
Immunotherapy for neuro-oncology: the critical rationale
for combinatorial therapy

David A. Reardon, Mark R. Gilbert, Wolfgang Wick, and Linda Liau

Center of Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts (D.A.R.); Department of
Medical Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts (D.A.R.); Neurology Clinic and National
Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (M.R.G.); Neurology Clinic and National Center for Tumor
Diseases, University of Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center
(DKFZ), Heidelberg, Germany (W.W); Brain Tumor Program, Department of Neurosurgery, University of California Los Angeles, David
Geffen School of Medicine at UCLA, Los Angeles, California (L.L.)

Corresponding Author: David A. Reardon, MD, Clinical Director, Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue,
D2134, Boston, MA 02215-5450 (david_reardon@dfci.harvard.edu).

A successful therapeutic paradigm established historically in oncology involves combining agents with potentially complementary
mechanisms of antitumor activity into rationally designed regimens. For example, cocktails of cytotoxic agents, which were care-
fully designed based on mechanisms of action, dose, and scheduling considerations, have led to dramatic improvements in sur-
vival including cures for childhood leukemia, Hodgkin’s lymphoma, and several other complex cancers. Outcome for glioblastoma,
the most common primary malignant CNS cancer, has been more modest, but nonetheless our current standard of care derives
from confirmation that combination therapy surpasses single modality therapy. Immunotherapy has recently come of age for
medical oncology with exciting therapeutic benefits achieved by several types of agents including vaccines, adoptive T cells,
and immune checkpoint inhibitors against several types of cancers. Nonetheless, most benefits are relatively short, while others
are durable but are limited to a minority of treated patients. Critical factors limiting efficacy of immunotherapeutics include in-
sufficient immunogenicity and/or inadequate ability to overcome immunosuppressive factors exploited by tumors. The paradigm
of rationally designed combinatorial regimens, originally established by cytotoxic therapy for oncology, may also prove relevant for
immunotherapy. Realization of the true therapeutic potential of immunotherapy for medical oncology and neuro-oncology pa-
tients may require development of combinatorial regimens that optimize immunogenicity and target tumor adaptive immuno-
suppressive factors.
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The past few years have seen remarkable outcomes achieved
by a variety of immunotherapeutic strategies across a spec-
trum of cancers. Nonetheless, with the exception of chimeric
antigen receptor (CAR) T cell therapy targeting CD19 for B line-
age leukemia, where the majority of treated patients have
achieved deep and durable antitumor benefit,1,2 outcomes
achieved by single agent immunotherapeutics have been limit-
ed to either relatively short duration of benefit or benefit
achieved by a relatively small percentage of treated patients.
Sipuleucel-T, the first noninfectious, agent-based vaccine ap-
proved for cancer therapy, achieved approval for patients
with metastatic, advanced prostate cancer based on a 4.1
month median overall survival (OS) improvement over place-
bo,3 while the CTLA-4 inhibitor ipilimumab has received approv-
al for metastatic melanoma based on a 3.6 month median
survival benefit.4 The humanized anti-PD-1 monoclonal

antibodies nivolumab and pembrolizumab are associated
with unprecedented . 5-year survival for metastatic melano-
ma, a disease previously regarded as treatment refractory
and as deadly as glioblastoma, but only 10%–15% of patients
achieve this success. These modest, yet encouraging, results
provide proof-of-concept that immunotherapy can successfully
battle cancer but, as with most important advances, additional
questions arise. Are these successes a glimpse of the potential
power of the immune system, or are they the best we can
hope to achieve? Why are some cancers more responsive to
immunotherapy than others? Are there bona fide immunother-
apy refractory malignancies? For neuro-oncology, are CNS
tumor patients different from other cancer patients? As de-
tailed in a comprehensive, recent review, historical dogma
regarding immunoprivilege of the CNS has been steadily re-
placed by data demonstrating a dynamic and effective
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interaction of the immune system between systemic and CNS
compartments.5

Nonetheless, the answers to these important questions re-
garding the anticancer potential of immunotherapy lie in ad-
dressing 2 fundamental, yet paramount, considerations: (i)
how robust is the tumor-specific immune response generated
by a given immunotherapeutic, and (ii) is the antitumor im-
mune response able to sufficiently overcome self-protective,
immunosuppressive strategies generated by cancers? As de-
tailed by Weller and Heimberger in this supplement, tumors—
especially high-grade gliomas—exploit multiple mechanisms
systemically as well as within the tumor microenvironment to
abrogate antitumor immune responses. Although single- agent
immunotherapy approaches may be able to address either im-
munogenicity or immunosuppression considerations, carefully
designed combinatorial regimens will likely be required to ad-
dress both issues effectively and ensure that a sufficiently po-
tent antitumor immune response has been achieved and that
the immunosuppressive barriers erected by tumors are suffi-
ciently negated to allow ample opportunity for immune attack.

Immunotherapy Combined With Cytotoxic
Therapy
Cytotoxic radiotherapy and chemotherapy, established thera-
peutic cornerstones for many malignancies including high-grade
glioma, have historically been considered immunosuppressive
and thus appear to be paradoxical partners for immunotherapy.
Nonetheless, an intact immune system has been linked with
enhanced antitumor activity for both radiation therapy and
chemotherapy in preclinical cancer models, suggesting that im-
mune responses contribute to the effectiveness of cytotoxic
therapy.6,7 Furthermore, growing data link several mechanisms
by which cytotoxic agents may lead to more robust antitumor
immune attack.8 – 13 Prominent among these is the induction
of immunogenic cell death, which is defined by 3 primary com-
ponents: (i) translocation of calreticulin from endoplasmic retic-
ulum to the cell surface, where it activates dendritic cells (DCs);
(ii) ATP release, which recruits and matures DCs and upregulates
CD40, CD80, and CD86 costimulatory molecules; and (iii) extra-
cellular release of high-mobility group protein B1, which binds to
pattern recognition receptor toll-like receptor 4 (TLR4) on DCs
and enhances antigen cross-presentation and secretion of proin-
flammatory cytokines.7,14

Beyond induction of immunogenic cell death, radiation ther-
apy and chemotherapy can enhance antitumor immune re-
sponses by myriad additional mechanisms as summarized in
Table 1.15 – 40 The abscopal effect, which manifests as a radia-
tion therapy-induced tumor response outside the targeted
field, represents a striking example of the ability of cytotoxic
therapies to generate systemic antitumor immune respons-
es.41 Temozolomide, an alkylating agent approved for the treat-
ment of glioblastoma, has been shown to enhance antiglioma
immune activity by different mechanisms that appear to be
dose/schedule dependent including: (i) depletion of Tregs
when administered in a metronomic dosing schedule22,23; (ii)
generation of increased levels of cytotoxic T cells relative to
Tregs during homeostatic proliferation following standard

adjuvant dosing42; and (iii) marked expansion of antigen-
specific CD8+ T cells following myeloablative dosing.43

Nonetheless, radiation and chemotherapy can also exert po-
tent immunosuppressive actions including: (i) increased TGF-b
activation44; (ii) fostering an M2 macrophage phenotype45; (iii)
increased proportion of Tregs46; (iv) increased tumor cell PD-L1
expression induced by INFg secreted by CD8+ T cells47; and (v)
profound and sustained levels of lymphopenia.48 – 50 Thus, the
net effect of cytotoxic therapy on antitumor immune responses
will likely reflect an imbalance of immune-enhancing versus
immunosuppressive actions. Important variables that may im-
pact this balance warrant further investigation and include
dose, schedule and, for chemotherapy, agent of choice.

To date there has been limited preclinical investigation of cy-
totoxic agents combined with immunotherapeutics for glio-
blastoma. Temozolomide can enhance vaccine efficacy when
administered via low, daily (metronomic), or myeloablative
dosing schedules,43,51 while stereotactic radiation therapy can
augment the antitumor activity of PD-1 blockade.52 Nonethe-
less, there is substantial effort underway to evaluate immuno-
therapy combined with cytotoxic therapy in the clinic. Table 2
presents a partial listing of ongoing clinical trials for newly diag-
nosed glioblastoma patients. Similarly, there is growing interest
in evaluating immune checkpoint blockade with radiation ther-
apy administered as either whole brain or stereotactic radiosur-
gery in patients with brain metastases. Trials to date focus on
CTLA-4 blockade with radiotherapy for melanoma metastatic
to the brain (NCT02115139, NCT02097732, NCT02107755,
NCT01703507, and NCT01950195) while additional trials eval-
uating other immune checkpoint inhibitors as well as other
types of brain metastases are in active planning.

Although many trials are underway, limited data are avail-
able from completed trials that evaluated immunotherapy in-
tegrated with cytotoxic therapy for glioblastoma. Encouraging
outcomes have been reported for single-arm studies evaluating
vaccines derived from autologous DCs pulsed with tumor ly-
sate,53 – 58 tumor-associated antigens,55,59 heat-shock protein
peptide complex-96 (HSPPC-96),60 and EGFRvIII peptide.42,61,62

The only randomized, placebo-controlled clinical trial data to
date derive from a preliminary outcome analysis of ICT-107,
a vaccine consisting of autologous DCs pulsed with a cocktail
of 6 tumor-associated antigens administered with standard
radiation and temozolomide for newly diagnosed glioblastoma
patients (NCT01280552). Although the impact of ICT-107
administration on OS did not reach statistical significance for
the intent-to-treat population in this study, a subset analysis
of HLA-A2 positive patients revealed that ICT-107 led to a
4-month improvement in both PFS and OS among MGMT-
unmethylated patients and an improvement from 8.5 to 24.1
months in PFS for MGMT-methylated patients (HR: 0.259; P¼
.005), while the median survival for MGMT-methylated patients
has not been reached.63

Immunotherapy Combined with
Antiangiogenic Therapy
The precise impact of antiangiogenic agents on the pathophys-
iology of many cancers including glioblastoma is not clear.
Nonetheless, growing data support the ability of antiangiogenic
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agents to shift the tumor microenvironment phenotype from
immunosuppressive to immunosupportive.64,65 Vascular endo-
thelial growth factor (VEGF), the primary proangiogenic growth
factor in many cancers including malignant glioma, contributes
significantly to the immunosuppressive ability of tumors.66 – 68

Specifically, VEGF can inhibit DC maturation and antigen presenta-
tion, induce apoptosis of CD8+ T cells, enhance Treg activity, and
diminish infiltration of T cells across tumor endothelium.69–72 Of
note, preclinical studies suggest that immunotherapeutics
may be combined with VEGF inhibitors to generate enhanced
antitumor benefit.67 – 79 The rationale underlying the combina-
tion of immunotherapy approaches with antiangiogenic agents

is based on the ability of VEGF inhibition to diminish immuno-
suppressive features of tumors69 – 72,76,78,79 and enhance the
antitumor activity of immunotherapies.73,75,76,78,79 Further-
more, preclinical strategies to normalize tumor vasculature,
including administration of anti-VEGF therapy, can shift tumor-
associated macrophages from an immune-inhibitory M2-like
phenotype toward an immune-stimulatory M1-phenotype,
increase tumor infiltrating CD8+ T cells, and enhance survival
following whole tumor cell vaccination.74

Data from a recently published phase 1 study among met-
astatic melanoma patients revealed that administration of
bevacizumab with ipilimumab, an inhibitor of the CTLA-4

Table 2. Partial listing of ongoing clinical trials evaluating immunotherapy and cytotoxic therapy for newly diagnosed glioblastoma

Immunotherapy/Agent Phase # Patients Accrual Status Clinicaltrials.gov Comment

EGFRvIII peptide vaccine/Rindopepimut 3 700 Completed NCT01480479 Randomized; double-blind;
placebo-controlled;

Tumor lysate loaded DCs/DCVaxw-L 3 300 Ongoing NCT00045968 Randomized; double-blind;
placebo-controlled;

Tumor lysate-loaded DCs 2 100 Ongoing NCT01567202 Randomized; double-blind;
placebo-controlled;

Tumor-associated antigen vaccine/ICT107 2 124 Completed NCT01280552 Randomized; double-blind;
placebo-controlled

Tumor-associated antigen vaccine/
IMA950

1/2 16 Ongoing NCT01920191 IMA950

Autologous and allogeneic tumor-specific
neoantigens/APVAC

1 30 Ongoing NCT02149225

Autologous tumor-specific neoantigens/
NeoVax

1 16 Ongoing NCT02287428 MGMT-unmethylated patients only;
excludes temozolomide

Autologous DCs + allogeneic stem cell
lysate

1 40 Ongoing NCT02010606

Autologous DCs + allogeneic stem cell
lysate

1 10 Ongoing NCT01957956

Autologous DCs loaded with CMV
pp65-LAMP RNA

1 16 Ongoing NCT00639639

Autologous DCs loaded with CMV
pp65-LAMP RNA + basliximab

1 18 Ongoing NCT00626483

PD-L1 mAb/MEDI4736 2 37 Ongoing NCT02336165 MGMT-unmethylated patients only;
excludes temozolomide

Table 1. Potential mechanisms cytotoxic radiotherapy and chemotherapy can enhance immune system activity

Mechanism Radiotherapy Chemotherapy Reference(s)

Immunogenic cell death
p p 7,14

Chemokine induction (CXCL9/10/11)
p p 24,35,40

Proinflammatory cytokine production
p p 15,33

Increase MHC class I molecule expression
p 17

Increase co-stimulatory molecule expression
p 18,19

Decrease Tregs
p 22,23,28

Increased CD8 + effector cells (homeostatic proliferation)
p 32,40

Decrease inhibitory immune checkpoint molecules
p 36

Decrease myeloid suppressor cells
p 37 –39

Recruit/activate dendritic cells
p 25,27
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immune checkpoint, led to improved OS relative to historical
benchmarks of ipilimumab as well as evidence of increased
intratumoral immune-cell trafficking.80 For glioblastoma, data
have been reported from only one clinical trial evaluating
immunotherapy plus antiangiogenic therapy. In the ReACT
study, 70 patients with EGFRvIII-positive glioblastoma at first
or second recurrence were randomized to receive bevacizumab
plus placebo vaccine versus bevacizumab plus the EGFRvIII pep-
tide vaccine, rindopepimut. In this double-blind, randomized,
placebo-controlled study, rindopepimut recipients achieved a
significantly longer OS (HR: 0.57; P¼ .0386). Administration
of rindopepimut also conveyed a modest, yet not statistically sig-
nificant, improvement in PFS (HR: 0.79; P¼ .3756) as well as a
higher rate of durable (≥6 mo) radiographic responses.81 Impor-
tantly, these data represent the first randomized clinical trial to
demonstrate a survival benefit associated with any type of
immunotherapy for glioblastoma to date. Although the results
of this trial indicate that rindopepimut improved outcome
achieved by bevacizumab, it is not clear whether bevacizumab
improved the outcome of rindopepimut because the trial lacked
a rindopepimut-alone arm. Nonetheless, the overall results of
this study support further clinical trials evaluating combinatorial
regimens of immunotherapeutics plus antiangiogenic agents for
glioblastoma. Currently, ongoing clinical trials evaluating this ap-
proach include trials that combine bevacizumab with: (i) PD-1
blockade (NCT02337491); (ii) PD-L1 blockade (NCT02336165);
(iii) HSPPC-96 vaccine (NCT01814813); (iv) autologous tumor
lysate vaccine (NCT02010606); or (v) a vaccine derived from
combined autologous/allogeneic tumor lysates (NCT01903330).

Immunotherapy Plus Immunotherapy
Combinatorial Strategies
Among possible combinatorial strategies for immunotherapy,
the most exciting involves combining immunotherapeutics
with complementary mechanisms of antitumor immune at-
tack. As previously described, the efficacy of immunotherapeu-
tics against cancer is ultimately dependent on 2 factors: (i)
immunogenicity (ability to generate an immune response);
and (ii) tumor self-protective immunosuppression strategies.
A major contributing factor limiting the overall efficacy of
most immunotherapeutics to date, which typically reflects
single-agent therapy experience, is an inability to adequately
address both of these factors.

One factor that may impact the immunogenicity of cancer
vaccines is choice of antigen. Many vaccines target tumor-
associated antigens. Immunoreactivity induced by these vac-
cines is predicted to be relatively low because tumor-associated
antigens can also be expressed by normal tissues and may
therefore evoke immunotolerance. In contrast, vaccines target-
ing tumor-specific antigens, which by definition are uniquely ex-
pressed by tumor cells and are not present on normal tissues,
are expected to generate more potent immune responses that
are not limited by normal self-tolerance mechanisms.

Another factor likely limiting the efficacy of cancer vaccines
is that tumors can escape immunogenic immune responses in-
duced by vaccines by downregulating target antigen expression
or by expanding an existing subset of cells that lack target an-
tigen expression. For example, among glioblastoma patients

treated with the EGFRvIII-targeting peptide vaccine rindopepi-
mut, expression of EGFRvIII was no longer detectable at the
time of confirmed recurrence.62 This finding suggests that tar-
geting multiple tumor-specific antigens may lessen the likeli-
hood of immune escape and thereby generate more durable
antitumor benefit compared with vaccines targeting a single
antigen or a small number of antigens.

An insurmountable therapeutic hurdle for glioblastoma to
date is the remarkable degree of heterogeneity within individu-
al tumors.82,83 Given this challenge, it is not surprising that cy-
totoxic agents achieve modest benefit at best, while targeted
molecular agents have essentially failed, even among geneti-
cally enriched patient populations.84,85 Exploiting the muta-
nome or constellation of tumor-specific mutations within a
given tumor, which include both passenger and driver muta-
tions, represents a challenging yet highly exciting opportunity
for immunotherapy. Multiple studies point to the critical rela-
tionship between immune responses against tumor-specific
mutations often referred to as neoantigens and effective
tumor control.86 – 92 In recent analyses, expression of a panel
of tumor-specific neoantigens was demonstrated to be a criti-
cal predictor of long-term response following immune check-
point therapy among patients with advanced melanoma93 or
non–small cell lung cancer.94 The ability to target a spectrum
of tumor-specific mutations, even if heterogeneously expressed
within a given tumor, provides immunotherapy a unique oppor-
tunity to effectively exploit the challenge posed by intratumoral
heterogeneity for therapeutic benefit.

On the other hand, immunosuppressive adaptations exploit-
ed by tumors can essentially neutralize antitumor immune re-
sponses regardless of the potency, specificity, and breadth. As
detailed by Weller and Heimberger in this supplement, glioblas-
tomas invoke a wide array of immunosuppressive strategies
that include systemic factors such as lowered levels of T cell re-
sponsiveness, immunoglobulins, and monocyte/dendritic func-
tion as well as increased Tregs.95 – 98 Even more remarkable are
the host of immunosuppressive factors generated by tumors
that function in the immediate microenvironment to act as a
localized shield or cloaking device against antitumor immune
attack including: (i) expression of multiple immunoinhibitory
molecules including TGF-b, STAT-3, VEGF, IL-10, prostaglandin
E2, tryptophan, and lectin-like transcript 199 – 104; (ii) downregu-
lation of MHC molecule expression101,105,106; (iii) enhanced infil-
tration of Tregs101,102,107 – 111; (iv) polarization of microglia and
tumor-associated macrophages toward an M2 pheno-
type112,113; (v) upregulation of Fas ligand114,115; (vi) impaired
T cell function due to hostile factors including hypoxia116; and
(vii) increased expression of inhibitory immune checkpoint mol-
ecules such as PD-L1, which was recently described to be prom-
inently expressed by 80%–90% of glioblastoma tumors117 as
well as the other B7H family molecule, B7H3104,118

Given the plethora of immunosuppressive mechanisms uti-
lized by tumors including glioblastoma, combinatorial regimens
will likely require one or more components that block immuno-
suppressive mechanisms. Certainly, the emergence of human-
ized mAbs able to block the CTLA-4, PD-1, and PD-L1 immune
checkpoints offer much hope for oncology patients. Although
the role of these agents for neuro-oncology patients is currently
being defined in ongoing clinical trials, preclinical studies
against orthotopic, immunocompetent glioblastoma models
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demonstrate exciting efficacy including evidence of enhanced
benefit with combinatorial regimens.52,119 – 121 Combinations
of immune checkpoint inhibitors such as PD-1 plus CTLA-4
blockade offer potential synergy to expand effector T cells
while decreasing regulatory T cells and myeloid suppressor
cells.122 Furthermore, enhanced therapeutic benefit has been
observed with such regimens in preclinical GBM models119,121

and in patients with advanced melanoma.123 However, such
regimens may also be limited clinically by enhanced immune-
mediated toxicity.123

Additional therapeutics against immunosuppressive mech-
anisms invoked by glioblastoma tumors are slowly evolving,
but further research is critically needed. Initial results of a
phase 1 clinical trial evaluating galunisertib (LY2157299;. an
oral inhibitor against TGF-b) are encouraging,124 although
phase 2 results in monotherapy or in combination with lomus-
tine are negative.125 A clinical trial combining this agent with
the PD-1 inhibitor nivolumab will begin in the near future
(NCT02423343). Another ongoing study is evaluating the role
of Treg targeting and incorporates basiliximab in combination
with a vaccine (NCT00626483). In addition, VEGF inhibition
plus immunotherapy warrants further investigation, as previ-
ously discussed.

Finally, a “ying-yang” combinatorial strategy of high appeal
includes immunotherapy regimens integrating an agent capa-
ble of generating a robust antitumor immune response (eg, a
vaccine against tumor specific antigens) with an agent capable
of targeting tumor immunosuppression (eg, a checkpoint inhib-
itor). Although checkpoint blockade therapy alone may help re-
lieve local immune suppression and overcome T cell exhaustion
or anergy, it may be constrained by the size and specificity of
the existing T cell population (T cells arising from the normal
physiological presentation of the evolving tumor to the host im-
mune system). This consideration may be particularly relevant
for tumors that are considered relatively less immunogenic. The
lack of coincident, focused immune stimulation may thus be a
critical factor that limits maximal efficacy of checkpoint inhibi-
tion therapy, a deficit that may be overcome by an effective
vaccine. Indeed, in many preclinical animal studies, the antitu-
mor activity of immune-checkpoint blockade was dramatically
enhanced when combined with a vaccine.126 – 130 Although
clinical data are only beginning to emerge, enhanced activity
has also been observed among patients treated with combina-
torial tumor vaccination plus immune-checkpoint blockade
regimens.131 – 133

Conclusion
The ability of immunotherapies to achieve their therapeutic po-
tential for medical and neuro-oncology will likely depend on the
development of rationally designed combinatorial regimens capa-
ble of optimizing potent antitumor immune responses while
effectively negating self-protective immunosuppressive strategies
exploited by many tumors. Glioblastoma tumors exhibit a
profound repertoire of immunosuppressive adaptations. Nonethe-
less, multiple opportunities are emerging to incorporate immuno-
therapies into regimens that may enhance immunogenicity while
targeting immunosuppression including combinations with cyto-
toxic agents, antiangiogenics, and other immunotherapeutics.

Critical considerations for these regimens include evaluation of
complementary mechanisms of action, dose, and scheduling. In
addition, effective measurement of immunogenicity through in-
corporation of immunocorrelative assays, as well as investigation
of changes in immunosuppressive factors, will also be of great
value in ascertaining why or why not these agents succeed for
our patients.
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