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Introduction

Neurodegenerative diseases, in particular those associated with aging, represent a significant 

public health concern in the developed world. The prevalence of dementia doubles every 

five years after the age of 60, with an estimated 30 to 45 percent of those age 85 and older 

suffering from some form of dementia, most commonly Alzheimer’s disease [1]. As mean 

and maximum life expectancy have increased significantly in the last century, the prevalence 

of such age-associated dementias has followed course. The development of effective 

treatments is, however, hindered by the complex, multigenic nature of these diseases and by 

their relatively poorly understood molecular pathophysiology. One aspect of the biology of 

neurodegenerative diseases that may have important implications for better understanding 

the underlying molecular mechanisms causing neurodegeneration is that, in spite of the 

diverse clinical and cellular manifestations, mitochondrial dysfunction is a ubiquitous 

feature of neurodegenerative diseases, detected both in neurons and in non-neuronal cells.

There is still some discussion in the field as to whether mitochondrial dysfunction is the 

major cause of neurodegeneration; but the pervasive observation of dysfunctional 

mitochondria in affected brain regions and cells clearly indicate that mitochondria are 

essential for neuronal survival, and suggest that pathways involved in maintaining 

mitochondrial integrity function to prevent or delay the onset of neurodegeneration. This 

review will examine the evidence that links mitochondrial genome instability to neuronal 

loss and neurodegeneration. We will explore DNA damage accumulation in mitochondrial 

DNA (mtDNA) in several pathological conditions, and whether changes in DNA repair 

activities may play a role in these events (see also Yang et al, this volume, for additional 
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discussion of mitochondrial damage and neurological pathology) . And while it is not the 

scope of this review, it is noteworthy that specific defects in the repair of DNA single-strand 

breaks in the brain have been directly associated with the pathophysiology of some types of 

ataxias, namely spinocerebellar ataxia with axonal neuropathy-1 (SCAN1) and ataxia 

oculomotor apraxia-1 (AOA1) [2] (see Lavin et al in this volume).

Mitochondrial dysfunction in neurodegeneration

The central nervous system has a very high energetic demand, used mostly to maintain ionic 

distribution across the membranes and for synaptic function. Glucose is virtually the sole 

fuel for the human brain, except during prolonged starvation. Moreover, the brain lacks fuel 

stores and hence requires a continuous supply of glucose. These characteristics render brain 

cells particularly dependent on mitochondrial function for the generation of ATP. Thus, it is 

not surprising that loss of mitochondrial integrity has been widely associated with 

neurodegeneration.

Mitochondrial dysfunction in the brain can stem from inherited or spontaneous mutations in 

mtDNA or in nuclear genes encoding mitochondrial proteins, or from direct damage to 

mtDNA caused by endogenous or exogenous toxic agents. The “Mitochondrial Theory of 

Aging” proposes that “normal aging” is caused by the steady accumulation of mitochondrial 

damage caused by endogenous agents, most likely reactive oxygen species (ROS), over an 

organism’s life span [3, 4]. Interestingly, diseases stemming from mitochondrial defects are 

characterized by a wide range of neuro-muscular phenotypes, and a large number of them 

are presented with at least one of several neurological symptoms, ranging from hearing loss 

and mild ophtalmoplegia to severe stroke, epilepsy, ataxia and neuropathy [5–7]. Moreover, 

the disruption of the mitochondrial respiratory chain by toxins leads to neuronal cell death 

and phenotypes that often resemble neurodegenerative diseases, such as Parkinson’s (PD) 

and Huntington’s (HD) diseases.

PD is a progressive movement disorder that is believed to be caused by the selective loss of 

dopaminergic neurons, particularly in the substantia nigra region of the brain. Several lines 

of evidence support the hypothesis that a deficiency in the mitochondrial respiratory 

Complex I (NADH Ubiquinone Oxireductase) is an underlying feature of PD (for review see 

[8–10]). This is strongly corroborated by the observation that inhibitors of Complex I induce 

a motor disorder that clinically and pathologically mimic PD. The effect of the compound 1-

methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) is a classical example. MPTP-

induced Parkinsonism was first identified in the late 1970’s, in drug addicts who consumed a 

synthetic heroine derivative [11], where MPTP was a small contaminant generated 

unexpectedly during the synthetic process. The toxicity of MPTP is conferred by its 

metabolite 1-methyl-4-phenylpyridinium ion (MPP+) [12], which accumulates selectively in 

mitochondria from dopaminergic neurons. MPP+ is a strong inhibitor of Complex I, 

resulting in decreased oxidation of NAD-linked substrates, disruption of the electron 

transport chain, reduced oxidative phosporylation and ATP synthesis [13–15]. Increased 

oxidative stress as a result of MPP+ toxicity has also been postulated to play a causative role 

in the loss of dopaminergic neurons, as supported by the observation that MPTP toxicity is 

significantly exacerbated in mice deficient for anti-oxidant enzymes including glutathione 
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peroxidase, Cu- and Mg-Superoxide Dismutase. Interestingly, the chemical inhibition of 

poly-ADP-ribose polymerase (PARP) significantly attenuates MPTP toxicity [16, 17]; since 

PARP is activated by DNA strand breaks and oxidative damage, these findings suggest that 

mitochondrial-induced oxidative DNA damage also play a role in the etiology of PD (see 

Woodhouse et al in this volume for detailed discussion of PARP and neurological disease) . 

Another well known inhibitor of Complex I, rotenone, has been shown to cause PD-like 

pathology as well. This antibiotic is a common component of pesticides, and several 

epidemiological studies have implicated accidental exposure to rotenone as a risk factor in 

the development of PD [8].

Inhibitors of the mitochondrial respiratory Complex II (Succinate-Ubiquinol Oxireductase, 

or Succinate Dehydrogenase-SDH) also induce neurodegeneration in animal models (for 

review, see [10, 18]). Most notably, inhibition of Complex II by 3-nitropropionic acid (3-

NPA) and malonate greatly resemble those seen in HD, another movement disorder 

characterized by cell death in the striatum and disruption of the cortical-striatal circuitry. 

While 3-NPA and malonate inhibit SDH by distinct molecular mechanisms, the similarities 

between their pathological outcomes strongly suggests that SDH inhibition is a central 

molecular event in HD etiology. This is consistent with Complex II and III deficiencies 

observed in post-mortem striatum samples [19]. Moreover, oxidative stress indicators, 

particularly in mitochondria, are also elevated in animal models of 3-NPA-induced toxicity 

as well as in HD samples [20].

The findings discussed above indicate a strong correlation between disruption of the 

mitochondrial electron transport chain and neurodegeneration. They suggest a scenario in 

which mitochondrial dysfunction, induced by toxins as discussed above, or by yet unknown 

mechanisms in the case of the idiopathic diseases, is an initial event in a cascade that leads 

to neuronal loss. This initial mitochondrial inhibition would lead to energetic crisis and 

elevated oxidative stress, accumulation of oxidative DNA damage and mutations, and 

ultimately to neuronal cell death. In this scenario, it is critical to understand how these 

events are linked to cellular dysfunction, since they could provide targets for clinical 

interventions that could block or attenuate the progression of these diseases.

Mitochondrial oxidative DNA damage accumulation

The mtDNA is situated at the inner side of the mitochondrial inner membrane. It is believed 

to be covalently associated with the membrane, if not always, then at least during some 

metabolic transactions, such as DNA replication [21]. In eukaryotic cells, the inner 

mitochondrial membrane is the major cellular site for generation of ROS, such as superoxide 

anion, hydrogen peroxide and the hydroxyl radical [22]. ROS are very reactive towards 

biomolecules, and can randomly attack lipids, proteins and nucleic acids. The hydroxyl 

radical will react with any molecule in a radius of 15 Å of its site of formation, with a rate 

constant only limited by diffusion [23]. The oxidative attack of biomolecules results in a 

variety of potentially harmful consequences, such as 1) lipid peroxidation, which leads to the 

generation of highly reactive aldehyde by-products; 2) oxidation of SH groups, which causes 

protein aggregation; 3) oxidation of amino acid side chains forming carbonyl groups, which 

target proteins for degradation; 4) oxidation of the sugar in nucleic acids, leading to 
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breakage of the phosphodiester backbone; and 5) oxidation of the bases in nucleic acids, 

with the concomitant formation of a plethora of base modifications that can be either 

mutagenic or cytotoxic (reviewed in [24]).

The physical proximity of the mtDNA to the sites of ROS production in the inner 

mitochondrial membrane renders the mtDNA more vulnerable to being damaged by such 

species in comparison to nuclear DNA. Several groups, including ours, have demonstrated 

that the levels of oxidized bases in mtDNA are 2–3 times greater than in nuclear DNA [25, 

26], likely reflecting the issue of accessibility.

From the large number of different oxidized DNA modifications detected in DNA exposed 

to oxidizing agents [27] , only a few have been, so far, extensively studied in regards to their 

biological significance. Eight-hydroxy-guanine (8-oxoG) was one of the first oxidized bases 

to be recognized as biologically relevant [28, 29] and has since been considered a biomarker 

of oxidative stress. 8-oxoG is a mutagenic lesion when present in double-stranded DNA, 

because in syn configuration it can mispair with adenine, leading to a G:C→T:A 

transversion mutation [30]. For instance, DNA polymerase gamma (pol γ), the only DNA 

polymerase identified in mammalian mitochondria so far (see more below), will insert a 

wrong base opposite 8-oxoG in the template about 27% of the time [31], resulting in a 

mutagenic event. Recent data, however, suggest that 8-oxoG may not be as deleterious in 

vivo as previously believed. Maga and colleagues showed that 8-oxoG is faithfully bypassed 

by the nuclear DNA polymerases lambda and eta when the auxiliary factors PCNA and RPA 

are present [32]. It has also been shown that the transcription machinery can bypass 8-oxoG 

in vitro [33]. We observed normal mitochondrial bioenergetic function in mitochondria 

isolated from livers and hearts of mice lacking the DNA repair enzyme Oxoguanine DNA 

Glycosylase (OGG1) [34]. These mice show no removal of 8-oxoG from their mtDNA and 

accumulate approximately 20 fold higher levels of 8-oxoG than wild type controls [35], 

indicating that such high levels of 8-oxoG did not compromise the integrity of the 

respiratory chain.

Other oxidized bases have also been detected in DNA, even in the absence of any exogenous 

insult. For example, thymine glycols (TG) can be detected both in genomic as well as in 

mtDNA [36]. TG is a polymerase-blocking lesion, causing aborted DNA and RNA synthesis 

[37], which could ultimately lead to cell death. In addition, we have recently shown that 

ring-opened formamidopyrimidine lesions (4,6-diamino-5-formamidopyrimidine, FapyA; 

and 2,6-diamino-4-hydroxy-5-formamidopyrimidine, FapyG) are detected in mouse liver 

genomic DNA at levels that are similar, or even slightly higher, than those of 8-oxoG [38]. 

Both FapyA and FapyG are strong mutagenic bases in vitro, directing the incorporation of 

adenine opposite the modified purine [39, 40].

Nonetheless, 8-oxoG quantification has been extensively used as a marker of oxidative DNA 

damage accumulation and several groups have demonstrated that the levels of this lesion are 

elevated in mtDNA both during normal aging as well as in neurodegenerative disorders. 

Ames and colleagues [25, 41] were the first to show that mtDNA accumulated 8-oxoG at 

higher levels than the nuclear DNA, and although there has since been much discussion as to 
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the absolute levels of oxidative lesions in mtDNA from various sources [42, 43], it is well 

accepted that oxidative damage increases with age in the mtDNA [26, 44].

Base excision repair in mitochondria

Because mammalian cells harbor genetic material in both their mitochondrial and nuclear 

compartments and each genome is vulnerable to various types of spontaneous and exposure-

dependent DNA lesions, organisms have evolved protective systems for both partitions. 

However, the spectrum of the DNA damage responses varies between the mitochondria and 

nucleus (Table 1), and in many cases, the precise molecular pathway and specific repair 

proteins involved are distinct. For the purpose of this review, we focus exclusively on the 

Base Excision Repair (BER) pathway in mitochondria, but refer to the following reviews for 

discussion on nuclear DNA repair [45] and mtDNA repair in general [46]. BER is the 

predominant pathway for coping with most spontaneous decay, alkylation and oxidative 

DNA lesions.

Nuclear or mitochondrial BER, like all DNA repair responses, involves a cascade of 

recognition and enzymatic processing steps that aim to remove the target damage and restore 

genome integrity. In BER is initiated by the excision of a modified or inappropriate base 

from the sugar-phosphate DNA backbone by a DNA glycosylase. The resulting apurinic/

apyrimidinic (AP) site is subsequently cleaved by an AP endonuclease, creating a strand 

break with a 3’-hydroxyl end and a 5’-deoxyribose phosphate (dRP) residue. The single 

nucleotide gap is then filled by a specific DNA repair polymerase, and the 5’-dRP fragment 

is excised to create a normal 5’-phosphate terminus. To complete short patch (or single 

nucleotide) BER, the final nick is sealed by a DNA ligase (Figure 1). It is worth 

emphasizing that the mitochondrial genome does not encode DNA repair proteins, and thus, 

as will be discussed next, most of the mitochondrial BER proteins are splice-variants, 

alternative translation-initiation products, or post-translationally modified versions of the 

nuclear-encoded protein forms.

DNA Glycosylases

Several DNA glycosylases have been identified in mammalian mitochondria (Figure 2). The 

gene encoding hOGG1, which excises, among others, 8-oxoG from DNA, creates at least 

four mRNA isoforms by alternative splicing of distinct 3’ exons [47, 48]. Most of these 

isoforms, such as type 2a/OGG1β (Figure 2), which is one of the major expression products, 

encode proteins that localize to the mitochondria, presumably via a shared N-terminal 

mitochondrial targeting sequence (MTS). However, the type 1a protein (also known as 

OGG1α; Figure 2), which contains a unique C-terminal domain that harbors a strong nuclear 

localization signal (NLS), sorts mainly to the nucleus, yet to a lesser extent to the 

mitochondria. Recent evidence suggests that the β form is a non-active splice variant with 

unknown function and that OGG1α accounts for both the nuclear and mitochondrial 8-oxoG 

repair activities [49]. In addition to 8-oxoG [50], mammalian OGG1 has been shown to 

exhibit glycosylase activity for the oxidized base lesions 8-oxoA and FapyG, as well as a 

weak AP lyase function [51–53].
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Human MYH, a homolog of the Escherichia coli DNA glycosylase mutY, excises adenine 

opposite 8-oxoG as part of the defense system against the mutagenic consequences of this 

oxidative base damage (i.e. the so-called GO system [54]). The human MYH gene produces 

three major transcripts with unique 5’ mRNA sequences, i.e. α, β and γ, each of which is 

alternatively spliced to create as many as 10 different splice variants [55, 56] (see example 

in Figure 2). Despite initial studies indicating that hMYH resides mainly in the mitochondria 

[47], western blot analysis uncovered the presence of hMYH protein forms in both nuclei 

(p52/53) and mitochondria (p57) [56]. The p52 nuclear species has been suggested to be the 

product of the hMYHβ1, β3 or γ2 transcript(s). The origin of the mitochondrial MYH is 

likewise unclear, but studies suggest that it may be the larger protein created by the 

hMYHα3 mRNA (p54) or the 60 kDa species predicted to be generated by the hMYHoα1 

transcript. Determination of the primary amino acid sequences of the purified MYH 

glycosylases from both nuclear and mitochondrial extracts will shed light on the nature of 

the different compartmental forms.

Mammalian NTH1, an ortholog of Escherichia coli endonuclease III (Nth), is a DNA 

glycosylase/AP lyase that excises a wide range of pyrimidine lesions, including TG, 5-

hydroxy cytosine and fapy intermediates. Current evidence suggests that hNTH1 protein is 

localized almost exclusively to the nuclues, likely due to the presence of a weak MTS [47, 

57, 58]. Notably, no alternative splicing of the hNTH1 gene has been reported so far, and the 

disparate protein isoforms of hNTH1 generated by multiple translation initiation sites do not 

exhibit differences in localization (Figure 2). In contrast, mouse NTH1 appears to localize 

mostly in mitochondria [58], which is in agreement with the abrogation of TG and 5-OHU 

incision activity in liver mitochondria from NTH1 knockout mice [59].

A new set of DNA glycosylases with specificity for oxidative DNA lesions has been 

recently identified, NEIL1, 2 and 3 [60–63]. These are mammalian homologues of the 

Escherichia coli DNA glycosylase Fpg/Nei, which excise primarily ring-opened oxidized 

purines such as FapyG and FapyA [64] . We have recently shown that NEIL1 localizes to 

mouse liver mitochondria, where it is likely to provide the residual incision activity 

observed with a FapyG containing oligomer in extracts from mice lacking both OGG1 and 

NTH1. The importance of NEIL1 for the maintenance of mtDNA has also been implied by 

the observation that mtDNA deletions accumulate in the livers of NEIL1 knockout mice, 

and that these mice have symptoms often associated with mitochondrial disease [63].

The uracil-DNA glycosylases (UDG) UNG1 (mitochondria) and UNG2 (nuclear) are 

encoded by the UNG-gene (Figure 2). These enzymes remove uracils generated by 

spontaneous deamination of cytosine in DNA. The mitochondrial and nuclear isoforms of 

UDG share a common catalytic domain, but have different N-terminal sequences for 

subcellular sorting as a result of the use of alternative promoters and mRNA splicing [65]. In 

addition to excising uracil from U:G > U:A base pairs, the UNG proteins have the ability to 

remove oxidized cytosines from DNA as well, including isodialuric acid, alloxan and 5-

hydroxyuracil [66].

In the nucleus alkylation base damage is repaired mainly by methylpurine DNA glycosylase 

(MPG). While the MPG gene encodes alternative transcripts that produce proteins with 

de Souza-Pinto et al. Page 6

DNA Repair (Amst). Author manuscript; available in PMC 2015 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



putative nuclear and mitochondrial targeting sequences, MPG has not been shown explicitly 

to localize to the mitochondria [67]. However, efficient repair of methylated and ethylated 

bases in mtDNA has been documented [68–71].

AP Endonuclease

Following base excision by a DNA glycosylase, the resulting abasic site is typically incised 

by an AP endonuclease (Figure 1). In humans, the major, if not only significant, AP site 

incision activity is intrinsic to APE1. Initial studies revealed that translocation of the only 

known human APE1 protein species (a 318 amino acid product), which was engineered to 

harbor a FLAG-tag, scarcely occurred into the mitochondria of COS-7 cells [47]. APE1 

harbors a NLS in its N-terminal sequence and no major alternatively-expressed forms have 

been reported [72]. However, endonucleolytic AP site cleavage activity had been observed 

in mitochondrial extracts [73], and immunohistochemistry with APE1-specific antibodies 

suggested the presence of an APE1-like protein in this cellular compartment [74, 75]. Mitra 

and colleagues recently reported that the mitochondrial AP endonuclease is derived from the 

main APE1 polypeptide by protease removal of the 33 N-terminal amino acid residues that 

contain the NLS [76] (Figure 2). It is important to emphasize that the truncated APE1 

protein described above was only seen at a significant level in bovine and mouse liver and 

the NIH 3T3 mouse cell line, whereas only full-length APE1 was detected in a variety of 

human cell lines. These results may indicate that the full-length form is the major protein 

species in cultured cells and/or has a more pronounced role in mtDNA repair in humans. A 

second protein with homology to APE1, as well as its bacterial ancestor exonuclease III, 

APE2, has been shown to localize partially to the mitochondria, but its contribution as an AP 

endonuclease is in question [77, 78].

DNA Polymerase

Mitochondria possess a single DNA polymerase, POLγ (Figure 2), which assumes sole 

responsibility for DNA synthesis in all replication, recombination, and repair transactions 

involving mtDNA [79]. POLγ is homologous to the family A of DNA polymerases, which 

include the Klenow fragments of Escherichia coli and Bacillus stearothermophilus 

polymerase I and the polymerases of Thermus aquaticus and bacteriophage T7. In humans, 

POLγ holoenzyme is a 195 kDa heterotrimer, consisting of a catalytic subunit (p140, coded 

by POLG on chromosome 15q25) and two identical accessory subunits (p55, coded by 

POLG2 on chromosome 17q). The accessory subunit (p55) is a DNA binding factor that 

activates both the polymerase and exonuclease activities of the catalytic subunit, and confers 

high processivity by increasing the affinity of the heterotrimer for template DNA [80, 81]. 

The catalytic subunit (p140) possesses DNA polymerase, 3’→,5’ exonuclease activity and a 

5’dRP lyase function [82], all of which are important to the accurate and productive 

execution of gap-filling and termini processing in mitochondrial BER (Figure 1). The 

accessory subunit has been shown to improve the efficiency of dRP removal (the rate-

limiting step in mitochondrial BER) by increasing the lyase reaction and the ability of the 

enzyme to locate the damage site on DNA, presumably by enhancement of DNA binding 

[83].
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DNA Ligase

The final step of BER is sealing of the remaining single-strand nick (Figure 1). In 

mitochondria, this molecular process is performed by a variant of the nuclear DNA ligase III 

(LIG3). In particular, the human DNA LIG3 gene encodes both nuclear and mitochondrial 

enzymes (Figure 2), which arise from the use of alternative-translation initiation start sites in 

a single mRNA transcript [84]. Interestingly, the mitochondrial DNA LIG3 protein 

apparently functions without XRCC1 [85], a key single-strand break repair factor required 

for the stability of nuclear DNA LIG3oα via its direct physical association [86].

Mitochondrial DNA instability in neurodegenerative disorders

Increased oxidative DNA damage, mutations and deletions have been observed in the aging 

brain and neurodegenerative diseases. Alzheimer’s disease (AD) is a progressive age-

dependent neurodegenerative disease that leads to cognitive and behavioral impairment. 

Pathologically, AD is characterized by protein aggregates (amyloid plaques and 

neurofibrillary tangles) and neuronal cell death that is thought to initiate in the hippocampus 

and spread throughout the cortex. On the other hand, the cerebellum often does not display 

any of those hallmarks, at least until much later in the progression of the disease. Lovell and 

colleagues found that the levels of several oxidized bases in AD brains were significantly 

higher in frontal, parietal, and temporal lobes compared to control subjects and that mtDNA 

had approximately 10-fold higher levels of oxidized bases than nuclear DNA. Moreover, 

DNA from temporal lobe showed the most oxidative damage, whereas cerebellum was only 

slightly affected in the AD brains, correlating with these regions being respectively the most 

and least affected in human AD brain [87]. This same group also measured oxidative 

damage in samples from patients suffering from Mild Cognitive Impairment (MCI), the 

earliest clinical manifestation of AD. Eight-hydroxy-guanine was significantly higher in 

MCI nuclear DNA from the frontal and temporal lobe and in mtDNA from the temporal lobe 

compared with age-matched control subjects, and statistically significant elevations of 

FapyA were also observed in mtDNA of MCI temporal, frontal and parietal lobes [88]. 

Because MCI is considered to be a transient stage between normal aging and dementia, these 

results indicate that accumulation of oxidative damage in the mtDNA is an early event in 

AD manifestation and may have a causative role.

The results discussed above raise the question of whether this accumulation of oxidative 

DNA damage in AD patients is the result of enhanced damage formation or decreased 

repair. We addressed this question by looking at BER activities in short post-mortem brain 

samples from AD, MCI and age-matched control subjects. Using in vitro assays we analyzed 

each step of BER independently, as well as the process as a whole, and found significant 

changes in both AD and MCI samples [89]. We observed lower activity and protein levels of 

UDG, OGG1 and DNA polymerase β, as well as total BER, not only in an affected brain 

region (cortex) but, also in the least affected region (cerebellum). Interestingly, in MCI 

subjects there was an inverse correlation between total BER activity and the Braak stage, a 

quantification of the number of neurofibrillary tangles. Since neurofibrillary tangle 

pathology in AD is associated with cognitive decline [90], these findings suggest a link 
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between BER capacity and the degree of neurological impairment, as measured by the Braak 

stage.

A role for oxidative DNA damage in PD pathology is much less well documented. 

Nonetheless, Zhang and colleagues observed increased cytoplasmic 8-oxoG 

immunoreactivity, indicating increased levels of this oxidized base in the mtDNA and/or in 

cytosolic RNA [91].

Accumulation of mutations and deletions of the mtDNA have also been associated with 

degenerative diseases, particularly AD and PD. However, the significance of these 

associations is still unclear [92]. Lin and colleagues [93] were the first to report on the 

association of one particular mtDNA mutation, in this case at codon 331 of NADH 

dehydrogenase 2, with AD, even though this finding was shortly thereafter contested [94, 

95]. Since then, several reports have associated mtDNA mutations [96–100] and deletions 

[101–103] with AD. On the other hand, other studies found none or inconclusive 

associations between mtDNA instability and neurodegenerative diseases [104–108]. This 

conflicting range of results has led to the speculation that this variability may be due to the 

misleading amplification of ancient mtDNA sequences present in the nuclear DNA [109] or 

to great mosaicism of mtDNA among single cells in the brain [110].

While several mutations in genes with yet unclear function (alpha-synuclein, parkin, DJ-1, 

PINK-1 and LRRK2) have been associated with PD, the vast majority of cases are sporadic, 

without any relevant family history [111]. Mutations in the mtDNA have also been found in 

brains from PD patients [112–116], however recent results suggest that mtDNA deletions 

play a more significant role in the pathology of the disease [117]. Two studies published in 

parallel [118, 119] report very high levels of deleted mtDNA genomes in the substantia 

nigra region of brains from PD patients. These deletions are clonally expanded and are 

particularly enriched in cytochrome oxidase-negative cells, indicating that they may be 

directly responsible for impaired cellular respiration.

While the findings discussed above are correlative, and do not address the issue of causation 

directly, some results obtained with transgenic mouse models lend further support for a role 

of mtDNA damage accumulation in neuronal loss. For instance, alpha-synuclein (the 

primary component of Lewy bodies, which are seen in the brains of patients suffering from 

several neurodegenerations [120]) mutations have been linked to familial PD and transgenic 

mice expressing human mutated genes develop a severe motor disorder (for review, see 

[121]). Interestingly, in one of these mouse models (the A53T mutant), the mitochondria in a 

subset of neurons from the neocortex, brainstem and spinal cord ventral horn were positive 

for deoxynucleotidyl transferase-mediated UTP nick end labeling, indicating accumulation 

of mtDNA damage [122]. Using another approach, mice with a conditional knockout of the 

mitochondrial transcription factor A (TFAM) in dopaminergic (DA) neurons show reduced 

mtDNA expression and respiratory chain deficiency in midbrain DA neurons, which, in turn, 

lead to parkinsonism with adult onset of slow, progressive impairment of motor function 

accompanied by formation of intraneuronal inclusions and dopamine nerve cell death [123].
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Changes in BER with age and in neurodegeneration

The “Mitochondrial Theory of Aging” has been extensively discussed lately, with conflicting 

observations emerging. Two independent groups [124, 125] have generated transgenic mice 

expressing a mutated, proof-reading deficient POLγ. These animals exhibit severely 

elevated levels of mtDNA mutations and deletions and a premature aging phenotype that is 

strikingly similar to normal aging. These observations were initially hailed as “definitive 

proof” that mtDNA mutations cause aging. However, further investigation found that 

animals heterozygous for the mutated POLγ accumulate nearly as many mutations as 

homozygous littermates, but show no clear aging phenotypes, thus dissociating the 

mutational load from the premature aging outcome [126]. One implication of this theory is 

that the age-associated accumulation of mtDNA damage and mutations leads to increased 

oxidative stress because of faulty expression of mitochondrial genes that encode for 

components of the mitochondrial respiratory complexes. There is a great deal of 

experimental evidence that age is associated with increased mitochondrial generation of 

ROS [127], but, again, the recent observation that the mitochondrial POLγ mutant mice do 

not show enhanced oxidative stress [128], despite the elevated mutations, casts doubt on the 

direct relationship between these events. Nonetheless, oxidative damage in the mtDNA has 

been shown to increase significantly with age and yeast require BER activities to attain a full 

chronological lifespan, implying that accumulation of damage hinders life span [129].

Since the first demonstration by Hart & Setlow that DNA repair activities are inversely 

correlated to life span in mammals [130], the general consensus had been that DNA repair 

capacity decreases with age. However, we demonstrated that OGG1 activity rather increases 

with age in liver and heart mitochondria and does not change significantly in the nuclear 

extracts of rats [131] and mice [132]. Interestingly, the rodent mtUDG activity did not 

change with age in either compartment, indicating that the increased capacity to repair 8-

oxodG does not reflect a general up-regulation of DNA repair in mitochondria with age in 

these tissues. Thus, a steady-state accumulation of 8-oxoG in mtDNA in mouse liver and 

heart is therefore likely to be caused by an increased rate of damage formation, which 

exceeds the mtDNA repair capacity. The induction of the mitochondrial OGG1 activity may 

represent a cellular response in an attempt to counteract the increased DNA damage 

formation. Interestingly, Szczesny and Mitra demonstrated that mouse hepatocyte AP 

endonuclease activity is increased in nuclei as well as in mitochondria with age, whereas the 

total APE1 activity/level was unchanged [133].

A high level of oxidative damage can be particularly deleterious in post-mitotic tissue, such 

as the heart and the brain, because they cannot self-renew through cell proliferation. When 

nuclear and mitochondrial BER activities were evaluated in five distinct mouse brain 

regions, a significant age-dependent decrease in mitochondrial OGG1, UDG and NTH1 

activity was observed for all regions [134]. Another study of rat cerebral cortices showed 

that mitochondrial BER activities gradually declined with age, and this decline in activity 

parallels decreased expression of repair enzymes, such as OGG1 and POLγ [135].

Together these results point to a very important aspect in aging research, which is that there 

is a great degree of variability among different tissues in an organism. While the implication 
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that different cell types will show specific responses to DNA damage must be appreciated, 

these results also suggest that changes in mitochondrial BER with age may contribute to the 

accumulation of DNA damage, and the increase in oxidative damage to mtDNA might 

contribute to age-related decline, particularly in the brain.

Only a few studies have been performed to address age-associated changes in BER in 

humans. However, using a biotin-containing aldehyde-reactive probe for measuring AP sites 

in living cells, Ames and co-workers have shown that leukocytes from old human donors 

possess reduced AP site repair and a reduced activity of DNA glycosylases that remove 

methylated bases [136]. Moreover, cultured human fibroblasts showed decreased BER 

activity both in the nucleus and mitochondria with higher passage number [137], suggesting 

that senescence is also associated with decreased BER. However, in vitro cellular 

senescence may not fully emulate the molecular changes that take place in vivo, and this 

issue still needs to be further addressed using human samples.

Genetically inherited premature aging syndromes are very valuable tools when aiming to 

understand the normal aging process in humans. Cell lines from patients suffering from such 

syndromes have been established and isogenic cell lines with the functional gene transfected 

back into the deficient line are employed as controls. In the human disorder Cockayne 

syndrome, complementation group B (CSB), which is characterized by segmental premature 

aging and neurological dysfunction, there appears to be a deficiency in 8-oxoG repair. In 

particular, whole cell extracts from CSB-deficient cells display reduced 8-oxoG incision 

[138] and CSB mutant cells exhibit impaired in vivo repair of oxidative damage in nuclear 

genes [139]. More recently, we reported that the mitochondrial repair of 8-oxoG is also 

deficient in CSB-deficient cells [140]. While this deficiency in repairing oxidative damage, 

especially from mtDNA, may be a major underlying cause of the disease, the precise 

molecular role of CSB in the BER pathway is, however, still unclear. Based on identified 

interaction partners of the CSB protein, it has been proposed that CSB is an auxiliary factor 

in BER [141].

Work from several groups has proposed that changes in BER play a causative role in 

neurodegeneration. Iida and colleagues found changes in expression of BER enzymes, 

including the mitochondrial β-OGG1 in neuronal cytoplasm and reduced Polβ in 

midtemporal cortex samples of affected AD tissue [142]. Lower OGG1 activity was also 

reported for nuclear lysates from affected human AD brain regions using a sodium 

borohydride trapping assay, which, however, only measures the robustness of the AP lyase 

activity of OGG1 [143]. Moreover, the same group recently reported that mutations in the 

OGG1 gene that affect its activity are found preferentially in AD patients [144].

The results discussed here provide strong support to the hypothesis that mtDNA instability 

contributes to neurodegeneration. Our results showing lower BER activity in AD brains 

further suggest that lower BER may be a predisposing factor in the development of AD. 

Together, these shed some light in the sequence of events and factors that may be involved 

in the complex cascade that leads to neurodegeneration, and hopefully contribute to the 

development of risk assessment tools as well as preventive drug therapy.
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Figure 1. 
Schematic representation of the Base Excision Repair Pathway in Mammalian 

Mitochondria. Each enzymatic step and the proteins involved are further described in the 

text.
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Figure 2. 
Splice variants of DNA repair enzymes found in mammalian mitochondria.
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