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18Department of Internal Medicine and 19Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-

Salem, NC; 20Institute of Behavioral Sciences, 21Department of Food and Environmental Sciences, and 22Department of General Practice and Primary Health Care,

University of Helsinki, Helsinki, Finland; 23Department of Epidemiology and 24Department of Internal Medicine, Erasmus University Medical Center, Rotterdam,

Netherlands; 25Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; 26Department of Epidemiology and 27Department

of Nutrition, Harvard School of Public Health, Boston, MA; 28Department of Medicine Brigham and Women’s Hospital, Harvard Medical School, Boston MA and
29Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA; 30Department of Epidemiology, 31Carolina Center for Genome Sciences, University of

North Carolina, Chapel Hill, NC; 32Nutritional Epidemiology Program, 33Jean Mayer-USDA Human Nutrition Research Center on Aging, and 34Nutrition and Genomics

Laboratory, Tufts University, Boston, MA; 35William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of

London, London, United Kingdom; 36Laboratory of Epidemiology and Population Sciences and 37Laboratory of Neurogenetics, National Institute of Aging, Bethesda, MD;
38Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland; 39Center for Public Health Genomics, Department of Public

Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA; 40Netherlands Genomics Initiative, Leiden, Netherlands; 41De-

partment of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland; 42Division of Epidemiology and Community Health, University of

Minnesota, Minneapolis, MN; 43Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor–UCLA Medical

Center, Torrance, CA; 44Department of Clinical Physiology, 45Department of Clinical Chemistry, 46Fimlab Laboratories, 47School of Medicine, and 48Tampere University

Hospital, University of Tampere, Tampere, Finland; 49Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Boston, MA; 50Department

of Epidemiology and Population Genetics, Cardiovascular Research Center, Madrid, Spain; 51IMDEA Food Institute, Madrid, Spain; 52Princess Al-Jawhara Al-Brahim

Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; 53Framingham Heart Study, Framingham, MA; 54Department

of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL; 55General Practice Unit, Helsinki University Central Hospital,
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ABSTRACT
Background: Recent studies suggest that meat intake is asso-
ciated with diabetes-related phenotypes. However, whether the

associations of meat intake and glucose and insulin homeosta-

sis are modified by genes related to glucose and insulin is un-

known.
Objective: We investigated the associations of meat intake and the
interaction of meat with genotype on fasting glucose and insulin

concentrations in Caucasians free of diabetes mellitus.
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Design: Fourteen studies that are part of the Cohorts for Heart and
Aging Research in Genomic Epidemiology consortium participated
in the analysis. Data were provided for up to 50,345 participants.
Using linear regression within studies and a fixed-effects meta-analysis
across studies, we examined 1) the associations of processed meat
and unprocessed red meat intake with fasting glucose and insulin con-
centrations; and 2) the interactions of processed meat and unprocessed
red meat with genetic risk score related to fasting glucose or insulin
resistance on fasting glucose and insulin concentrations.
Results: Processed meat was associated with higher fasting glucose,
and unprocessed red meat was associated with both higher fasting
glucose and fasting insulin concentrations after adjustment for po-
tential confounders [not including body mass index (BMI)]. For
every additional 50-g serving of processed meat per day, fasting
glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher.
Every additional 100-g serving of unprocessed red meat per day was
associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L)
higher fasting glucose concentration and a 0.049–ln-pmol/L (95%
CI: 0.035, 0.063–ln-pmol/L) higher fasting insulin concentration.
After additional adjustment for BMI, observed associations were
attenuated and no longer statistically significant. The association
of processed meat and fasting insulin did not reach statistical sig-
nificance after correction for multiple comparisons. Observed asso-
ciations were not modified by genetic loci known to influence
fasting glucose or insulin resistance.
Conclusion: The association of higher fasting glucose and insulin
concentrations with meat consumption was not modified by an in-
dex of glucose- and insulin-related single-nucleotide polymorphisms.
Six of the participating studies are registered at clinicaltrials.gov as
NCT0000513 (Atherosclerosis Risk in Communities), NCT00149435
(Cardiovascular Health Study), NCT00005136 (Family Heart Study),
NCT00005121 (Framingham Heart Study), NCT00083369 (Genetics
of Lipid Lowering Drugs and Diet Network), and NCT00005487
(Multi-Ethnic Study of Atherosclerosis). Am J Clin Nutr 2015;
102:1266–78.

Keywords: gene–diet interaction, glucose, insulin, meat intake,
diet, meta-analysis

INTRODUCTION

Hyperglycemia and hyperinsulinemia are leading risk factors
for type 2 diabetes, and the worldwide burden of these risk
factors continues to rise. In 2011, the WHO estimated that age-
standardized fasting plasma glucose concentrations have in-
creased by 0.07–0.09 mmol/L per decade worldwide since 1980
(1). Likewise, between 1988 and 2002, the mean concentration
of fasting insulin increased 5% among nondiabetic adults in
the United States (2). The rise in fasting glucose and insulin

concentrations may be attributable to recent changes in lifestyle,
including obesity and the adoption of Western diets high in pro-
cessed meat and red meat, as well as other lifestyle-related changes.
Recent studies have consistently shown that processed meat intake
is associated with a higher risk of diabetes (3–16). Although the
mechanism by which processed meat intake influences diabetes-
related traits is complex, nitrosamines and advanced glycation
end products are present in processed meats at manufacturing or
formed by interactions of amino acids and nitrates within the
body, and have been shown to have a toxic effect on b cells and
promote the development of impaired glucose tolerance and
insulin resistance (17–22).

Genome-wide association studies (GWASs)60 have identified
and replicated several loci related to fasting glucose and in-
sulin resistance in Caucasian populations (23–29). These genes
are thought to encode proteins that may predispose individuals
to diabetes by altering b cell function and insulin secretion or
promoting cellular insulin resistance. Nevertheless, the pro-
portion of risk attributable to these genes remains relatively
small, and it is possible that part of the missing heritability in
these phenotypes may be explained in part by gene–environment
interactions. To date, few studies have detected gene–diet in-
teractions in relation to diabetes-related traits (30–33), and large
studies are needed to examine the potential interaction of genes
and dietary factors with fasting glucose and insulin. Because
many of the known diabetes-related genetic variants might
affect b cell function or insulin resistance, and intake of pro-
cessed meats might also affect b cell function or insulin re-
sistance, we hypothesized that diabetes-related genetic variants
that may affect b cell function or insulin resistance sensitize
carriers of these variants to the effects of processed meats on
b cell function and insulin resistance, resulting in a gene–diet
interaction.

Using available diet and genetic data from 14 studies that are
part of the Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) consortium (34), we investigated the
associations of processed meat and unprocessed red meat intake
with fasting glucose and insulin concentrations in Caucasians
without diabetes mellitus. Additionally, we examined potential
interactions of processed meat and unprocessed red meat intake
with single-nucleotide polymorphisms (SNPs) previously iden-
tified as related to fasting glucose/b cell function and insulin
resistance through GWASs in relation to fasting glucose and
insulin concentrations.

METHODS

Study sample

The study sample comprised up to 50,345 participants from 14
cohorts that are part of the CHARGE consortium. Contributing
cohorts included the Atherosclerosis Risk in Communities study;
the Cardiovascular Health Study; the Family Heart Study; the
Framingham Heart Study; the Greek Health Randomized Aging
Study (GHRAS); the Gene–Lifestyle Interactions and Complex
Traits Involved in Elevated Disease Risk (GLACIER) study;
the Genetics of Lipid Lowering Drugs and Diet Network; the
Health, Aging, and Body Composition (Health ABC) study; the
Helsinki Birth Cohort Study; the Malmӧ Diet and Cancer Study;
the Multi-Ethnic Study of Atherosclerosis; the Rotterdam Study

2Supplemental Tables 1–12 and Supplemental Figures 1–6 are available from
the “Online Supporting Material” link in the online posting of the article and
from the same link in the online table of contents at http://ajcn.nutrition.org.
60Abbreviations used: CHARGE, Cohorts for Heart and Aging Research in
Genomic Epidemiology; FFQ, food frequency questionnaire; GHRAS, Greek
Health Randomized Aging Study; GLACIER, Gene–Lifestyle Interactions and
Complex Traits Involved in Elevated Disease Risk; GRS, genetic risk score;
GRS-FG, fasting glucose/b cell liability genetic risk score; GRS-IR, insulin-
resistance genetic risk score; GWAS, genome-wide association study; Health
ABC, Health, Aging, and Body Composition; RS, Rotterdam Study; SNP,
single-nucleotide polymorphism.
*To whom correspondence should be addressed. E-mail: amfretts@uw.edu.
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(RS); the Hellenic Study of Interactions between SNPs and
Eating in Atherosclerosis Susceptibility; and the Young Finns
Study. This analysis was restricted to Caucasian participants free
of prevalent diabetes mellitus (as defined by self-reported di-
abetes, fasting glucose $7 mmol/L, or use of diabetes drugs).
Details on the design of each study are described in Supple-
mental Table 1. All procedures followed were in accordance
with the Helsinki Declaration of 1975 as revised in 1983. Each
participating study had local institutional review board approval,
and written informed consent was obtained from all participants.

Dietary assessment

Details of the dietary assessment method for each participating
cohort are described in Supplemental Table 2. Briefly, 13 cohorts
used food frequency questionnaires (FFQs) to collect dietary data
and one cohort used a combination of an FFQ, dietary interview,
and 7-d food record. For this report, we were most interested in
processed meat (e.g., hot dogs, lunch meat, breakfast sausage) and
unprocessed red meat (e.g., hamburger, steak, roast) as primary
dietary exposures. The individual meat line items included on
each cohort’s FFQ differed and are listed in Supplemental Table
2. To obtain measures of average daily meat intake, the total daily
servings for each food line item on the FFQ (or documented food
item from the food diary/interview) were summed for all relevant
foods. Consistent with previous studies (5), we considered 50 g
and 100 g to be one serving of processed meat and unprocessed
red meat, respectively.

Genotyping, SNP selection, and creation of genetic risk
scores

Details on genotyping for each participating cohort are de-
scribed in Supplemental Table 3. For the purposes of this meta-
analysis, we included only SNPs that have been shown to be
associated with fasting glucose and with known b cell function,
or that have been shown to be associated with insulin resistance
in previous GWASs. We identified 36 SNPs related to fasting
glucose that have known b cell function (Supplemental Table
4). These SNPs included 16 SNPs from the Meta-Analyses of
Glucose and Insulin-related Traits Consortium (23), 8 SNPs
from another large meta-analysis of 8 GWASs (24), 5 SNPs
from a meta-analysis of GWASs from the Diabetes Genetics
Replication and Meta-Analysis consortium (25), 5 SNPs from
a GWAS of 2 large Finnish cohorts (29), and 2 additional SNPs
from GWASs of the Diabetes Genetics Initiative and Wellcome
Trust Case Control Consortium (26, 28). We also identified 9
SNPs that have been shown to be associated with insulin re-
sistance in previous meta-analyses of GWASs (Supplemental
Table 5); specifically, 2 of the fasting insulin SNPs were iden-
tified from the Meta-Analyses of Glucose and Insulin-Related
Traits Consortium (23) and the 7 other insulin-resistance SNPs
were identified from a meta-analysis of 52 studies (27). Of all 52
GWASs considered for glucose and insulin SNP selection, 46
were population/community-based studies.

As in previous publications from the CHARGE nutrition
working group (35, 36), an allele counting method was used to
generate 2 genetic risk scores (GRSs) for the present analysis.
The fasting glucose/b cell liability genetic risk score (GRS-
FG) was calculated by summing the number of glucose-raising T
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alleles (0, 1, or 2) for each of the 36 identified fasting glucose/b
cell SNPs, and the insulin-resistance genetic risk score (GRS-
IR) was calculated by adding the number of insulin-raising alleles
(0, 1, or 2) for each of the 9 insulin resistance SNPs, assuming
an additive genetic model. All cohorts included the 36 fasting
glucose SNPs and 9 insulin resistance SNPs in the calculation of
the GRS, except the GLACIER study (missing data for 3 fasting
glucose SNPs) and GHRAS (missing data for 24 fasting glu-
cose SNPs and all insulin resistance SNPs); the GRS-FG was
calculated based on 33 SNPs in the GLACIER study and 12
SNPs in the GHRAS, and the GHRAS did not contribute to the
analyses of the GRS-IR. A list of the missing SNPs is provided
in Supplemental Table 6.

Measurement of fasting glucose and fasting insulin

Cohort-specificmethods for assessing fasting glucose and fasting
insulin are described in Supplemental Table 3. For the purposes of
this analysis, fasting insulin values were log-transformed because
of their skewed distribution.

Measurement of covariates

Cohort-specific definitions for other measurements of interest,
including smoking, alcohol intake, BMI, education, physical ac-
tivity, and dietary factors, are described in Supplemental Table 7.

Cohort-specific analyses

An analysis request that outlined the statistical analysis plan was
sent to each cohort. For each cohort, linear regression was used to

examine the associations of processed meat and unprocessed red
meat with fasting glucose or fasting insulin. Analyses for most
cohorts were cross-sectional, with the exception of the Health ABC
study (dietary assessment in 1998–1990 and fasting glucose and
insulin assessments in 1997–1998) and the RS (dietary assessment
in 1990–1993 and fasting glucose and insulin assessments in 1997–
1999). Each cohort reported b coefficients and robust SEs for 3
models (specified a priori) for each analysis, and sent these sum-
mary statistics to the project lead. Model 1 (a minimally adjusted
model) adjusted for age, sex, energy intake (kilocalories per day),
and field center/population substructure (if relevant). A second
model was additionally adjusted for a priori confounders, including
education, smoking, alcohol use, physical activity, and other dietary
factors. Because we were most interested in examining the asso-
ciations of processed meat and unprocessed red meat intake with
fasting glucose and insulin concentrations above and beyond the
effect that other foods and nutrients—including saturated fat,
a component of many meats—may have on fasting glucose and
insulin concentrations, we included daily servings of fish, fruits,
vegetables, whole grains, sugar-sweetened beverages, nuts, and
other meats, and saturated fat (grams per day) as covariates in
model 2. In model 3, we additionally adjusted for BMI to better
determine whether obesity might confound or mediate the relation
of meat intake and fasting glucose or insulin. In secondary analy-
ses, all cohorts (1) assessed the relation of GRS-FG and GRS-IR
with fasting glucose and insulin concentrations in a model adjusted
for age, sex, energy intake, and field center/population substructure,
and (2) repeated all analyses with the use of total meat (i.e., total
servings of both processed meat and unprocessed red meat) as the
exposure of interest.

TABLE 2

Meta-analysis of associations of meat intake with fasting glucose or fasting insulin1

Values

n b (95% CI) P I2

Change in fasting glucose for every additional daily serving of processed meat

Model 1 50,345 0.032 (0.023, 0.040) ,0.0001 79.4%

Model 2 48,590 0.021 (0.011, 0.030) ,0.0001 57.8%

Model 3 48,538 0.010 (0.001, 0.019) 0.03 50.6%

Change in fasting insulin for every additional daily serving of processed meat

Model 1 35,182 0.024 (0.015, 0.032) ,0.0001 77.4%

Model 2 34,321 0.011 (0.002, 0.019) 0.016 12.2%

Model 3 34,267 20.006 (20.013, 0.002) 0.146 0%

Change in fasting glucose for every additional daily serving of unprocessed red meat

Model 1 50,471 0.061 (0.049, 0.074) ,0.0001 54.9%

Model 2 48,590 0.037 (0.023, 0.051) ,0.0001 24.0%

Model 3 48,532 0.021 (0.007, 0.035) 0.004 0%

Change in fasting insulin for every additional daily serving of unprocessed red meat

Model 1 35,306 0.073 (0.060, 0.086) ,0.0001 65.8%

Model 2 34,321 0.049 (0.035, 0.063) ,0.0001 44.9%

Model 3 34,267 0.017 (0.004, 0.029) 0.008 19.9%

1Model 1 was adjusted for age, sex, energy intake (kilocalories per day), and field center/population substructure.

Model 2 was additionally adjusted for education, smoking, alcohol use, physical activity, saturated fat (grams per day), and

daily servings of other meat (i.e., unprocessed red meat for analyses of processed meat and fasting glucose or insulin, and

processed meat for analyses of unprocessed red meat and fasting glucose or insulin), fish, fruit, vegetables, whole grains,

sugar-sweetened beverages, and nuts. Model 3 was additionally adjusted for BMI. Fasting glucose was measured as millimoles

per liter; fasting insulin was measured as natural log-picomoles per liter. The GOLDN did not adjust for sugar-sweetened

beverage intake because these data were not available. The GHRAS did not adjust for saturated fat intake because these data

were not available. Meta-analyses were performed with the use of inverse-variance–weighted fixed-effects models. GHRAS,

Greek Health Randomized Aging Study; GOLDN, Genetics of Lipid Lowering Drugs and Diet Network.
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Each cohort examined the potential interactions of processed
meat and unprocessed red meat intake with GRS-FG on fasting
glucose to investigate whether SNPs related to fasting glucose/b
cell function modify the association of meat intake and fasting
glucose. Similarly, the cohorts assessed the potential interaction
of processed meat and unprocessed red meat with the GRS-IR
on fasting insulin to better understand whether SNPs related to
insulin resistance modify the association of meat intake and
fasting insulin. For each of these analyses, participating cohorts
provided b coefficients and robust SEs [for a model that also
adjusted for age, sex, energy intake, and field center/population
substructure (if relevant)] to the project lead for meta-analyses.

Meta-analyses

The project lead used the summary statistics provided by each
cohort to performmeta-analyses to examine the associations of 1)
processed meat and unprocessed red meat with fasting glucose
or insulin (main effects), and 2) interactions of processed meat
and unprocessed red meat with GRS-FG or GRS-IR on fasting
glucose or insulin (interaction effects). In secondary analyses,
we also assessed the associations of the GRS-FG and GRS-FI on
fasting glucose and insulin. Meta-analyses were performed with
the use of inverse-variance–weighted fixed-effects models in
STATA 10.0 (Stata Corporation). We chose to use a fixed-effects

model rather than a random-effects model because we were most
interested in understanding the relation of meat, GRS, and
fasting glucose and insulin among existing studies (37). Het-
erogeneity between studies was assessed with the use of the I2

index derived from the Cochran Q statistic (38). A Bonferroni
correction was used to adjust for multiple comparisons; the
significance threshold used for the current analysis was P =
0.006 (based on 8 comparisons for primary analyses). In sen-
sitivity analyses, we repeated each meta-analysis, omitting one
cohort at a time to confirm that individual cohorts were not
driving the observed associations. We also performed additional
exploratory sensitivity analyses stratified by mean age (,60 y or
$60 y), region (Europe or United States), mean daily processed
meat intake (,0.50 servings/d or $0.50 servings/d), and mean
unprocessed red meat intake (,0.50 servings/d or $0.50 serv-
ings/d). Because it is possible that the chemical composition of
processed meats may have changed over time (i.e., temporal
changes in additives or curing methods over time), we also
performed sensitivity analyses among cohorts for which FFQs
were completed before 1990 or after 2000. We chose 1990 and
2000 as cutoffs based on the distribution of the years for dietary
ascertainment for each cohort. We also repeated all analyses
while excluding cohorts with incomplete genetic data (i.e., the
GLACIER study and the GHRAS) or cohorts in which the diet
and fasting glucose or insulin measures were not collected at the

FIGURE 1 Forest plot of association of processed meat intake and fasting glucose. For each cohort, linear regression was used to examine the
association of processed meat and fasting glucose. Meta-analyses were performed with the use of inverse-variance–weighted fixed-effects models.
Regression coefficients and 95% CIs are represented by a filled diamond and horizontal line for each cohort and overall (summary). Regression
coefficients and 95% CIs represent the difference in mean fasting glucose per one daily serving of processed meat in a model adjusted for model 2
covariates, including age, sex, energy intake (kilocalories per day), field center/population substructure, education, smoking, alcohol use, physical
activity, and unprocessed red meat, fish, fruit, vegetable, whole grain, sugar-sweetened beverage, nut, and saturated fat (grams per day) intake.
Summary regression coefficient (95% CI): 0.021 (0.011, 0.030). The GOLDN did not adjust for sugar-sweetened beverage intake because these data
were not available. The GHRAS did not adjust for saturated fat intake because these data were not available. ARIC, Atherosclerosis Risk in
Communities; CHS, Cardiovascular Health Study; Family HS, Family Heart Study; FHS, Framingham Heart Study; GHRAS, Greek Health Random-
ized Aging Study; GLACIER, Gene–Lifestyle Interactions and Complex Traits Involved in Elevated Disease Risk; GOLDN, Genetics of Lipid
Lowering Drugs and Diet Network; HBCS, Helsinki Birth Cohort Study; Health ABC, Health, Aging, and Body Composition; Malmӧ, Malmӧ Diet
and Cancer Study; MESA, Multi-Ethnic Study of Atherosclerosis; RS, Rotterdam Study; THISEAS, Hellenic Study of Interactions between SNPs and
Eating in Atherosclerosis Susceptibility; YFS, Young Finns Study.

1270 FRETTS ET AL.



same study visit (i.e., the Health ABC study and the RS). To be
consistent with the serving sizes used in previously published
studies (5), for all analyses, one serving of unprocessed red
meat is twice as large as a serving of processed meat. To
compare similar portions of unprocessed red meat and pro-
cessed meat, the b coefficient for processed meat must be
doubled. In secondary analyses, all analyses were repeated for
total meat.

RESULTS

Demographic, metabolic, and dietary characteristics for each
of the 14 participating cohorts are described in Table 1. The
mean age across the cohorts ranged from 37.7 y to 73.7 y, and
w50–70% of participants from each cohort were female. Mean
fasting glucose concentrations of each cohort ranged from 5.1 to
5.7 mmol/L. Mean fasting insulin concentrations ranged from
50.2 to 97.7 pmol/L. Reported mean intake of both processed
meat and unprocessed red meat also varied across the cohorts,
ranging from 0.2 to 1.8 servings/d for processed meat and 0.4 to
2.0 servings/d for unprocessed red meat. No differences in meat
intake were evident based on region (Europe or United States),
mean age of cohort, or year of dietary assessment (data not
shown).

Associations between processed meat intake and fasting
glucose and fasting insulin

Intake of processed meat was associated with higher fasting
glucose. For every additional serving of processed meat per day
(i.e., 50 g), fasting glucose was 0.021 mmol/L (95% CI: 0.011,
0.030 mmol/L) higher after adjustment for potential confounders
(model 2) (Table 2, Figure 1). Additional adjustment for BMI
(model 3) largely attenuated the association (Table 2). After
a Bonferroni correction was applied, there was no association of
processed meat and fasting insulin (Table 2, Figure 2). Omitting
one cohort at a time and restricting analyses to younger or older
cohorts, American or European cohorts, cohorts whose dietary
assessment was completed before 1990 or after 2000, or cohorts
with diet and glucose and insulin measures collected at the same
time did not materially alter risk estimates (data not shown).

Associations between unprocessed red meat intake and
fasting glucose and fasting insulin

Intake of unprocessed red meat was associated with higher
concentrations of fasting glucose and insulin. In a model that
adjusted for potential confounders (model 2), every additional
serving of unprocessed red meat per day (i.e., 100 g) was as-
sociated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L)

FIGURE 2 Forest plot of association of processed meat intake with fasting insulin. For each cohort, linear regression was used to examine the
associations of processed meat with fasting insulin. Meta-analyses were performed with the use of inverse-variance–weighted fixed-effects models. Regression
coefficients and 95% CIs are represented by a filled diamond and horizontal line for each cohort and overall (summary). Regression coefficients and 95% CIs
represent the difference in mean fasting insulin per one daily serving of processed meat in a model adjusted for model 2 covariates, including age, sex, energy
intake (kilocalories per day), field center/population substructure, education, smoking, alcohol use, physical activity, and unprocessed red meat, fish, fruit,
vegetable, whole grain, sugar-sweetened beverage, nut, and saturated fat (grams per day) intake. Summary regression coefficient (95% CI): 0.011 (0.002,
0.019). The GOLDN did not adjust for sugar-sweetened beverage intake because these data were not available. The GHRAS did not adjust for saturated fat
intake because these data were not available. ARIC, Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; Family HS, Family Heart
Study; FHS, Framingham Heart Study; GHRAS, Greek Health Randomized Aging Study; GLACIER, Gene–Lifestyle Interactions and Complex Traits
Involved in Elevated Disease Risk; GOLDN, Genetics of Lipid Lowering Drugs and Diet Network; HBCS, Helsinki Birth Cohort Study; Health ABC,
Health, Aging, and Body Composition; Malmӧ, Malmӧ Diet and Cancer Study; MESA, Multi-Ethnic Study of Atherosclerosis; RS, Rotterdam Study;
THISEAS, Hellenic Study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility; YFS, Young Finns Study.

MEAT INTAKE, GENES, FASTING GLUCOSE, AND INSULIN 1271



higher fasting glucose concentration (Table 2, Figure 3),
whereas every additional serving of unprocessed red meat was
associated with a 0.049–ln-pmol/L (95% CI: 0.035, 0.063–ln-
pmol/L) higher fasting insulin concentration (Table 2, Figure 4).
Similar to the analyses for processed meat, adjustment for
BMI (model 3) largely attenuated these associations. Like-
wise, omitting one cohort at a time and restricting analyses to
younger or older cohorts, American or European cohorts,
cohorts whose dietary assessment was completed before 1990
or after 2000, or cohorts with diet and glucose and insulin
measures collected at the same time yielded similar findings
(data not shown).

Associations between GRS-FG and GRS-IR and fasting
glucose and fasting insulin

The GRS-FG was associated with higher fasting glucose, and
the GRS-IR was associated with higher fasting insulin. For every
additional copy of a GRS-FG risk allele, fasting glucose con-
centrations were 0.020 mmol/L (95% CI, 0.19. 0.21 mmol/L)
higher. Similarly, for every additional copy of a GRS-IR risk
allele, fasting insulin concentrations were 0.013 ln-pmol/L (95%

CI, 0.011, 0.016 ln-pmol/L) higher (Supplemental Table 8,
Supplemental Figures 1 and 2).

Interactions of GRS-FG and GRS-IR with intake of
processed meat and unprocessed red meat on fasting
glucose and fasting insulin

Results of meta-analyses that examined the relation of the
interactions of processed meat and unprocessed red meat with the
GRS-FG or GRS-IR on fasting glucose and insulin concentra-
tions are shown in Table 3 and Figures 5–8. There was no
evidence of GRS–meat interactions on either fasting glucose or
insulin. Sensitivity analyses (omitting one cohort at a time or
restricting analyses by age, region, or year of dietary assessment,
as described above) did not materially alter the results (data not
shown). Additionally, restricting analyses to cohorts with no
missing genetic data (i.e., omitting the GLACIER study and
GHRAS from analyses) produced similar risk estimates.

Results of analyses that examined the associations of total
meat intake (and the interaction of the GRS-FG and GRS-IR with
total meat intake) with fasting glucose and fasting insulin are
shown in Supplemental Tables 9 and 10 and Supplemental

FIGURE 3 Forest plot of association of unprocessed red meat intake and fasting glucose. For each cohort, linear regression was used to examine the
associations of unprocessed red meat with fasting glucose. Meta-analyses were performed with the use of inverse-variance–weighted fixed-effects models.
Regression coefficients and 95% CIs are represented by a filled diamond and horizontal line for each cohort and overall (summary). Regression coefficients
and 95% CIs represent the difference in mean fasting glucose per one daily serving of unprocessed red meat in a model adjusted for model 2 covariates,
including age, sex, energy intake (kilocalories per day), field center/population substructure, education, smoking, alcohol use, physical activity, and processed
meat, fish, fruit, vegetable, whole grain, sugar-sweetened beverage, nut, and saturated fat (grams per day) intake. Summary regression coefficient (95% CI):
0.037 (0.023, 0.051). The GOLDN did not adjust for sugar-sweetened beverage intake because these data were not available. The GHRAS did not adjust for
saturated fat intake because these data were not available. ARIC, Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; Family HS,
Family Heart Study; FHS, Framingham Heart Study; GHRAS, Greek Health Randomized Aging Study; GLACIER, Gene–Lifestyle Interactions and Complex
Traits Involved in Elevated Disease Risk; GOLDN, Genetics of Lipid Lowering Drugs and Diet Network; HBCS, Helsinki Birth Cohort Study; Health ABC,
Health, Aging, and Body Composition; Malmӧ, Malmӧ Diet and Cancer Study; MESA, Multi-Ethnic Study of Atherosclerosis; RS, Rotterdam Study;
THISEAS, Hellenic Study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility; YFS, Young Finns Study.
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Figures 3–6. All analyses were repeated with the use of random-
effects models, and risk estimates were not meaningfully
changed.

DISCUSSION

The results from this large meta-analysis of 14 epidemiologic
studies indicate that intake of processed meat is associated with
higher fasting glucose, and intake of unprocessed red meat is
associated with higher fasting glucose and insulin concentrations

in Caucasians without diabetes mellitus. Observed associations
were not modified by b cell function/fasting glucose or insulin
resistance GRSs.

Results were largely attenuated after adjustment for BMI,
possibly because of the independent effects of BMI on both meat
intake and fasting glucose and insulin concentrations. However,
obesity may be in the causal pathway of processed meat or
unprocessed red meat intake and fasting glucose or insulin
concentrations—that is, consuming a diet high in meat may
cause weight gain and obesity, and obesity is a risk factor for

FIGURE 4 Forest plot of association between unprocessed red meat intake and fasting insulin. For each cohort, linear regression was used to examine the
associations between unprocessed red meat and fasting insulin. Meta-analyses were performed with the use of inverse-variance–weighted fixed-effects models.
Regression coefficients and 95% CIs are represented by a filled diamond and horizontal line for each cohort and overall (summary). Regression coefficients
and 95% CIs represent the difference in mean fasting insulin per one daily serving of unprocessed red meat in a model adjusted for model 2 covariates,
including age, sex, energy intake (kilocalories per day), field center/population substructure, education, smoking, alcohol use, physical activity, and processed
meat, fish, fruit, vegetable, whole grain, sugar-sweetened beverage, nut, and saturated fat (grams per day) intake. Summary regression coefficient (95% CI):
0.049 (0.035, 0.063). The GOLDN did not adjust for sugar-sweetened beverage intake because these data were not available. The GHRAS did not adjust for
saturated fat intake because these data were not available. ARIC, Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; Family HS,
Family Heart Study; FHS, Framingham Heart Study; GHRAS, Greek Health Randomized Aging Study; GLACIER, Gene–Lifestyle Interactions and Complex
Traits Involved in Elevated Disease Risk; GOLDN, Genetics of Lipid Lowering Drugs and Diet Network; HBCS, Helsinki Birth Cohort Study; Health ABC,
Health, Aging, and Body Composition; Malmӧ, Malmӧ Diet and Cancer Study; MESA, Multi-Ethnic Study of Atherosclerosis; RS, Rotterdam Study;
THISEAS, Hellenic Study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility; YFS, Young Finns Study.

TABLE 3

Meta-analysis of interactions of meat intake with GRS-FG or GRS-IR on fasting glucose or insulin1

Values

n b (95% CI) P I2

Processed meat 3 GRS-FG interaction on fasting glucose 48,756 0.001 (20.001, 0.003) 0.38 40.5%

Processed meat 3 GRS-FI interaction on fasting insulin 33,426 20.003 (20.007, 0.002) 0.23 24.2%

Unprocessed red meat 3 GRS-FG interaction on

fasting glucose

48,882 0.000 (20.002, 0.003) 0.87 40.1%

Unprocessed red meat 3 GRS-FI interaction on

fasting insulin

33,550 20.004 (20.010, 0.003) 0.26 24.2%

1b was adjusted for age, sex, energy intake (kilocalories per day), and field center/population substructure. Meta-

analyses were performed with the use of inverse-variance–weighted fixed-effects models. GRS-FG, fasting glucose/b cell

liability genetic risk score; GRS-IR, insulin-resistance genetic risk score.
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impaired fasting glucose and insulin resistance. As such, ad-
justment for BMI may underestimate the associations of meat
intake with fasting glucose or insulin concentrations.

The mechanism by which the consumption of meat may in-
fluence fasting glucose and insulin concentrations is complex.
Nitrosamines are present in processed meats at manufacturing or
are formed by interactions of amino acids and nitrates within the
body, and have been shown to have a toxic effect on b cells and
promote the development of diabetes mellitus in rodents and
humans (19, 20, 22). Additionally, the intake of meat has been
associated with markers of inflammation, such as C-reactive
protein (13, 55). Consumption of foods high in saturated fat,
such as processed meat and unprocessed red meat, may promote
obesity, a leading risk factor for glucose intolerance, insulin
resistance, and incident diabetes (56, 57). Red meats are also
rich in heme iron, advanced glycation end products, and amino
acids (e.g., leucine), which may influence b cell function, in-
sulin secretion, and the pathogenesis of diabetes mellitus (17,
18, 58, 59).

Several previously published studies have examined the re-
lation of meat intake with metabolic outcomes. Most of these
studies have focused on incident diabetes or weight gain as
outcomes of interest, and, to our knowledge, only one study has
examined the associations of meat intakewith fasting glucose and
insulin concentrations in individuals without diabetes mellitus
(60). In that study, each additional serving of red meat per week
was associated with 0.42 6 0.17-mg/dL higher fasting glucose
concentration and 0.32 6 0.15-mU/mL higher fasting insulin

concentration. These findings support our results and suggest
a positive association of meat intake with fasting glucose and
insulin.

Several prospective studies have assessed the associations of
meat with development of diabetes. These studies have consis-
tently demonstrated that processed meat intake is associated with
a higher risk of incident diabetes (3–10, 13–16), whereas the
association of unprocessed red meat with diabetes risk is less
clear, with much smaller (8, 13, 15, 16) or even no associations
in several studies (3–5, 14). However, previous studies have
consistently shown that the magnitude of the effect of meat
intake on long-term weight gain is similar for processed meat
and unprocessed red meat (61–63). In our analysis, the magni-
tude of the association of unprocessed red meat with fasting
glucose was double that of processed meat. However, a standard
serving of unprocessed red meat was twice as large as a standard
serving of processed meat (100 g vs. 50 g, respectively); thus,
per gram of intake, the magnitude of the association of un-
processed red meat and processed meat with fasting glucose was
similar. Interestingly, the magnitude of the association of un-
processed red meat intake with fasting insulin was higher than
the magnitude of the association of processed meat intake with
fasting insulin. This was an unexpected finding and it is difficult
to explain, because, on average, unprocessed red meats have
fewer calories, lower concentrations of total fat, less sodium,
fewer nitrates, and similar concentrations of saturated fat than
processed meats have (5, 64). However, unprocessed red meats
contain more heme iron than processed meats (65). If the

FIGURE 5 Forest plot of interaction of processed meat intake with the GRS-FG on fasting glucose. For each cohort, linear regression was used to
examine the interaction of processed meat intake with the GRS-FG on fasting glucose. Meta-analyses were performed with the use of inverse-variance–
weighted fixed-effects models. Regression coefficients and 95% CIs are represented by a filled diamond and horizontal line for each cohort and overall
(summary). Regression coefficients (95% CIs) are adjusted for age, sex, energy intake, and field center/population substructure. Summary regression
coefficient (95% CI): 0.001 (20.001, 0.003). ARIC, Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; Family HS, Family Heart
Study; FHS, Framingham Heart Study; GHRAS, Greek Health Randomized Aging Study; GLACIER, Gene–Lifestyle Interactions and Complex Traits
Involved in Elevated Disease Risk; GOLDN, Genetics of Lipid Lowering Drugs and Diet Network; GRS-FG, b cell liability genetic risk score; HBCS,
Helsinki Birth Cohort Study; Health ABC, Health, Aging, and Body Composition; Malmӧ, Malmӧ Diet and Cancer Study; MESA, Multi-Ethnic Study of
Atherosclerosis; RS, Rotterdam Study; srv, servings; THISEAS, Hellenic Study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility;
YFS, Young Finns Study.
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FIGURE 6 Forest plot of interaction of processed meat intake with the GRS-IR on fasting insulin. For each cohort, linear regression was used to examine
the interaction of processed meat intake with the GRS-IR on fasting insulin. Meta-analyses were performed with the use of inverse-variance–weighted fixed-
effects models. Regression coefficients and 95% CIs are represented by a filled diamond and horizontal line for each cohort and overall (summary). Regression
coefficients (95% CIs) are adjusted for age, sex, energy intake, and field center/population substructure. Summary regression coefficient (95% CI): 20.003
(20.007, 0.002). ARIC, Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; Family HS, Family Heart Study; FHS, Framingham Heart
Study; GLACIER, Gene–Lifestyle Interactions and Complex Traits Involved in Elevated Disease Risk; GOLDN, Genetics of Lipid Lowering Drugs and Diet
Network; HBCS, Helsinki Birth Cohort Study; GRS-IR, insulin-resistance genetic risk score; Health ABC, Health, Aging, and Body Composition; Malmӧ,
Malmӧ Diet and Cancer Study; MESA, Multi-Ethnic Study of Atherosclerosis; RS, Rotterdam Study; srv, servings; THISEAS, Hellenic Study of Interactions
between SNPs and Eating in Atherosclerosis Susceptibility; YFS, Young Finns Study.

FIGURE 7 Forest plot of interaction of unprocessed red meat intake with the GRS-FG on fasting glucose. For each cohort, linear regression was used to
examine the interaction of unprocessed red meat intake with the GRS-FG on fasting glucose. Meta-analyses were performed with the use of inverse-variance–
weighted fixed-effects models. Regression coefficients and 95% CIs are represented by a filled diamond and horizontal line for each cohort and overall
(summary). Regression coefficients (95% CIs) are adjusted for age, sex, energy intake, and field center/population substructure. Summary regression
coefficient (95% CI): 0.000 (20.002, 0.003). ARIC, Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; Family HS, Family Heart
Study; FHS, Framingham Heart Study; GHRAS, Greek Health Randomized Aging Study; GLACIER, Gene–Lifestyle Interactions and Complex Traits
Involved in Elevated Disease Risk; GOLDN, Genetics of Lipid Lowering Drugs and Diet Network; GRS-FG, b cell liability genetic risk score; HBCS,
Helsinki Birth Cohort Study; Health ABC, Health, Aging, and Body Composition; Malmӧ, Malmӧ Diet and Cancer Study; MESA, Multi-Ethnic Study of
Atherosclerosis; RS, Rotterdam Study; srv, servings; THISEAS, Hellenic Study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility;
YFS, Young Finns Study.
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association of meat intake with fasting glucose and insulin
concentrations is primarily driven through the effects of heme
iron on fasting glucose and insulin concentrations, this may at
least partly explain our findings.

To date, to our knowledge, no published studies have examined
the interaction of meat intake with genes related to fasting
glucose/b cell function or insulin resistance on fasting glucose
and insulin concentrations in non-diabetic patients, and only one
published study has examined the interaction of meat intake
with genes related to diabetes on risk of incident diabetes (30).
In that candidate–gene study, both processed meat and unpro-
cessed red meat showed modest, albeit significant, interactions
with the GRS in relation to diabetes risk. However, we found no
evidence that processed or red meat interacts with fasting glucose
or insulin loci to influence fasting glucose or insulin concentra-
tions in non-diabetic patients.

Our analysis has several strengths. This analysis comprised
data from 14 epidemiologic studies, and, to our knowledge, this is
the largest analysis to date to examine the associations of meat
intake with fasting glucose and insulin. Additionally, we were
able to employ a standardized analysis plan because of the rich-
ness of the available data from the cohorts.

This study also has limitations. First, some participants might
not have accurately recalled dietary information, thereby limiting
our ability to obtain accurate estimates of meat intake. Although
serving sizes and line items for meats were harmonized across the
participating studies, some studies had more detailed questions
on meat intake than other studies, and misclassification of intake
is possible. Such misclassification is likely nondifferential, bi-

asing risk estimates toward the null. Although analyses are ad-
justed for several factors related to meat intake and fasting
glucose/insulin concentrations, residual confounding by un-
measured factors is possible. Moreover, although more than
30,000 participants composed the study population for the in-
teraction meta-analyses, we may have had insufficient power to
detect an interaction if the gene–diet interaction effect size is
small. This is a cross-sectional analysis, and it is not possible to
determine whether meat intake influences fasting glucose or
insulin concentrations, or, alternatively, if participants with
higher fasting glucose or insulin concentrations are more likely
to consume meat than participants with lower fasting glucose or
insulin concentrations. For the purposes of this analysis, we
chose to use GRSs to examine the interaction of SNPs related to
b cell function/fasting glucose and insulin resistance with meat
intake on fasting glucose and insulin concentrations. Although
this may have maximized the power to find a gene–diet interaction,
we did not assess the interaction of individual SNPs and meat in-
take, and the use of a GRS might have concealed potentially strong
interactions for individual SNPs. Moreover, the SNPs used in the
GRSs were selected a priori based on SNPs with known b cell
function or related to insulin resistance identified from GWASs
from a literature search performed in 2011. Finally, this analysis
comprised Caucasians without diabetes mellitus, and results may
not be generalizable to other populations.

In conclusion, the results of this study suggest that meat intake
is associated with fasting glucose and insulin concentrations in
Caucasians without diabetes mellitus. This association is not
dependent on genetic variation of loci previously shown to be

FIGURE 8 Forest plot of interaction of unprocessed red meat intake with the GRS-IR on fasting insulin. For each cohort, linear regression was used to
examine the interaction of unprocessed red meat intake with the GRS-IR on fasting insulin. Meta-analyses were performed with the use of inverse-variance–
weighted fixed-effects models. Regression coefficients and 95% CIs are represented by a filled diamond and horizontal line for each cohort and overall
(summary). Regression coefficients (95% CIs) are adjusted for age, sex, energy intake, and field center/population substructure. Summary regression
coefficient (95% CI): 20.004 (20.010, 0.003). ARIC, Atherosclerosis Risk in Communities; CHS, Cardiovascular Health Study; Family HS, Family Heart
Study; FHS, Framingham Heart Study; GLACIER, Gene–Lifestyle Interactions and Complex Traits Involved in Elevated Disease Risk; GOLDN, Genetics of
Lipid Lowering Drugs and Diet Network; GRS-IR, insulin-resistance genetic risk score; HBCS, Helsinki Birth Cohort Study; Health ABC, Health, Aging, and
Body Composition; Malmӧ, Malmӧ Diet and Cancer Study; MESA, Multi-Ethnic Study of Atherosclerosis; RS, Rotterdam Study; srv, servings; THISEAS,
Hellenic Study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility; YFS, Young Finns Study.
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associated with a fasting glucose/b cell function or insulin re-
sistance from GRSs. This study adds to the growing body of
evidence that suggests that meat intake is associated with higher
glucose and insulin concentrations.
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