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Abstract

The female chicken, as with other species with internal fertilization, can tolerate the presence of spermatozoa within specialized sperm-

storage tubuli (SST) located in the mucosa of the utero-vaginal junction (UVJ) for days or weeks, without eliciting an immune response.

To determine if the oviduct alters its gene expression in response to sperm entry, segments from the oviduct (UVJ, uterus, isthmus,

magnum and infundibulum) of mated and unmated (control) hens, derived from an advanced inter-cross line between Red Junglefowl

and White Leghorn, were explored 24 h after mating using cDNA microarray analysis. Mating shifted the expression of fifteen genes in

the UVJ (53.33% immune-modulatory and 20.00% pH-regulatory) and seven genes in the uterus, none of the genes in the latter segment

overlapping the former (with the differentially expressed genes themselves being less related to immune-modulatory function). The other

oviductal segments did not show any significant changes. These findings suggest sperm deposition causes a shift in expression in the

UVJ (containing mucosal SST) and the uterus for genes involved in immune-modulatory and pH-regulatory functions, both relevant

for sperm survival in the hen’s oviduct.
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Introduction

Following natural mating in chicken, a subpopulation of
selected spermatozoa is stored for up to several weeks
in the sperm-storage tubuli (SST), the primary sperm
reservoir located in the mucosa of the utero-vaginal
junction (UVJ) segment of the oviduct (Bakst 2011),
while the rest of the ejaculate is voided from the vagina.
The SST-stored spermatozoa maintain integrity and
potential fertilizing capacity by mechanisms yet
unknown. The motility of spermatozoa from chickens,
turkeys and quails is inhibited by decreasing the pH level
– an effective way to provoke sperm quiescence in vitro
(Holm et al. 1996, Holm & Wishart 1998) and similar to
what occurs in the male- (epididymal cauda) and female-
(oviduct) sperm reservoirs in mammals (Rodriguez-
Martinez 2007). However, whether there are any genes
involved in pH regulation in vivo has not been
investigated. Stored spermatozoa are released from the
SST to be present alongside the entire oviduct
transported by anti-peristalsis to reach the secondary
reservoir in the infundibulum, where fertilization of the
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ova occurs (Brillard 1993, Bakst 2011, Sasanami et al.
2013). Sperm SST-release has been considered a
continuous event where aliquots of the stored sperm
subpopulation leave the SSTs in relation to various
factors, from aquaporin changes in the SST epithelium
(Bakst 2011) to ovulation-related progesterone stimuli
(Ito et al. 2011, Sasanami et al. 2013).

Spermatozoa and seminal proteins are antigenic to
the female immune system, and should therefore be
promptly rejected (Das et al. 2009). Moreover, immune-
competent cells for acquired immunity, namely
macrophages, antigen-presenting cells expressing MHC
class II, CD4C and CD8C T cells and premature B and
plasma cells have been localized to the mucosal tissue
of all avian oviductal segments (Das & Isobe 2008).
However, those spermatozoa that survive in the SST
seem tolerated by the female during their permanence
in the oviduct. In mammals, seminal plasma plays an
important role for sperm survival in the female
reproductive tract (Robertson 2007) despite its antigenic
nature, potentially owing to its immune-modulatory
This work is licensed under a Creative Commons
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properties that might culminate in a state of functional
immune tolerance to paternal antigens (Robertson et al.
1997). Such interplay is likely to rely on differential gene
expression by the female, either through genes acting
on sperm survival or on those involved in immune
tolerance. The arrival of spermatozoa to the oviduct leads
to changes in its transcriptome or proteome profile as
determined in mice (Fazeli et al. 2004) and pigs
(Georgiou et al. 2007). In turkeys, sperm artificial
insemination (AI) up-regulated threefold the expression
of avidin mRNA in SSTs (Long et al. 2003). In chickens,
the expressions of transforming growth factor b (TGFb)
and TGFb- receptors (TBRs) are increased within 24 h
after insemination (Das et al. 2006). The authors
suggested this enhanced gene expression may suppress
anti-sperm immune reaction possibly protecting sperm in
the SST. In contrast, avian b-defensin, an important factor
for innate immunity, is expressed in the mucosa of all
oviductal segments; the expression being highest in the
vagina and lowest in the SST, suggesting the immune
response against pathogens or spermatozoa varies within
the tract (Abdel-Mageed et al. 2008). A genome-wide
gene expression analysis using an oligonucleotide
microarray has shown differential expression of tran-
scripts such as Neuropeptide Y, Enah/Vasp-like and of
trafficking kinesin-binding protein 1 (responsible for
short- and long-term sperm survival) in the SST of Tsaiya
Ducks (Huang et al. 2011). The mRNA expression of
immune-reactive IL1B and LITAF is increased in the
vagina up to 6 h after AI in chicken but remains
unchanged in the other oviductal segments, indicating
that AI can influence the immune reactivity in the vagina
but not necessarily in the SST (Das et al. 2009). However,
information is still lacking as to how the sperm-oviduct
interaction post-mating results in sperm survival with
intact fertilization potential. We therefore tested the
hypothesis that there is a relatively rapid modulatory gene
expression shift in the female oviduct that can promote or
inhibit their homeostatic action (thereby affecting sperm
motility by pH regulation at the UVJ containing mucosal
SST) and their immune system to tolerate the presence
of allogeneic spermatozoa in the oviduct for lengthy
periods. Gene expression changes were explored using
cDNA microarray analysis of various segments of the
oviduct of hens, comparing un-mated (control) hens to
those mated to fertile roosters.
Materials and methods

Animals and sources of oviductal segments

The chickens used in this study were derived from an
advanced inter-cross line (RJF/WL-L13, 9th generation)
between a White Leghorn layer breed (WL-L13, a high
egg-laying bird) and Red Junglefowl (RJF, the wild
progenitor of the modern chicken with a low laying
rate); see Johnsson et al. (2012) for details of the cross
Reproduction (2015) 150 473–483
and breeds used as well for details on rearing and
breeding routines. Briefly, all advanced inter-cross line
chickens were kept separated by gender at the poultry
facilities of Linköping University. Food and water were
available ad libitum and the chickens were held under
controlled temperature and light regimes (12h light:12h
darkness cycle, 5 lux) in 1–2 m2 pens depending on age
for their first 7 weeks, in compliance with European
Community (Directive 2010/63/EU) and Swedish (SJVFS
2012:26) current legislation. Throughout all experi-
ments, animals were handled carefully and in such a
way to avoid any unnecessary stress. Semen from
sexually mature, proven fertile roosters was collected
by manual abdominal massage to confirm their semen
quality prior to experimental mating with sexually
mature hens. The semen was primarily extended with
Dulbecco’s medium (1:10 v/v) and examined in four
replicates for sperm concentration and kinematics using
a light microscope equipped with a thermal plate
(41 8C), positive phase contrast optics (10! objective),
a Charge Coupled Device (CCD) camera (UI-1540LE-M-
HQ, IDS Imaging Development Systems, Obersulm,
Germany), and the Qualisperm Software (Biophos SA,
Lausanne, Switzerland). To comply with the optimal
functioning of the software algorithm, the extended
semen was further extended with the same medium to a
final 1:250 rate. Hens (nZ8) were mated and, 24 h later,
euthanized by cervical dislocation and decapitation,
along with unmated hens (controls, nZ4). Both mated
and control hens were maintained in the same husbandry
conditions, following Swedish regulations, as previously
described. Immediately post-mortem, the female oviduct
was dissected out, and segments of the oviduct identified
(UVJ, uterus, isthmus, magnum and infundibulum) under
stereomicroscopy. Representative transversal samples
were then collected at every segment, in its mid-region,
following classical descriptions (Bakst 1998) and snap-
frozen in liquid nitrogen (LN2), prior to being stored at
K80 8C until being processed. Collection instruments,
gloves and specimen holders were changed between
each specimen to avoid confounding contamination.
A supplementary UVJ sample was obtained from each
mated hen and fixed in 4% formaldehyde for histological
confirmation of sperm presence in the SST-reservoirs.
Ethics statement

The experiments were approved well in advance by
the ‘Regional Committee for Ethical Approval of Animal
Experiments’ (Linköpings Djurförsöksetiska nämnd) in
Linköping, Sweden (permit no 75–12).
cDNA microarray

A total of 36 microarrays were run for this experiment. In
the case of UVJ-segments, four control females and eight
www.reproduction-online.org
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mated females were used (12 arrays). In the case of the
remaining oviductal segments (uterus, isthmus, magnum
and infundibulum), three control and three mated
females were used (24 arrays). Total RNA was extracted
from the various samples using TRIzol (Invitrogen). Total
RNA from each sample was quantified using a
NanoDrop 1000 (Thermo Fisher Scientific, Fremont,
CA, USA), with RNA integrity (RIN R8) assessed using
an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.,
Santa Clara, CA, USA). Double stranded cDNA was
synthesized using RevertAid Premium First-Strand cDNA
Synthesis Kit (Thermo Fisher Scientific) following the
manufacturer’s instructions. The ds-cDNA samples were
cleaned, labeled, hybridized and washed according to
the manufacturer’s protocols of the Roche Nimblegen
12!135 k arrays, described elsewhere (Li et al. 2013)
and the manufacturers guidelines as detailed in the
Gene Expression Analysis protocol (Roche NimbleGen
Systems, Inc.). The cDNA microarray used custom-
designed 12!135 k array slides for samples of UVJ,
uterus, isthmus, magnum and infundibulum, derived
from control (unmated) and mated birds. The array
included all Ensembl (Flicek et al. 2012) and RefSeq
(Pruitt et al. 2009) chicken transcripts. As well as all
known transcripts, the array included probe sequences
from a chicken brain cDNA library (Boardman et al.
2002), which provided a further 10 686 probesets. Three
60-mer-oligonucleotide probes represented each tran-
script. To avoid SNPs in probe sequences, all known SNP
position derived from the recent resequencing of Red
Junglefowl and domestic chickens (Rubin et al. 2010)
were masked, so that probes could not be chosen from
sequences with known SNPs. This array design has been
utilised extensively in previous work with the chicken
strain utilised in this study (an advanced inter-cross
between Red Junglefowl and White Leghorn birds). A
targeted expression QTL analysis that utilised the comb
tissue from 39 males (i.e. 39 arrays were used in the
study) (Johnsson et al. 2014) was found to corroborate
and develop the results previously obtained using qPCR
(Johnsson et al. 2012). Furthermore, this same array
design has been successfully used in a separate
expression QTL study, this time involving the hypo-
thalamus tissue of 129 advanced inter-cross individuals
(Johnsson et al. 2015). Given these extensive studies
using a variety of tissue types in the identical strain to that
used in this study, and the custom nature of the design of
this microarray, we have strong support for its reliability
and the replication of results. The current microarray
data are available in the ArrayExpress database (www.
ebi.ac.uk/arrayexpress) (Kolesnikov et al. 2015) under
the accession number E-MTAB-3327.
Quantitative PCR assay

The tissue samples used for the qPCR experiments were
the same samples used for the microarray experiments.
www.reproduction-online.org
Verification qPCRs were performed for four of the
differentially expressed genes detected (for primer details
see Supplementary Table 1, see section on supplementary
data given at the end of this article) in the UVJ containing
mucosal SST. First strand cDNA for qPCR was made with
Fermentas (St Leon-Rot, Baden-Württemberg, Germany)
RevertAid Reverse Transcriptase, using 10 mM dNTPs,
RiboLock nuclease inhibitor, and oligo(dT)18 primer
(Thermo Fisher Scientific), according to the manufacturer’s
protocol. qPCR was performed with Maxima SYBR Green
qPCR mastermix (Thermo Fischer Scientific) in 15 ml
reactions with 0.3 M of each oligonucleotide primer on
a Rotor-Gene 6000 real-time cycler (Corbett Research,
Cambridge, UK). The PCR program consisted of a 10 min
activation step at 95 8C, followed by 40 cycles of 15 s at
95 8C, and 1 min at 60 8C. After cycling, products were
melted by ramping the temperature from 72 8C to 95 8C.
The qPCR data was analysed with the comparative DDCt
method (Livak & Schmittgen 2001). The qPCR has been
run in triplicate per gene per sample. Average Ct value of
three housekeeping genes (reference genes)- b2 micro-
globulin, TATA box binding protein, and RNA polymerase
II subunit C1- was subtracted from the average Ct value of
target gene (control, mated) to calculate DCt of target
gene. Normalized target gene expression in mated hens
was calculated by a formula 2(KDDCt).
Statistical analysis

Semen variables (sperm concentration and motility) are
expressed as meanGS.E.M. Data were analysed using a
non-parametric t-test (SPSS IBM corp. 2012 version 21).
For the microarray, the slide was scanned following the
protocol for scanning one-color NimbleGen arrays with
the MS 200 Microarray Scanner and the MS 200 Data
Collection Software. Scanned images (TIFF format) were
then imported into DEVA Software (Roche NimbleGen,
Inc, DEVA 1.2.1) for grid alignment and expression data
analysis. Expression data were normalized through
quantile normalization and the Robust Multichip Average
(RMA) algorithm included in the Deva Software.
Statistical analysis of normalized gene expression data
was carried out using open source R (Version 3.1.2)
software package. Dimensionality reduction was
obtained through Principal Component Analysis (PCA)
using package ‘FactoMineR’ and plotted using ‘ggplot2’
along the first two principal component capturing most of
the variation in the data. Linear model using the empirical
Bayes’ approach as implemented in the package ‘limma’
was used to calculate differentially expressed genes in all
oviductal segments between control (nZ3) and mated
females (nZ3) except UVJ, where four controls and eight
mated individuals were used. Multiple testing was carried
out using False Discovery Rate (FDR) and 5% FDR
significance threshold (equivalent to a P value of 0.05)
was used to declare a significant difference (Adjusted
P value, q) between populations.
Reproduction (2015) 150 473–483
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Figure 1 Representative histology of the UVJ containing mucosal SST
holding the sperm. Microphotograph of a section of the UVJ of a mated
hen (24 h post-mating) depicting sections of SST, Bar: 100 mm, HE.
In (A) a higher magnification (Bar: 10 mm) of a marked SST depicts
spermatozoa in the lumen (thick arrow), Lu: lumen of the UVJ.
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Gene ontological (GO) classification and functional
analysis was carried out using an open source Panther
Classification System (http://pantherdb.org) (Mi et al.
2013) and UniProtKB (http://www.uniprot.org/) (Magrane
& Uniprot 2011). The GO classified data were then
exported into Microsoft Excel 2013 to produce pie chart
figures for GO categories.
Results

The semen of the roosters used in the experiment varied
in sperm concentration (1.2G0.6–5.9G0.7 billion/ml,
300
A

F G H

B C

200

100

0

–100P
C

2 
(1

5%
)

–200

–300

–300 –100

PC1 (35%)

100 300

6

4

2

0

–5.0 –2.5 0.0 2.5 5.0

Fold change

–L
og

10
 (

P
 v

al
ue

)

6

4

2

0

–5.0 –2.5 0.0 2.5 5.0

Fold change

–L
og

10
 (

P
 v

al
ue

)

6

4

2

0

–5.0 –2.5

Fold 

–L
og

10
 (

P
 v

al
ue

)

300

200

100

0

–100P
C

2 
(2

6%
)

–200

–300

–300 –100

PC1 (34%) PC1 (

100 300

300

200

100

0

–100P
C

2 
(2

5%
)

–200

–300

–300 –100

Figure 2 PCA and volcano plots for gene expressions in all oviductal segm
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meanGS.E.M.) and sperm progressive motility (74.4G
15.8–99.00G0.6%), within ranges reported for RJF and
commercial layers (Malik et al. 2013). All mated hens
had spermatozoa in their SST, as representatively
depicted in Fig. 1.
Differential gene expression between mated and
control individuals in the UVJ containing mucosal
SST and uterus

The cDNA microarray revealed differential gene
expression in the UVJ containing mucosal SST and the
uterus while the isthmus, magnum and infundibulum
remained unchanged between control and mated
individuals (Fig. 2). Analysis of the first and second
components of the PCA (Fig. 2A, B, C, D and E) showed
50–65% of the total variation came from between-
groups despite volcano plots (Fig. 2F, G, H, I and J)
indicating only the UVJ and the uterus showed a
significant differential expression of certain genes. In
total, 15 genes were differentially regulated between
control and mated birds in the UVJ containing mucosal
SST, and seven in the uterus (see Table 1).
Classification of differentially expressed genes in UVJ
containing mucosal SST and uterus in response to
mating

Differentially expressed genes (control vs mated)
(q%0.05) have been classified for functionality based
on both online database services and peer reviewed
published articles (Table 2). The highest (eight) and
second highest (three) number of differentially expressed
genes in the UVJ containing mucosal SST were found
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Table 1 Differentially expressed genes in the UVJ containing mucosal SST and the uterus of mated hens compared to unmated (control) hens at
5% FDR corrected P value (q%0.05).

Gene symbol or ID Tissue ENSEMBL/UniProtKB ID Gene name logFC P value q value

Up-regulated
LOC424944 UVJ ENSGALG00000008283/F1P1T3 Cytochrome P450 2J2-like

(LOC424944)
4.04 4.90!10K06 0.047

PLCH1 UVJ ENSGALG00000010312/E1C7E3 Phoshpolipase C et al. 1.82 6.46!10K06 0.047
RHAG UVJ ENSGALG00000016684/F1NFG6 Rh-associated glycoprotein 1.52 2.94!10K05 0.048
PLA2G2E UVJ ENSGALG00000014176/F1NZ96 Phospholipase A2, group IIE 1.19 1.73!10K05 0.048
CPAMD8 UVJ ENSGALG00000003742/F1NN85 C3 and PZP-like, alpha-2-macro-

globulin domain containing 8
1.17 3.05!10K05 0.048

ATP13A3 UVJ ENSGALG00000007075/E1C7N6 ATPase type 13A3 1.15 1.84!10K05 0.048
C17ORF85 UVJ ENSGALG00000002653/F1NGX2 Chromosome 19 open reading

frame, human C17orf85
1.11 3.78!10K05 0.049

SLC12A8 UVJ ENSGALG00000012045/F1NG01 Solute carrier family 12, member 8 0.93 2.09!10K05 0.048
LOC771318 UVJ ENSGALG00000015516/F1NR26 Phosphodiesterase 7A 0.72 3.16!10K05 0.048
LMBRD2 UVJ ENSGALG00000013377/E1BV17 LMBR1 domain containing 2 0.67 1.49!10K05 0.048
GKN2 Uterus ENSGALG00000000119/E1C2G7 Gastrokine 2 8.40 1.71!10K06 0.019
LOC395256 Uterus ENSGALG00000010927/F1NSM7 Matrix extracellular

phosphoglycoprotein
7.79 9.04!10K09 0.0001

IGFN1 Uterus ENSGALG00000000295/E1C7I7 Immunoglobulin-like and fibronec-
tin type III domain containing 1

3.46 4.95!10K06 0.024

Q7LZS0_CHICK Uterus ENSGALG00000008678/E1BX43 Kininogen 1 3.36 4.21!10K06 0.024
KCNV1 Uterus ENSGALG00000016109/E1BQJ2 Potassium channel, subfamily V,

member 1
3.12 6.63!10K06 0.024

ADORA2A Uterus ENSGALG00000006642/E1BXP5 Adenosine receptor A2 2.48 6.78!10K06 0.024
Q0KKP4_CHICK Uterus ENSGALG00000009365/F1P0L8 Cytochrome P450, family 51,

subfamily A, polypeptide 1
1.98 7.79!10K06 0.024

Down-regulated
RGS1 UVJ ENSGALG00000002549/E1BU64 Regulator of G-protein signaling 1 K2.20 3.27!10K05 0.048
GZMA UVJ ENSGALG00000013548/F1N917 Granzyme A (granzyme 1, cytotoxic

T-lymphocyte-associated serine
esterase 3)

K1.92 1.80!10K05 0.048

LOC417962 UVJ ENSGALG00000011799/E1BQK1 Uncharacterised (LOC4179620) K1.68 3.32!10K05 0.048
FGF18 UVJ ENSGALG00000002203/Q9I950 Fibroblast growth factor 18 K1.59 7.43!10K07 0.016
ENSGALG
00000013955

UVJ ENSGALG00000013955/1BW70 Uncharacterised K1.21 2.89!10K05 0.048
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classified as immune regulatory (53.33%) and pH-regu-
latory (20%) respectively. In the case of the uterus, there
was no particular enrichment of any one category,
though the number of differentially expressed genes was
so small this is hardly surprising. Additional gene
ontology (GO) analyses results of differentially expressed
genes based on log fold change with a lower significance
threshold (for up regulated genes, logFC O0.45 and
for downregulated genes, logFC !K0.45) are shown
in Fig. 3 for the UVJ and Supplementary Figure 1, see
section on supplementary data given at the end of this
article for the remainder of the oviductal segments.
Twelve categories were identified (see Fig. 3), with
metabolic process (GO: 0008152) consistently being the
largest GO category identified in each sample tissue.
However, the immune system process (GO: 0002376)
and response to stimulus (GO: 0050896) categories were
also identified (Fig. 3). The immune system process is
directly related to sperm survival and it was therefore
considered to be of prime interest for further investi-
gation. The GO term ‘response to stimulus’ was also
considered important for further investigation, because
gene shifts in this category might be due to the stimuli
www.reproduction-online.org
produced by the post-mating spermatozoa in the UVJ
(Fig. 1). A total of 122 up-regulated and 103 down-
regulated genes in the UVJ of mated hens were
categorized as being related to the immune system
process (Supplementary Table 2). Similarly, 109 up-re-
gulated and 99 down-regulated genes were found in the
GO term category ‘response to stimulus’ (Supplementary
Table 3). The possible roles of these up- and down-
regulated genes in the UVJ have been summarized in
Supplementary Tables 2 and 3.
Differential gene expression by oviductal segments

A comparison of expression between oviductal segments
for down- and up-regulated genes is presented in
Table 3. Irrespective of mating, the UVJ containing
mucosal SST possessed the greatest number of down-
regulated genes, as compared to the other segments. The
UVJ, uterus and magnum had greater numbers of
up-regulated genes. In terms of the number of unique
(specific to a single segment) genes that were sugges-
tively differentially expressed (logFC O0.45 or logFC
!K0.45) in the UVJ, we found a total of 1712 genes
Reproduction (2015) 150 473–483
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Table 2 Functional classification of differentially expressed (control vs
mated) genes at 5% FDR corrected P value (q%0.05) in the UVJ
containing mucosal SST and uterus of hens.

Category Gene symbols
Number of
genes (%) Tissue

Immune-modulatory LMBRD2, CPAMD8,
P450, PLA2G2E,
RGS1, PDE7A,
GZMA, PLCH1

8 (53.33) UVJ

pH-regulatory ATP13A3, SLC12A8,
RHAG

3 (20) UVJ

Growth factor FGF18 1 (6.67) UVJ
Uncharacterized C17orf85,

LOC417962,
ENSGAL-
G00000013955

3 (20) UVJ

Receptor activity ADORA2A 1 (14.29) Uterus
Structural molecule

activity
IGFN1 1 (14.29) Uterus

Transporter activity KCNV1 1 (14.29) Uterus
Egg shell formation

related
Ovocleidin 116,

GKN2
2 (28.51) Uterus

Unknown KNG1,
Q0KKP4_CHICK

2 (28.51) Uterus
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were up-regulated and 977 genes were down-regulated
(see Supplementary Excel file 1, see section on
supplementary data given at the end of this article,
where the further gene ontology analysis results of these
genes can be seen).
Four differentially expressed genes in the UVJ were
validated by qPCR

The two up-regulated (logFC O0.45) genes (P450 and
PTGS1) and the two down-regulated (logFC !K0.45)
genes (RGS1 and GZMA) revealed by microarray
analysis were also expressed in the same direction
when measured by real time quantitative polymerase
chain reaction (Fig. 4), to verify the microarray results
(see also methods section for further confirmation
analysis).
Discussion

The present study reveals that sperm deposition during
natural mating causes relatively rapid (within 24 h)
changes in the expression of genes involved in
immune-modulatory and pH-regulatory functions, both
relevant for sperm survival in the reproductive tract of
hens. However, these changes are apparent only in the
UVJ containing mucosal SSTs and the uterus. Absence of
such significant gene expression shifts in other areas,
indicates that the UVJ function requires up- or down-
regulation of specific genes within a brief period post-
entry, to warrant the storage of sufficient fertile
spermatozoa for fertilization in the primary sperm
reservoir (mucosal SSTs).
Reproduction (2015) 150 473–483
The examination of the UVJ revealed that both
immune-reactive and immune-suppressive genes were
differentially expressed in mated hens. The immune-
modulatory genes found in the current study have also
been related to immune regulation by other studies. For
instance LMBRD2- is responsible for cellular migration in
Dictyostelium dicoideum (Kelsey et al. 2012); GZMA – is
able to produce local inflammatory response in the target
cells (Irmler et al. 1995, Catalfamo & Henkart 2003, Bots
& Medema 2006); PDE7A is expressed in human T cells
(Mary et al. 1987, Krause & Deutsch 1991, Soderling &
Beavo 2000); RGS1 is a regulator of G protein-couple
receptors (GPCR) (see review Cho & Kehrl (2009));
PLCH1 is responsible for GPCR mediated signaling in
mouse neuroblastoma cells Neuro2A (N2A) cells (Kim
et al. 2011) and CPAMD8 in human is also related to
immune-regulation (Philip et al. 1994, Volanakis 2002,
Skornicka et al. 2004, Athippozhy et al. 2011, Jeng et al.
2011). Moreover, the up-regulation of P450 and PTGS1
in the UVJ of mated hens could potentially indicate the
synthesis of prostaglandin in this area. PTGS-derived
prostaglandins are involved both in oviductal motility
(Brillard 1993) as well as in immune-modulation (Harris
et al. 2002, Nebert & Dalton 2006). Following reports
that spermatozoa could stimulate prostaglandin synthesis
in bovine oviductal cells (Kodithuwakku et al. 2007),
we hereby speculate that the entry of spermatozoa and
the over-expression of PLA2G2E in the UVJ-area might
enhance the up-regulation of PTGS1 and prostaglandin
synthesis (Murakami et al. 2002). Interestingly, the gene
P450 has been indicated as being differentially expressed
in Drosophila melanogaster females in response to
mating (McGraw et al. 2004).

One could argue that male courtship and sexual
harassment of the females, or even mating could have
influenced the females and their oviducts, rather than –
or concerted with – the presence of sperm or seminal
fluid. Hormonal and gene induction changes at brain
level are elicited by these events (Ball & Balthazart
2001) but evidence of changes at the oviduct level is
yet, to the best of our knowledge, not available. Use of
artificial insemination could provide some cues, by
waiving this eventual male courtship/mating factor.

Spermatozoa are sensitive to pH and their motility is
rapidly affected by changes in pH levels. In domestic
mammals (cow and pigs) and avian (chicken, quail and
turkey) in vitro sperm motility is highest at an alkaline pH
and can be manipulated towards quiescence by
exposure to low pH (Holm & Wishart 1998, Rodriguez-
Martinez 2007). In chicken, pH values below 7.8 inhibit
sperm motility, and at this level sperm motility remains
low, while raising the pH value 0.2 units and higher
provides vigorous sperm motility (Holm & Wishart
1998). In vivo, porcine spermatozoa are quiescent in
the cauda epididymides (pH 6.5, Rodriguez-Martinez
et al. 1990); motility becoming activated by exposure
to high pH or increasing bicarbonate levels
www.reproduction-online.org
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(Rodriguez-Martinez 2007). Interestingly, the oviductal
sperm reservoirs of the sow register lower pH levels (6.7)
compared to the upper tubal segments where fertiliza-
tion takes place (ampullary-isthmic junction: 7.5;
ampullae: 8.3) (Rodriguez-Martinez 2007) adding
circumstantial evidence to suggestions that changes in
pH from acidic to alkaline would also regulate sperm
transfer to the fertilization site (Holm et al. 1996).
Interestingly, our current results indicate that the entry of
spermatozoa to the SST at UVJ causes alterations in the
expression of pH-regulatory genes such as ATP13A3,
www.reproduction-online.org
SLC12A8, and RHAG. ATP13A3 potentially regulates pH
by ion (NaC or KC) and proton (HC) exchange between
intra and extracellular spaces (Pang et al. 2001, 2004,
Bublitz et al. 2011, Palmgren & Nissen 2011). Similarly,
SLC12A8 also affects ion exchange (Arroyo et al. 2013),
whilst RHAG functions in the exchange of protons
between intra and extracellular spaces (Westhoff et al.
2004, Benjelloun et al. 2005). Therefore, it is possible
that variation in pH is related to sperm quiescence
during storage in the SST. Further studies are obviously
needed to explore pH in the SST.
Reproduction (2015) 150 473–483



Table 3 Inter-segmental differential gene expressions in control and mated hens.

Total downregulated genes

Infundibulum Magnum Isthmus Uterus UVJ

Infundibulum Control 2586 1255 1399 4630
Mated 3281 714 951 1381

Magnum Control 2328 875 1195 4592
Mated 2588 456 1361 3152

Isthmus Control 8351 7391 596 7313
Mated 5409 5827 1309 5117

Uterus Control 7649 6806 308 5945
Mated 7177 8733 1100 5084

UVJ Control 7902 7389 2868 2653
Mated 5694 7523 2564 1814

Total upregulated genes

135

115

Expression of selected genes in the UVJ of mated
birds relative to control birds

95

75

55

35

15

–5
P450 PTGS1 RGS1 GZMA

Figure 4 Quantitative PCR verification of microarray results. Two
up-regulated (logFC O0.45) genes- P450, PTGS1 and two down-
regulated (logFC !K0.45) genes- RGS1, GZMA have been verified
using qPCR assay. The Y-axis represents mean expression (calculated
by 2KDDCt) of genes and the error bars represents GS.E.M.
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The unique nature of the UVJ containing mucosal SST
is also revealed by the large gene expression shifts that
are unique to this segment at all times (irrespective of
whether mating has taken place or otherwise). The UVJ
had the greatest number of down-regulated genes
relative to the other segments of the oviduct in
the control birds, potentially preparing the area for the
presence of foreign spermatozoa. Post insemination, the
UVJ showed once again the greatest number of down-
regulated genes relative to the other oviductal segments
(Table 3). Spermatozoa are retained in the SST for a
longer duration than in any of the other compartments
due to the nature of avian reproduction, making this
compartment essential for sperm survival. Gene ontol-
ogy (GO) analysis of the differentially expressed genes in
the UVJ showed an enrichment of 12 gene classes,
among them several involved in the orchestration of
immune-regulation (GO: 0002376: immune system;
GO: 0050896: the response to stimulus) (Fig. 3A and
B). Up to 122 up-regulated and 103 down-regulated
genes were involved in immune system processes.
Interestingly, most of the down-regulated genes in the
immune system process category belong to the immune
reactive functions while up-regulated genes in this
category belong to immune reactive, immune suppres-
sive and other functions (see Supplementary Table 2, see
section on supplementary data given at the end of this
article). The presence of spermatozoa in the SST at UVJ
confirmed that this compartment was colonized in
mated females. GO analysis revealed the majority of
the down-regulated genes in the GO term category
‘response to stimulus’ are immune responsive while the
majority of the up-regulated genes are related to stress
responsiveness (Fig. 3C and D). The data indicate that
immune responsive genes are down regulated in the UVJ
of mated hens, which might favor the survival of
spermatozoa in its mucosal SSTs.

Of the seven genes up-regulated in the uterus of mated
hens, Ovocleidin 116 is a candidate molecule for the
regulation of calcite growth during egg shell calcification
(Hincke et al. 1999). GKN2 is an eggshell specific
Reproduction (2015) 150 473–483
protein (Jonchère et al. 2010) while the function of
KNG1 is yet unknown. IGFN1 is responsive to stress and
elasticity (Erickson 1994, Mansilla et al. 2008). KCNV1
is a voltage-dependent KC exchanger (González et al.
2012). ADORA2A is a G-protein-coupled receptor partly
responsible for the immune modulatory pathway (Haskó
et al. 2000). Cyp51A1, which is a member of
cytochrome P450 family, is responsible for prostaglandin
synthesis (Nebert & Dalton 2006), and appears to help in
the survival of pre-fertilized spermatozoa as well as aids
in egg shell formation and increasing elasticity in the
uterus (Table 2). The Ovocleidin 116 and GKN2 are also
reported to be up-regulated in the uterus of laying hens
when compared to juvenile hens (Dunn et al. 2009).
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Summarizing all the differentially expressed genes, we
can speculate that changes in the expression of genes in
the UVJ containing mucosal SST of mated hens might
participate in immune-modulation and the regulation of
pH in the segment. Changes in the expression of genes in
the uterus might be involved in egg shell formation and
immune-modulation while gene expression shift in other
segments of the oviduct remained non-significant
between control and mated hens. Such immune-
modulatory and pH-regulatory gene shifts in the UVJ
could promote sperm survival by immune-suppression
while immune-reactivity might eliminate dead sperma-
tozoa or sperm/seminal fluid debris. Similarly, changes
in local pH might keep spermatozoa quiescent or
increase their motility depending on whether they will
be retained in the SST or released from this compartment
for fertilization. However, further research is required to
explore the roles of each of the differentially expressed
genes regarding cross-talk between spermatozoa and the
oviduct of mated chicken.
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This is linked to the online version of the paper at http://dx.doi.
org/10.1530/REP-15-0253.
Declaration of interest

The authors declare that there is no conflict of interest that
could be perceived as prejudicing the impartiality of the
research reported.
Funding

The project has been financed by the Research Council
FORMAS, Stockholm. (Project number: 221-2011-512). Fund-
ing for D Wright and J Fogelholm was from the FORMAS grant
number: 221-2012-667 and VR grant number: 621-2011-4802.
Acknowledgements

We are grateful to Martin Johnsson and Andrey Höglund (IFM
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