowth and moderate corticospinal 
tract regrowth, and significant locomotor 
recovery

Singh et al. 
(2014)

Knockdown with siRNA Crush injury of  neuropathic 
sciatic nerves in chronic 
diabetic models

Improve axon regeneration and conduction 
function

Lewandowski 
and Steward 
(2014)

Pre-injury injections of AAV shRNA into 
sensorimotor cortex, with/without delivery of 
salmon fibrin into the injury site

Cervical dorsal hemisection 
spinal cord injury in rats

PTEN knockdown combined with salmon 
fibrin injection into the lesion site enhances 
corticospinal tract growth and motor 
function, but not AAV shRNA alone

O'Donovan et al. 
(2014)

Deletion by intravitreal AAV Cre injections 
combined withoverexpression of activated 
B-RAF in transgenic mice

Optic nerve crush injury PTEN deletion plus expression of activated 
B-RAF promotes additional optic nerve 
axon regeneration

Walker and Xu 
(2014)

Post-injury systemic bpV treatments Cervical hemi-contusion 
spinal cord injury

Reduce tissue damage, neuron death, and 
promote functional recovery 

Byrne et al. 
(2014)

PTEN mutants Young and aged C. Elegans Loss of PTEN (daf-18) increases regeneration 
in aged C. Elegans

PTEN: Phosphatase and tensin homolog; AAV: adeno-associated virus; siRNA: small interfering RNA; bpV: bisperoxovanadium; SMN: survival of 
motor neuron; RGC: retinal ganglion cells; PNS: peripheral nervous system; mTOR: mammalian target of rapamycin; shRNA: short-hairpin RNA; 
SOCS3: suppressor of cytokine signaling 3; CPT: chlorophenylthio; B-RAF: B-Raf proto-oncogene.                      . 
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suppression is likely to increase axon growth by enhancing 
activity of PI3K/Akt signaling. Recent studies on neuro-
nal PTEN inactivation by transgenic deletion demonstrate 
enhanced regeneration of lesioned CNS axons. Intravitreal 
injection of AAV Cre recombinase enhanced survival of reti-
nal ganglion cells (RGCs) and promoted considerable regen-
eration of injured optic nerve axons in juvenile mice (Park et 
al., 2008). Deletion of PTEN by injection of AAV-Cre into the 
sensorimotor cortex in conditional KO mice induces substan-
tial regrowth of lesioned corticospinal tract (CST) axons and 
formation of synapse-like structures in the caudal spinal cord 
of juvenile or adult mice with spinal cord injury (SCI) (Liu 
et al., 2010). Because treatment with rapamycin, an mTOR 
inhibitor, abolishes the growth promoting-effect of PTEN 
deletion (Park et al., 2010), mTOR activation appears critical 
to control axon growth downstream of PTEN. Simultaneous 
deletion of PTEN and SOCS3, a negative regulator of Janus 
kinase (JAK)/STAT pathway, results in more robust and sus-
tained axon regeneration, suggesting that two proteins regu-
late regenerative programs through distinct mechanisms (Sun 
et al., 2011). PTEN and SOCS3 double deletion upregulates 
mTOR activators, such as small GTPaseRheb and IGF-1, in 
injured RGCs. PTEN deletion combined with overexpression 
of an active form of B-RAF kinase, a known signal down-
stream of neurotrophic factors, stimulates additive regener-
ation of lesioned optic axons (O’Donovan et al., 2014). In 
addition, simultaneous deletion of PTEN with autophagy-re-
lated protein 7 (Atg7), which regulates vacuole transport and 
autophagy in cytoplasm, increases axon terminal enlargement 
in midbrain dopamine neurons compared to Atg7 deletion 
alone (Inoue et al., 2013). Transplanted PTEN-deficient dopa-
mine neurons into mice with Parkinson’s disease models were 
less susceptible to cell death and extended longer axons than 
control grafts (Zhang et al., 2012). Together, PTEN appears 
important to restrict regeneration of mature neurons and its 
inactivation may have therapeutic potential for CNS disorders 
characterized by axonal damages.  

PTEN Knockdown with shRNA and CNS 
Regeneration  
shRNA makes a tight hairpin turn and is frequently used to 
silence target gene expression by RNA interference. Injec-
tions of AAV vector encoding shRNA-PTEN into the motor 
cortex in neonatal mice significantly reduced expression of 
PTEN protein and enhanced levels of phosphorylated S-6 
kinase, a downstream signal of mTOR in neurons (Zukor 
et al., 2013). Injections of viral shRNA-PTEN into the sen-
sorimotor cortex of neonates could sufficiently enhance the 
intrinsic growth of CST neurons and induce CST regrowth 
in the caudal spinal cord of mice with a crush injury at T8 

(induced at 6–8.5 weeks old). Some CST axons crossed the 
lesion area using reactive astrocytic tissues as the bridging 
tissue although CST sprouts avoided dense clusters of fi-
broblasts and macrophages around the lesion. The other 
group generated a similar viral shRNA-PTEN and efficiently 
knocked down PTEN protein (Lewandowski and Steward, 
2014). Injection of AAV shRNA-PTEN into the motor cortex 

in adult rats 1 week before a dorsal hemisection injury at C6 

did not significantly promote CST regrowth in the caudal 
spinal cord and locomotor function recovery although some 
biotinylated dextran amine (BDA)-traced CST axons reached 
the lesion edge in shRNA-PTEN treated animals. However, 
shRNA-PTEN plus delivery of salmon fibrin into the injury 
area significantly increased the number of BDA-labeled CST 
axons in the caudal spinal cord and forelimb-reaching scores. 

Together, PTEN knockdown by pre-injury injection of 
shRNA stimulates regrowth of injured CST axons in SCI 
mice, but it has minimal effect in SCI rats. PTEN inhibition 
combined with other strategies, such as those targeting other 
intracellular signals or extrinsic factors responsible for re-
generation failure, may become more efficient for promot-
ing axon elongation. Notably, it is very important to study 
whether knockdown of PTEN by viral shRNA-PTEN de-
livered post-injury stimulates axon regrowth and improves 
functional recovery after CNS injury because the pre-injury 
viral vector applications used in previous studies are not 
clinically translational.

Pharmacological PTEN Inhibition and 
Neuroprotection and Axon Regeneration 
PTEN genetic deletion in KO mice and knockdown by 
pre-injury injection of shRNA are not feasible for clinical 
treatment. In contrast, suppression of PTEN by a pharma-
cological method is highly controllable in initiation time, 
application period and drug dosage. Bisperoxovanadium 
(bpV) compounds are inhibitors of several protein tyrosine 
phosphatases (PTPs) with selectivity for PTEN (IC50 = ~40 
nM), but also block other PTPs (such as PTPβ) at higher 
nM levels. bpV treatment is neuroprotective after different 
CNS injuries. Systemic bpV initiated immediately after in-
jury (for 7 days), increased spared white matter at the lesion 
area, numbers of oligodendrocytes and motor neuron area, 
and improved functional recovery in rats with contusive 
cervical SCI (Walker et al., 2012; Walker and Xu, 2014). bpV 
enhanced axon outgrowth of primary cortical neuronal cul-
tures following oxygen-glucose deprivation. Although 1-day 
delayed treatment with bpV (for 14 days) did not reduce in-
farction size in mice with middle cerebral artery occlusion in 
acute stage, they significantly improved long-term functional 
recovery after ischemia (Mao et al., 2013). Thus, post-injury 
bpV treatments exhibit beneficial effects on recovery after 
CNS injuries although the molecular basis for bpV actions is 
less clear because bpVs target other PTPs as well as PTEN. 

Suppressing PTEN activity is very promising for promot-
ing CNS axon regeneration and neural repair, but transgenic 
approaches used in previous studies block PTEN before in-
juries and only target a single neuronal population by local 
injections of AAV-Cre/AAV-shRNA, not the diffusely-dis-
persed neurons, such as 5-hydroxytryptamine (5-HT) neu-
rons or propriospinal interneurons known to contribute to 
functional recovery after SCI (Barbeau and Rossignol, 1991; 
Ribotta et al., 2000; Li et al., 2004; Courtine et al., 2008). Ap-
plication of bpV may block PTEN action (Christie et al., 2010), 
but bpV may result in clinical side effects by interacting with 



1366

Ohtake Y, et al. / Neural Regeneration Research. 2015;10(9):1363-1368.

other PTPs (Scrivens et al., 2003), such as lowering blood 
glucose by activating insulin signaling (Drake and Posner, 
1998). It is important to develop a pharmacological method to 
suppress PTEN activity efficiently and selectively. We recently 
identified selective antagonist peptides for PTEN by targeting 
its critical functional domains, including PIP2, ATP-type, PDZ 
and C-terminal tail domains (Ohtake et al., 2014). We demon-
strated that those PTEN antagonist peptides (PAPs) bound 
COS7 cells that over-expressed PTEN protein, promoted neur-
ite outgrowth in vitro and blocked several signals downstream 
of PTEN. Systemic PAP treatments by subcutaneous delivery 
(initiated 2 days after injury, 2-week treatment) stimulated 
regrowth of descending serotonergic axons in the caudal spi-
nal cord of adult mice with dorsal over-hemisection at T7. 
Systemic PAPs also enhanced sprouting of CST axons rostral 
to the lesion and limited regrowth of CST axons in the caudal 
spinal cord. Importantly, systemic PAPs enhanced recovery of 
locomotor function several weeks after SCI by increasing BMS 
locomotor scores and stride length of hindlimbs and reducing 
grid walk errors. Thus, systemic delivery of small peptides after 
injury selectively blocks PTEN activity and promotes regrowth 

Figure 1 Schematic of Akt/PTEN pathway that regulates neuronal 
growth and axon regeneration by PTEN inhibition. 
Various growth factors, such as nerve growth factor, activate their 
receptors (especially the tyrosine receptor kinases (TRK)) and PI3K 
pathway and stimulate neuronal growth by enchaining mTOR activity 
and suppressing GSK-3β signal. In contrast, intracellular PTEN phos-
phatase blocks axon growth by inactivating Akt signal and mTOR path-
way. PTEN inhibition by a number of approaches, including deletion 
in knockout (KO) mice, knockdown by shRNA, or pharmacological 
blockade with phosphatase inhibitor bpV or selective antagonists PTEN 
antagonist peptides, promotes neuronal regeneration. 
PTEN: Phosphatase and tensin homolog; 4E-BP: 4E-binding protein; 
bpV: bisperoxovanadium; PIP2: phosphatidylinositol 4,5-bisphosphate; 
PIP3: phosphatidylinositol 3,4,5 trisphosphate; PI3K: phosphoinositide 
3-kinase; GSK-3β: glycogen synthase kinase 3β; S6K: S6 kinase; PAPs: 
PTEN antagonist peptides. 

of injured multiple CNS axonal tracts. The peptide approach 
shows benefits in several areas where the transgenic (such as 
KO) and invasive approaches (such as local chondroitinase 
and transplants) are highly deficient and may thus facilitate 
development of a successful therapy for CNS axonal injuries. 
Constantly, our other studies demonstrated great therapeutic 
potential of small peptides that selectively block other axon 
growth inhibitory molecules (GrandPre et al., 2002; Li and 
Strittmatter, 2003; Fisher et al., 2011).

PTEN Suppression and Peripheral Nervous 
System (PNS) Regeneration and Axon 
Myelination  
PNS axons exhibit remarked regrowth after injuries, but 
their regeneration may not be optimal and many patients 
suffer from long-term or persistent functional impairment 
after PNS axon lesions, including motor and sensory loss, 
chronic pain and inappropriate autonomic responses. PTEN 
is expressed in PNS neurons (such as DRGs) and contrib-
utes to their growth cone collapse and reduced axon growth 
(Chadborn et al., 2006). PTEN knockdown enhanced re-
generation of lesioned sciatic nerve and a preconditioning 
lesion exhibited an additive effect. PTEN knockdown by bpV 
treatment or local delivery of siRNA accelerated sciatic axon 
outgrowth in vivo (Christie et al., 2010). PTEN also restricts 
PNS regeneration in mouse models of diabetes. Following 
crush of neuropathic sciatic nerves in diabetes models, local 
delivery of PTEN short interfering RNA increased the num-
ber of regenerating myelinated axons distal to injury site, 
promoted reinnervation of skin by unmyelinated epidermal 
axons and contributed to recovery of mechanical sensation. 
Inhibition of PTEN or activation of PI3K enhances growth 
of DRG neurons probably by mTOR-independent mecha-
nisms because they respond to GSK-3β (also a downstream 
signal of PI3K) and transcription factor Smad1, but not to 
mTOR blockade by rapamycin (Zou et al., 2009; Christie et 
al., 2010; Hur et al., 2011).

PTEN and PI3K activities also regulate function of oligo-
dendrocytes and Schwann cells and myelination during devel-
opment. PTEN deletion enhanced the numbers of Schwann 
cells and myelinated small axons with caliber < 1 µm. PTEN 
deletion in oligodendrocytes induced PIP3-dependent hy-
permyelination of CNS axons (Goebbels et al., 2010). Inter-
actions between PTEN and trafficking protein Dlg1 (disks 
large homolog 1) are able to inhibit axonal myelination and 
this mechanism limits myelin sheath thickness and prevents 
over-myelination in mouse sciatic nerves (Cotter et al., 2010). 

Molecular Targets that Regulate Axon 
Regeneration along Akt Pathway
Following stimulation by various extracellular growth factors, 
activation of the receptor tyrosine kinase and/or G-protein 
coupled receptor activates PI3K and subsequently Akt by 
increasing the generation of PIP3. Activated Akt phosphor-
ylates tuberous sclerosis protein complex (TSC) and inhibits 
its activity. Through enhancing Rheb activity, suppression 
of TSC increases the levels of activated mTOR (Park et al., 
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2010; Walker et al., 2013), which phosphorylates ribosomal 
protein p70S6 kinase and 4E binding protein-1 (4E-BP1) 
and regulatesprotein synthesis and cell growth (Proud, 2002). 
In particular, phosphorylated p70S6K enhances phosphor-
ylation and activity of ribosomal protein S6 and initiates 
various translation activities required for cell growth. Phos-
phorylation of 4E-BP1 reduces its activity and its inhibition 
on protein synthesis and thus promotes neuronal elongation. 
Moreover, Akt activation critically regulates GSK-3β signaling 
by phosphorylating this kinase (at serine 9) and subsequently 
inactivating it (Figure 1) (Cross et al., 1995). Localized GSK-
3β inactivation is required for establishing and maintaining 
neuronal polarity (Jiang et al., 2005; Yoshimura et al., 2005). 
GSK-3β inactivation at growth cone is able to stimulate axon 
formation and extension and to convert dendritic processes 
into axons in polarized neurons. Consistently, GSK-3β in-
hibitors enhance neurite outgrowth in vitro and regrowth of 
injured axons after CNS injury (Zhou et al., 2004; Zhou and 
Snider, 2005; Dill et al., 2008). Therefore, GSK-3β suppres-
sion at growth cone is essential for promoting microtubule 
assembly in axons (Zhou and Snider, 2006; Hur and Zhou, 
2010) although inhibiting GSK-3β may also block axon 
growth (Alabed et al., 2010; Gobrecht et al., 2014). A further 
study suggests that GSK-3β inhibition can both enhance and 
prevent axon growth depending on the substrates involved, 
enhancing axon elongation if towards primed substrates (such 
as CRMP2 and adenomatous polyposis coli) and preventing 
axon growth if toward unprimed substrates (such as microtu-
bule-associated protein 1B) (Kim et al., 2006; Hur and Zhou, 
2010). Therefore, GSK-3β activity should be finely tuned to 
stimulate axon regeneration, including its reduced activity to-
wards one subset of substrates and preserved activity towards 
other substrates.   

Prospective
PI3K/Akt/PTEN pathways play critical roles in regulating neu-
ral development and PTEN suppression may have great poten-
tial for promoting CNS axon regeneration and neural repair. 
Many unknown issues and challenges, however, remain re-
garding PTEN-mediated growth inhibition and its translating 
potential to clinical applications. Several neuronal populations 
are known to be sensitive to PTEN blockade, including RGC, 
CST, 5-HT and DRGs. Do the other types of neurons similarly 
respond to PTEN inhibition? PTEN is present in both neu-
ronal soma and axonal compartment during axon extension 
(including the growth cones) (Chadborn et al., 2006). Does 
PTEN activation in both subcellular structures mediate axon 
elongation? Sustained and long-distance axon regeneration 
is crucial for meaningful functional recovery after many CNS 
injuries, including SCI and optic neuropathy. PTEN deletion 
induces remarkable axon elongation, but axon regrowth is 
usually limited to < 1 mm from the lesion. PTEN suppression 
combined with other strategies, such as regulating inflamma-
tory responses and activities of other signaling pathways (such 
as SOCS3/STAT/Erk) or transcriptional factors (such as KLFs 
and CREB), as well as surmounting scar-mediated inhibi-
tion, may induce more robust and distant axon regeneration. 

Obviously, post-injury intervention of PTEN by pharmacolog-
ical approaches, including selective blockade by small peptides, 
is promising and highly relevant to future translation into 
human use. Targeting PTEN-regulating molecules, such as cer-
tain miRNAs and E3 ubiquitin protein ligase Nedd4, may also 
become alternatives for attenuating PTEN activity and pro-
moting CNS regeneration. Because adult CNS appears to lack 
adequate guidance cues present during neurodevelopment, 
regulation of growing axons to make direct or indirect con-
nections with their original targets appears also important for 
promoting functional recovery after axonal injuries (Luo et al., 
2013). Moreover, task-specific rehabilitative training is prob-
ably required for rewiring appropriate neuronal circuits and 
reinforcing functionally meaningful synaptic reconnections.
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